Adherence to a Healthy Beverage Score Is Associated with Lower Frailty Risk in Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Dietary Assessment
2.3. Healthy Beverage Score
2.4. Ascertainment of Frailty
2.5. Other Variables
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beard, J.R.; Officer, A.; de Carvalho, I.A.; Sadana, R.; Pot, A.M.; Michel, J.-P.; Lloyd-Sherlock, P.; Epping-Jordan, J.E.; Peeters, G.M.E.E.G.; Mahanani, W.R.; et al. The World report on ageing and health: A policy framework for healthy ageing. Lancet 2016, 387, 2145–2154. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística of Spain (INE). Mortality Indicators. Life Expectancy at 65 Years of Age, by Gender. Available online: https://www.ine.es/jaxiT3/Tabla.htm?t=1415&L=0 (accessed on 27 December 2021).
- Vaupel, J.W. Biodemography of human ageing. Nature 2010, 464, 536–542. [Google Scholar] [CrossRef] [PubMed]
- O’Caoimh, R.; Sezgin, D.; O’Donovan, M.R.; Molloy, D.W.; Clegg, A.; Rockwood, K.; Liew, A. Prevalence of frailty in 62 countries across the world: A systematic review and meta-analysis of population-level studies. Age Ageing 2021, 50, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Morley, J.E.; Vellas, B.; van Kan, G.A.; Anker, S.D.; Bauer, J.M.; Bernabei, R.; Cesari, M.; Chumlea, W.; Doehner, W.; Evans, J.; et al. Frailty Consensus: A Call to Action. J. Am. Med Dir. Assoc. 2013, 14, 392–397. [Google Scholar] [CrossRef]
- Belloni, G.; Cesari, M. Frailty and Intrinsic Capacity: Two Distinct but Related Constructs. Front. Med. 2019, 6, 133. [Google Scholar] [CrossRef]
- Vermeiren, S.; Vella-Azzopardi, R.; Beckwée, D.; Habbig, A.-K.; Scafoglieri, A.; Jansen, B.; Bautmans, I.; Gerontopole Brussels Study Group. Frailty and the Prediction of Negative Health Outcomes: A Meta-Analysis. J. Am. Med. Dir. Assoc. 2016, 17, 1163 e1–1163 e17. [Google Scholar] [CrossRef]
- Clegg, A.; Young, J.; Iliffe, S.; Rikkert, M.O.; Rockwood, K. Frailty in elderly people. Lancet 2013, 381, 752–762. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in Older adults: Evidence for a phenotype. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef]
- Bonnefoy, M.; Berrut, G.; LeSourd, B.; Ferry, M.; Gilbert, T.; Guerin, O.; Hanon, O.; Jeandel, C.; Paillaud, E.; Raynaud-Simon, A.; et al. Frailty and nutrition: Searching for evidence. J. Nutr. Health Aging 2015, 19, 250–257. [Google Scholar] [CrossRef]
- Rashidi Pour Fard, N.; Amirabdollahian, F.; Haghighatdoost, F. Dietary patterns and frailty: A systematic review and meta-analysis. Nutr. Rev. 2019, 77, 498–513. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean Diet and Survival in a Greek Population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef] [PubMed]
- Fung, T.T.; Chiuve, S.E.; McCullough, M.L.; Rexrode, K.M.; Logroscino, G.; Hu, F.B. Adherence to a DASH-style diet and risk of coronary heart disease and stroke in women. Arch. Intern. Med. 2008, 168, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Krebs-Smith, S.M.; Pannucci, T.E.; Subar, A.F.; Kirkpatrick, S.I.; Lerman, J.L.; Tooze, J.A.; Wilson, M.M.; Reedy, J. Update of the Healthy Eating Index: HEI-2015. J. Acad. Nutr. Diet. 2018, 118, 1591–1602. [Google Scholar] [CrossRef] [PubMed]
