The Barrier-Enhancing Function of Soluble Yam (Dioscorea opposita Thunb.) Polysaccharides in Rat Intestinal Epithelial Cells as Affected by the Covalent Se Conjugation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Regents and Materials
2.2. Cell Line and Cell Culture
2.3. Preparation and Chemical Selenylation of YP
2.4. Measurements of Se and Saccharide Contents
2.5. Evaluation of Cell Viability and Na2SeO3 Cytotoxicity
2.6. Assays of TEER and Paracellular Permeability
2.7. Assays of Anti-Bacterial Activity and Bacterial Translocation
2.8. Observation of Cytoskeletal F-Actin
2.9. Quantitative Real-Time PCR Assay
2.10. Western-Blot Assay
2.11. Statistical Analysis
3. Results
3.1. Several Chemical Features of the Prepared Polysaccharide Samples
3.2. Cytotoxicity of the Polysaccharide Samples and Na2SeO3 to ICE-6 Cells
3.3. TEER Enhancement of the Cells in Response to the Polysaccharide Samples
3.4. Paracellular Permeability Reduction of the Cells in Response to the Polysaccharide Samples
3.5. Anti-Bacterial Activity Upgrade and Bacterial Translocation Decrease of the Cell Monolayer in Response to the Polysaccharide Samples
3.6. Promoted Intercellular Distribution of F-Actin in Response to the Polysaccharide Samples
3.7. Expression Changes of the TJ-Related Genes and Proteins in the Cells in Response to the Samples
3.8. Effects of the Polysaccharide Samples on the mRNA and Protein Expression of the ROCK/RhoA Pathway
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prabhu, A.; Gadgil, M. Trace metals in cellular metabolism and their impact on recombinant protein production. Process Biochem. 2021, 110, 251–262. [Google Scholar] [CrossRef]
- Taheri, S.; Asadi, S.; Nilashi, M.; Abumalloh, R.A.; Ghabban, N.M.; Yusuf, S.Y.M.; Supriyanto, E.; Samad, S. A literature review on beneficial role of vitamins and trace elements: Evidence from published clinical studies. J. Trace Elem. Med. Biol. 2021, 67, e126789. [Google Scholar] [CrossRef] [PubMed]
- Cashman, K.D. Milk minerals (including trace elements) and bone health. Int. Dairy J. 2006, 16, 1389–1398. [Google Scholar] [CrossRef]
- López-Alonso, M. Trace minerals and livestock: Not too much not too little. Int. Scholarly Res. Not. 2012, 2012, e704825. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.K.; Qiu, W.Y.; Wang, Y.Y.; Wang, W.H.; Yang, Y.; Zhang, H.N. Fabrication and stabilization of biocompatible selenium nanoparticles by carboxylic curdlans with various molecular properties. Carbohydr. Polym. 2018, 179, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Pallud, S.; Lennon, A.M.; Ramauge, M.; Gavaret, J.M.; Croteau, W.; Pierre, M.; Courtin, F.; St Germain, D.L. Expression of the type II iodothyronine deiodinase in cultured rat astrocytes is selenium-dependent. J. Biol. Chem. 1997, 272, e18104. [Google Scholar] [CrossRef]
- Wang, L.; Wang, G.Y.; Zhang, J.J.; Zhang, G.Q.; Jia, L.; Liu, X.N.; Deng, P.; Fan, K.M. Extraction optimization and antioxidant activity of intracellular selenium polysaccharide by Cordyceps sinensis SU-02. Carbohydr. Polym. 2011, 86, 1745–1750. [Google Scholar] [CrossRef]
- Wang, L.; Li, C.; Huang, Q.; Fu, X. Biofunctionalization of selenium nanoparticle with a polysaccharide from Rosa roxburghii fruit and its protective effect against H2O2-induced apoptosis in INS-1 cells. Food Funct. 2019, 10, 539–553. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P. The importance of selenium to human health. Lancet 2000, 35, 233–241. [Google Scholar] [CrossRef]
- Liu, F.; Zhu, Z.Y.; Sun, X.L.; Gao, H.; Zhang, Y.M. The preparation of three selenium-containing Cordyceps militaris polysaccharides: Characterization and anti-tumor activities. Int. J. Biol. Macromol. 2017, 99, 196–204. [Google Scholar] [CrossRef]
- Wang, J.L.; Zhao, B.T.; Wang, X.F.; Yao, J.; Zhang, J. Synthesis of selenium-containing polysaccharides and evaluation of antioxidant activity in vitro. Int. J. Biol. Macromol. 2012, 51, 987–991. [Google Scholar] [CrossRef] [PubMed]
- Górska, S.; Maksymiuk, A.; Turło, J. Selenium-containing polysaccharides–Structural diversity, biosynthesis, chemical modifications and biological activity. Appl. Sci. 2021, 11, 3717. [Google Scholar] [CrossRef]
- Li, C.P.; He, Z.K.; Wang, X.Y.; Yang, L.; Yin, C.Y.; Zhang, N.; Lin, J.; Zhao, H. Selenization of ovalbumin by dry-heating in the presence of selenite: Effect on protein structure and antioxidant activity. Food Chem. 2014, 148, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Kieliszek, M.; Bierla, K.; Jiménez-Lamana, J.; Kot, A.; Alcántara-Durán, J.; Piwowarek, K.; Błażejak, S.; Szpunar, J. Metabolic response of the yeast Candida utilis during enrichment in selenium. Int. J. Mol. Sci. 2020, 21, 5287. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Wu, Q.Y.; Chen, C.; Zheng, R.; Chen, Y.; Ni, J.Z.; Song, G.L. Comparison of the effects of selenomethionine and selenium-enriched yeast in the triple-transgenic mouse model of Alzheimer’s disease. Food Funct. 2018, 9, 3965–3973. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Chen, C.; Li, C.; Huang, Q.; Fu, X. Physicochemical characterization, antioxidant and hypoglycemic activities of selenized polysaccharides from Sargassum pallidum. Int. J. Biol. Macromol. 2019, 132, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.L.; Zhang, H. Production of intracellular selenium-enriched polysaccharides from thin stillage by Cordyceps sinensis and its bioactivities. Food Nutr. Res. 2016, 60, 30153–30164. [Google Scholar] [CrossRef] [PubMed]
- Mao, G.H.; Ren, Y.; Li, Q.; Wu, H.Y.; Jin, D.; Zhao, T.; Xu, C.Q.; Zhang, D.H.; Jia, Q.D.; Bai, Y.P.; et al. Anti-tumor and immunomodulatory activity of selenium (Se)-polysaccharide from Se-enriched Grifola frondosa. Int. J. Biol. Macromol. 2016, 82, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Ying, M.X.; Yu, Q.; Zheng, B.; Wang, H. Cultured Cordyceps sinensis polysaccharides attenuate cyclophosphamide-induced intestinal barrier injury in mice. J. Funct. Foods. 2019, 62, e103523. [Google Scholar] [CrossRef]
- Zong, X.; Xiao, X.; Kai, L.X.; Cheng, Y.Z. Atractylodis macrocephalae polysaccharides protect against DSS-induced intestinal injury through a novel lncRNA ITSN1-OT1. Int. J. Biol. Macromol. 2021, 167, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.X.; Zhao, X.H. Immunomodulatory potentials of the water-soluble yam (Dioscorea opposita Thunb.) polysaccharides for the normal and cyclophosphamide-suppressed mice. Food Agric. Immunol. 2016, 27, 667–677. [Google Scholar] [CrossRef]