- Schröder, H.; Zomeño, M.D.; Martínez-González, M.A.; Salas-Salvadó, J.; Corella, D.; Vioque, J.; Romaguera, D.; Martínez, J.A.; Tinahones, F.J.; Miranda, J.L.; et al. Validity of the energy-restricted Mediterranean Diet Adherence Screener. Clin. Nutr. 2021, 40, 4971–4979. [Google Scholar] [CrossRef] [PubMed]
- Cuesta-Triana, F.; Verdejo-Bravo, C.; Fernández-Pérez, C.; Sánchez, F.J.M. Effect of Milk and Other Dairy Products on the Risk of Frailty, Sarcopenia, and Cognitive Performance Decline in the Elderly: A Systematic Review. Adv. Nutr. 2019, 10, S105–S119. [Google Scholar] [CrossRef] [PubMed]
- Machado-Fragua, M.D.; Struijk, E.A.; Graciani, A.; Guallar-Castillon, P.; Rodríguez-Artalejo, F.; Lopez-Garcia, E. Coffee consumption and risk of physical function impairment, frailty and disability in older adults. Eur. J. Nutr. 2019, 58, 1415–1427. [Google Scholar] [CrossRef] [PubMed]
- Struijk, E.A.; Rodríguez-Artalejo, F.; Fung, T.T.; Willett, W.C.; Hu, F.B.; Lopez-Garcia, E. Sweetened beverages and risk of frailty among older women in the Nurses’ Health Study: A cohort study. PLOS Med. 2020, 17, e1003453. [Google Scholar] [CrossRef] [PubMed]
- León-Muñoz, L.M.; García-Esquinas, E.; López-García, E.; Banegas, J.R.; Rodríguez-Artalejo, F. Major dietary patterns and risk of frailty in older adults: A prospective cohort study. BMC Med. 2015, 13, 11. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Artalejo, F.; Graciani, A.; Guallar-Castillón, P.; León-Muñoz, L.M.; Zuluaga, M.C.; López-García, E.; Gutiérrez-Fisac, J.L.; Taboada, J.M.; Aguilera, M.T.; Regidor, E.; et al. Rationale and Methods of the Study on Nutrition and Cardiovascular Risk in Spain (ENRICA). Rev. Esp. Cardiol. 2011, 64, 876–882. [Google Scholar] [CrossRef] [PubMed]
- Guallar-Castillón, P.; Sagardui-Villamor, J.; Balboa-Castillo, T.; Sala-Vila, A.; Astolfi, M.J.A.; Pelous, M.D.S.; León-Muñoz, L.M.; Graciani, A.; Laclaustra, M.; Benito, C.; et al. Validity and Reproducibility of a Spanish Dietary History. PLoS ONE 2014, 9, e86074. [Google Scholar] [CrossRef] [Green Version]
- Moreiras, O.C.A.; Cabrera, L.; Cuadrado, C. Tablas de Composición de Alimentos, 11th ed.; AQ10 26; Ediciones Pirámide: Madrid, Spain, 2007. [Google Scholar]
- Farrán, A.; Zamora, R.; Cervera, P. Tablas de Composición de Alimentos del Centro de Enseñanza Superior de Nutrición y Dietética (CESNID); Sociedad Española de Nutrición: Barcelona, Spain, 2004. [Google Scholar]
- Hu, E.A.; Anderson, C.A.M.; Crews, D.C.; Mills, K.T.; He, J.; Shou, H.; Taliercio, J.J.; Mohanty, M.J.; Bhat, Z.; Coresh, J.; et al. A Healthy Beverage Score and Risk of Chronic Kidney Disease Progression, Incident Cardiovascular Disease, and All-Cause Mortality in the Chronic Renal Insufficiency Cohort. Curr. Dev. Nutr. 2020, 4, nzaa088. [Google Scholar] [CrossRef] [PubMed]
- Duffey, K.J.; Davy, B.M. The Healthy Beverage Index Is Associated with Reduced Cardiometabolic Risk in US Adults: A Preliminary Analysis. J. Acad. Nutr. Diet. 2015, 115, 1682–1689. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B.M.; Armstrong, L.E.; Bray, G.M.; Caballero, B.; Frei, B.; Willett, W.C. A new proposed guidance system for beverage consumption in the United States. Am. J. Clin. Nutr. 2006, 83, 529–542. [Google Scholar] [CrossRef] [PubMed]