- Guan, Q.Y.; Lin, Y.R.; Li, L.Y.; Tang, Z.M.; Zhao, X.H.; Shi, J. In vitro immunomodulation of the polysaccharides from yam (Dioscorea opposita Thunb.) in response to a selenylation of lower extent. Foods 2021, 10, 2788. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Lee, Y.K.; Choi, Y.R.; Choi, Y.R.; Park, J.; Jung, S.K.; Chang, Y.H. The characterization, selenylation and anti-inflammatory activity of pectic polysaccharides extracted from, Ulmus pumila, L. Int. J. Biol. Macromol. 2018, 1, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Xiang, Y.; Zhao, J.; Chang, J.M. Saccharum Alhagi polysaccharide-1 and -2 promote the immunocompetence of RAW264. 7 macrophages in vitro. Exp. Ther. Med. 2018, 15, 3556–3562. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.R.; Guan, Q.Y.; Li, L.Y.; Tang, Z.M.; Zhang, Q.; Zhao, X.H. In vitro immuno-modulatory potentials of purslane (Portulaca oleracea L.) polysaccharides with a chemical selenylation. Foods 2021, 11, 14. [Google Scholar] [CrossRef]
- Gao, P.Y.; Bian, J.; Xu, S.S.; Liu, C.F.; Sun, Y.Q.; Zhang, G.L.; Li, D.Q.; Liu, X.G. Structural features, selenization modification, antioxidant and anti-tumor effects of polysaccharides from alfalfa roots. Int. J. Biol. Macromol. 2020, 149, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Pan, G.F.; Xie, Z.W.; Huang, S.X.; Tai, Y.L.; Cai, Q.S.; Jiang, W.; Sun, J.M.; Yuan, Y. Immune-enhancing effects of polysaccharides extracted from Lilium lancifolium Thunb. Int. Immunopharmacol. 2017, 52, 119–126. [Google Scholar] [CrossRef]
- Shi, J.; Zhao, X.H. Chemical features of the oligochitosan-glycated caseinate digest and its enhanced protection on barrier function of the acrylamide-injured IEC-6 cells. Food Chem. 2019, 290, 246–254. [Google Scholar] [CrossRef]
- Fan, J.; Zhao, X.H.; Zhao, J.R.; Li, B.R. Galangin and kaempferol alleviate the indomethacin-caused cytotoxicity and barrier loss in rat intestinal epithelial (IEC-6) cells via mediating JNK/Src activation. ACS Omega 2021, 6, 15046–15056. [Google Scholar] [CrossRef]
- Canali, M.M.; Pedrotti, L.P.; Balsinde, J.; Ibarra, C.; Correa, S.G. Chitosan enhances transcellular permeability in human and rat intestine epithelium. Eur. J. Pharm. Biopharm. 2012, 80, 418–425. [Google Scholar] [CrossRef]
- Shi, J.; Zhao, X.H.; Fu, Y.; Lametsch, R. Transglutaminase-mediated caseinate oligochitosan glycation enhances the effect of caseinate hydrolysate to ameliorate the LPS-induced damage on the intestinal barrier function in IEC-6 cells. J. Agric. Food Chem. 2021, 69, 8787–8796. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Huh, D.; Hamilton, G.; Ingber, D.E. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 2012, 12, 2165–2174. [Google Scholar] [CrossRef] [PubMed]
- Clark, E.; Hoare, C.; Tanianis-Hughes, J.; Carlson, G.L.; Warhurst, G. Interferon gamma induces translocation of commensal escherichia coli across gut epithelial cells via a lipid raft-mediated process. Gastroenterology 2005, 128, 1258–1267. [Google Scholar] [CrossRef] [PubMed]
- Bouley, R.; Yui, N.; Terlouw, A.; Cheung, P.W.; Brown, D. Chlorpromazine induces basolateral aquaporin-2 accumulation via F-actin depolymerization and blockade of endocytosis in renal epithelial cells. Cells 2020, 9, 1057. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Zhao, X.H. Effect of caseinate glycation with oligochitosan and transglutaminase on the intestinal barrier function of the tryptic caseinate digest in IEC-6 cells. Food Funct. 2019, 10, 652–664. [Google Scholar] [CrossRef] [PubMed]