- León-Muñoz, L.M.; Galán, I.; Donado-Campos, J.; Sánchez-Alonso, F.; López-García, E.; Valencia-Martín, J.; Guallar-Castillón, P.; Rodríguez-Artalejo, F. Patterns of Alcohol Consumption in the Older Population of Spain, 2008–2010. J. Acad. Nutr. Diet. 2015, 115, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Grosso, P.; de Mola, C.L.; Vega-Dienstmaier, J.M.; Arevalo, J.M.; Chavez, K.; Vilela, A.; Lazo, M.; Huapaya, J. Validation of the Spanish Center for Epidemiological Studies Depression and Zung Self-Rating Depression Scales: A Comparative Validation Study. PLoS ONE 2012, 7, e45413. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Garcia, F.J.; Gutierrez Avila, G.; Alfaro-Acha, A.; Amor Andres, M.S.; De Los Angeles De La Torre Lanza, M.; Escribano Aparicio, M.V.; Humanes Aparicio, S.; Larrion Zugasti, J.L.; Gomez-Serranillo Reus, M.; Rodriguez-Artalejo, F.; et al. The prevalence of frailty syndrome in an older population from Spain. The Toledo study for healthy aging. J. Nutr. Health Aging 2011, 15, 852–856. [Google Scholar] [CrossRef]
- Ottenbacher, K.J.; Branch, L.G.; Ray, L.; Gonzales, V.A.; Peek, M.; Hinman, M.R. The reliability of upper- and lower-extremity strength testing in a community survey of older adults. Arch. Phys. Med. Rehabil. 2002, 83, 1423–1427. [Google Scholar] [CrossRef] [PubMed]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A Short Physical Performance Battery Assessing Lower Extremity Function: Association with Self-Reported Disability and Prediction of Mortality and Nursing Home Admission. J. Gerontol. 1994, 49, M85–M94. [Google Scholar] [CrossRef] [PubMed]
- Pols, M.A.; Peeters, P.H.; Ocké, M.C.; Slimani, N.; Bueno-De-Mesquita, H.B.; Collette, H.J. Estimation of reproducibility and relative validity of the questions included in the EPIC Physical Activity Questionnaire. Int. J. Epidemiol. 1997, 26, S181–S189. [Google Scholar] [CrossRef] [PubMed]
- Lemmens, H.J.; Brodsky, J.B.; Bernstein, D.P. Estimating ideal body weight—A new formula. Obes Surg. 2005, 15, 1082–1083. [Google Scholar] [CrossRef] [PubMed]
- León-Muñoz, L.M.; Guallar-Castillón, P.; López-García, E.; Rodríguez-Artalejo, F. Mediterranean Diet and Risk of Frailty in Community-Dwelling Older Adults. J. Am. Med Dir. Assoc. 2014, 15, 899–903. [Google Scholar] [CrossRef] [PubMed]
- Veronese, N.; Stubbs, B.; Noale, M.; Solmi, M.; Rizzoli, R.; Vaona, A.; Demurtas, J.; Crepaldi, G.; Maggi, S. Adherence to a Mediterranean diet is associated with lower incidence of frailty: A longitudinal cohort study. Clin. Nutr. 2018, 37, 1492–1497. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Talegawkar, S.; Jin, Y.; Bandinelli, S.; Ferrucci, L. Association of Adherence to the Mediterranean-Style Diet with Lower Frailty Index in Older Adults. Nutrients 2021, 13, 1129. [Google Scholar] [CrossRef] [PubMed]