- Salinas, E.; Reyes-Pavón, D.; Cortes-Perez, N.G.; Maravilla, E.T. Bioactive compounds in food as a current therapeutic approach to maintain a healthy intestinal epithelium. Microorganisms 2021, 9, 1634. [Google Scholar] [CrossRef]
- Motta, J.P.; Wallace, J.L.; Buret, A.G.; Deraison, C. Gastrointestinal biofilms in health and disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 314–334. [Google Scholar] [CrossRef]
- Chen, L.; Tuo, B.; Dong, H. Regulation of intestinal glucose absorption by ion channels and transporters. Nutrients 2016, 8, 43. [Google Scholar] [CrossRef]
- Serek, P.; Oleksy-Wawrzyniak, M. The effect of bacterial infections, probiotics and zonulin on intestinal barrier integrity. Int. J. Mol. Sci. 2021, 22, 11359. [Google Scholar] [CrossRef]
- Camilleri, M. Leaky gut: Mechanisms, measurement and clinical implications in humans. Gut. 2019, 68, 1516–1526. [Google Scholar] [CrossRef]
- Aaron, L.; Torsten, M.; Patricia, W. Autoimmunity in celiac disease: Extra-intestinal manifestations. Autoimmun. Rev. 2019, 18, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Schoultz, I.; Keita, Å.V. Cellular and molecular therapeutic targets in inflammatory bowel disease—Focusing on intestinal barrier function. Cells 2019, 8, 193. [Google Scholar] [CrossRef]
- Liang, J.; Li, H.L.; Chen, J.Q.; He, L.; Du, X.H.; Zhou, L.; Xiong, Q.Q.; Lai, X.P.; Yang, Y.Q.; Huang, S.; et al. Dendrobium officinale polysaccharides alleviate colon tumorigenesis via restoring intestinal barrier function and enhancing anti-tumor immune response. Pharmacol. Res. 2019, 148, e104417. [Google Scholar] [CrossRef] [PubMed]
- Stalla, F.M.; Astegiano, M.; Davide, G.R.; Saracco, G.M.; Pellicano, R. The small intestine: Barrier, permeability and microbiota. Minerva Gastroenterol. 2022, 68, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Gao, M.B.; Han, T. Lycium barbarum polysaccharides ameliorate intestinal barrier dysfunction and inflammation through the MLCK-MLC signaling pathway in Caco-2 cells. Food Funct. 2019, 10, 4231–4241. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Fan, X.X.; Ji, Y.; Li, J.; Dai, Z.L.; Wu, Z.L. Glycine represses endoplasmic reticulum stress-related apoptosis and improves intestinal barrier by activating mammalian target of rapamycin complex 1 signaling. Anim Nutr. 2022, 8, 1–9. [Google Scholar] [CrossRef]
- Han, F.F.; Zhao, X.; Li, X.; Peng, L.Y.; Liu, W.L.; Han, J.Z. Bovine lactoferricin ameliorates intestinal inflammation and mucosal barrier lesions in colitis through NF-κB/NLRP3 signaling pathways. J. Funct. Foods 2022, 93, e105090. [Google Scholar] [CrossRef]
- Mayangsari, Y.; Suzuki, T. Resveratrol enhances intestinal barrier function by ameliorating barrier disruption in Caco-2 cell monolayers. J. Funct. Foods 2018, 51, 39–46. [Google Scholar] [CrossRef]
- Fan, J.; Zhao, X.H.; Li, T.J. Heat treatment of galangin and kaempferol inhibits their benefits to improve barrier function in rat intestinal epithelial cells. J. Nutr. Biochem. 2021, 87, e108517. [Google Scholar] [CrossRef] [PubMed]
- Nie, C.Z.P.; Zhu, P.L.; Ma, S.P.; Wang, M.C.; Hu, Y.D. Purification, characterization and immunomodulatory activity of polysaccharides from Stem Lettuce. Carbohydr. Polym. 2018, 188, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Tan, Z.; Xin, Y. Systematic evaluation of the anti-tumor effect of Phellinus linteus polysaccharide in thyroid carcinoma in vitro. Mol. Biol. Rep. 2022, 49, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.Y.; Ren, L.; Liu, W.J.; Sui, L.; Nong, Q.N.; Xiao, Q.H.; Li, X.Q.; Cao, W. Structural characteristics of a hypoglycemic polysaccharide from Fructus Corni. Carbohydr. Res. 2021, 506, e108358. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Hang, Y.; Li, J.E.; An, Q.; Ye, X.M.; Li, X.; Zhao, Z.T.; Zhang, Y.; He, J.; Deng, Q.H.; et al. Structural characterization and antioxidant activity of an acetylated Cyclocarya paliurus polysaccharide (Ac-CPP0.1). Int. J. Biol. Macromol. 2021, 171, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.F.; Udayakumar, V.; Sathuvan, M.; Liu, Y.; Liu, X.J.; Zhang, Y.Q.; Ma, W.Y.; Zhang, W.C.; Tang, S.J.; Cheong, K.L. Effects of laminarin zwitterionic carboxylate and sulfonate on the intestinal barrier function and gut microbiota. Carbohydr. Polym. 2022, 278, e118898. [Google Scholar] [CrossRef]
- Liu, Y.T.; You, Y.X.; Li, Y.W.; Zhang, L.; Yin, L.L.; Shen, Y.B.; Li, C.; Chen, H.; Chen, S.J.; Hua, B.; et al. The characterization, selenylation and antidiabetic activity of mycelial polysaccharides from Catathelasma ventricosum. Carbohydr. Polym. 2017, 174, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Wang, Q.M.; Ma, Y.H.; Li, L.Z.; Yu, K.; Zhang, Z.C.; Chen, G.Q.; Li, X.S.; Xiao, W.D.; Xu, P.Y.; et al. Aryl hydrocarbon receptor activation modulates intestinal epithelial barrier function by maintaining tight junction integrity. Int. J. Biol. Sci. 2018, 14, e69. [Google Scholar] [CrossRef] [PubMed]
- Capaldo, C.T.; Powell, D.N.; Kalman, D. Layered defense: How mucus and tight junctions seal the intestinal barrier. J. Mol. Med. 2017, 95, 927–934. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.B.; Zhu, X.L.; Wang, L.; Xin, X.; Zhang, M.M. Effects of two polysaccharides from Lepidium meyenii (maca) on intestinal immunity and inflammation in vitro. Food Funct. 2022, 13, 3441–3452. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Z.; Mi, S.M.; Zhou, L.L.; Zhou, Y.; Li, J.; Liu, W.H.; Deng, Z.Y.; Yin, Y.L. Chlorogenic acid enhances intestinal barrier by decreasing MLCK expression and promoting dynamic distribution of tight junction proteins in colitic rats. J. Funct. Foods 2016, 26, 698–708. [Google Scholar] [CrossRef]
- Ranaldi, G.; Ferruzza, S.; Natella, F.; Unfer, V.; Sambuy, Y.; Monastra, G. Enhancement of D-chiro-inositol transport across intestinal cells by alpha-lactalbumin peptides. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 10143–10154. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhao, X.; Feng, T.; Jin, G.; Li, Z. Rutin prevents high glucose-induced renal glomerular endothelial hyperpermeability by inhibiting the ROS/Rhoa/ROCK signaling pathway. Planta Med. 2016, 82, 1252–1257. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.J.; Zhou, B.; Song, Z.F.; Li, L.; Wu, J.; Zhang, R.Y.; Tang, Y.Q. Study of Astragalus mongholicus polysaccharides on endothelial cells permeability induced by HMGB1. Carbohydr. Polym. 2013, 92, 934–941. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.D.; Zhao, Y.H. Targeting NF-κB pathway for treating ulcerative colitis: Comprehensive regulatory characteristics of Chinese medicines. Chin. Med. 2020, 15, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Li, M.Y.; Sun, K.C.; Su, S.; Geng, T.T.; Sun, H. Hippophae rhamnoides polysaccharides protect IPEC-J2 cells from LPS-induced inflammation; apoptosis and barrier dysfunction in vitro via inhibiting TLR4/NF-κB signaling pathway. Int. J. Biol. Macromol. 2020, 155, 1202–1215. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.M.; Mao, L.Q.; Wu, C.Y.; Ye, W.; Wang, X. Chlorogenic acid improves intestinal barrier function by downregulating CD14 to inhibit the NF-κB signaling pathway. J. Funct. Foods. 2021, 85, e104640. [Google Scholar] [CrossRef]
- Zhang, Y.K.; Lu, F.; Zhang, H.; Ye, Y.W.; Liu, P.G.; Lin, D.M.; Zhou, H.; Li, M.; Yang, B.X. Polysaccharides from Agaricus blazei Murrill ameliorate dextran sulfate sodium-induced colitis via attenuating intestinal barrier dysfunction. J. Funct. Foods 2022, 92, e105072. [Google Scholar] [CrossRef]
- Zhao, Y.N.; Chen, H.; Li, W.T.; He, Q.; Liang, J.Y.M.; Yan, X.H.; Yuan, Y.H.; Yue, T.L. Selenium-containing tea polysaccharides ameliorate DSS-induced ulcerative colitis via enhancing the intestinal barrier and regulating the gut microbiota. Int. J. Biol. Macromol. 2022, 209, 356–366. [Google Scholar] [CrossRef] [PubMed]
Genes | Species | Primer Sequences (5′–3′) |
---|---|---|
ZO-1 | Rat | Forward: CCACCTCGCACGTATCACAAGC |
Reverse: GGCAATGACACTCCTTCGTCTCTG | ||
Occludin | Rat | Forward: CCTCCTTACAGGCCGGATGA |
Reverse: AGCATTGGTCGAACGTGCAT | ||
Claudin-1 | Rat | Forward: GTTTCATCCTGGCTTCGCTG |
Reverse: AGCAGTCACGATGTTGTCCC | ||
RhoA | Rat | Forward: AGGCGGGAGTTAGCCAAAAT |
Reverse: GTACCCAAAAGCGCCAATCC | ||
ROCK-1 | Rat | Forward: GGTGATGGAGTACATGCCAGGTG |
Reverse: ATCCAGTGCAAGCACGACTTCAG | ||
GAPDH | Rat | Forward: CCCTCTGGAAAGCTGTGG |
Reverse: GCTTCACCACCTTCTTGATGT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.-X.; Zhao, X.-H. The Barrier-Enhancing Function of Soluble Yam (Dioscorea opposita Thunb.) Polysaccharides in Rat Intestinal Epithelial Cells as Affected by the Covalent Se Conjugation. Nutrients 2022, 14, 3950. https://doi.org/10.3390/nu14193950
Wang Z-X, Zhao X-H. The Barrier-Enhancing Function of Soluble Yam (Dioscorea opposita Thunb.) Polysaccharides in Rat Intestinal Epithelial Cells as Affected by the Covalent Se Conjugation. Nutrients. 2022; 14(19):3950. https://doi.org/10.3390/nu14193950
Chicago/Turabian StyleWang, Zhen-Xing, and Xin-Huai Zhao. 2022. "The Barrier-Enhancing Function of Soluble Yam (Dioscorea opposita Thunb.) Polysaccharides in Rat Intestinal Epithelial Cells as Affected by the Covalent Se Conjugation" Nutrients 14, no. 19: 3950. https://doi.org/10.3390/nu14193950
APA StyleWang, Z. -X., & Zhao, X. -H. (2022). The Barrier-Enhancing Function of Soluble Yam (Dioscorea opposita Thunb.) Polysaccharides in Rat Intestinal Epithelial Cells as Affected by the Covalent Se Conjugation. Nutrients, 14(19), 3950. https://doi.org/10.3390/nu14193950