- Alaghehband, F.R.; Erkkilä, A.T.; Rikkonen, T.; Sirola, J.; Kröger, H.; Isanejad, M. Association of Baltic Sea and Mediterranean diets with frailty phenotype in older women, Kuopio OSTPRE-FPS study. Eur. J. Nutr. 2021, 60, 821–831. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.E.; Orkaby, A.R.; Chen, J.; Hshieh, T.T.; Driver, J.A.; Gaziano, J.M.; Djousse, L. Association between Diet Quality and Frailty Prevalence in the Physicians’ Health Study. J. Am. Geriatr. Soc. 2020, 68, 770–776. [Google Scholar] [CrossRef] [PubMed]
- Parsons, T.J.; Papachristou, E.; Atkins, J.L.; Papacosta, O.; Ash, S.; Lennon, L.T.; Whincup, P.H.; Ramsay, S.E.; Wannamethee, S.G. Physical frailty in older men: Prospective associations with diet quality and patterns. Age Ageing 2019, 48, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Struijk, E.A.; Hagan, K.A.; Fung, T.T.; Hu, F.B.; Rodríguez-Artalejo, F.; Lopez-Garcia, E. Diet quality and risk of frailty among older women in the Nurses’ Health Study. Am. J. Clin. Nutr. 2020, 111, 877–883. [Google Scholar] [CrossRef]
- Lana, A.; Rodriguez-Artalejo, F.; Lopez-Garcia, E. Dairy Consumption and Risk of Frailty in Older Adults: A Prospective Cohort Study. J. Am. Geriatr. Soc. 2015, 63, 1852–1860. [Google Scholar] [CrossRef]
- Naghshi, S.; Sadeghi, O.; Larijani, B.; Esmaillzadeh, A. High vs. low-fat dairy and milk differently affects the risk of all-cause, CVD, and cancer death: A systematic review and dose-response meta-analysis of prospective cohort studies. Crit. Rev. Food Sci. Nutr. 2022, 62, 3598–3612. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, N.; Markozannes, G.; Kanellopoulou, A.; Critselis, E.; Alhardan, S.; Karafousia, V.; Kasimis, J.C.; Katsaraki, C.; Papadopoulou, A.; Zografou, M.; et al. An umbrella review of the evidence associating diet and cancer risk at 11 anatomical sites. Nat. Commun. 2021, 12, 4579. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Wu, X.; Zhuang, W.; Xia, L.; Chen, Y.; Zhao, R.; Wan, Q.; Du, L.; Zhou, Y. Tea Consumption and Health Outcomes: Umbrella Review of Meta-Analyses of Observational Studies in Humans. Mol. Nutr. Food Res. 2019, 63, e1900389. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Micek, A.; Godos, J.; Sciacca, S.; Pajak, A.; Martinez-Gonzalez, M.A.; Giovannucci, E.L.; Galvano, F. Coffee consumption and risk of all-cause, cardiovascular, and cancer mortality in smokers and non-smokers: A dose-response meta-analysis. Eur. J. Epidemiol. 2016, 31, 1191–1205. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Bhupathiraju, S.N.; Chen, M.; van Dam, R.M.; Hu, F.B. Caffeinated and Decaffeinated Coffee Consumption and Risk of Type 2 Diabetes: A Systematic Review and a Dose-Response Meta-analysis. Diabetes Care 2014, 37, 569–586. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Guo, L.; He, K.; Huang, C.; Tang, S. Consumption of sugar-sweetened beverages and fruit juice and human cancer: A systematic review and dose-response meta-analysis of observational studies. J. Cancer 2021, 12, 3077–3088. [Google Scholar] [CrossRef]
- Fardet, A.; Richonnet, C.; Mazur, A. Association between consumption of fruit or processed fruit and chronic diseases and their risk factors: A systematic review of meta-analyses. Nutr. Rev. 2019, 77, 376–387. [Google Scholar] [CrossRef] [PubMed]
- Mullee, A.; Romaguera, D.; Pearson-Stuttard, J.; Viallon, V.; Stepien, M.; Freisling, H.; Fagherazzi, G.; Mancini, F.R.; Boutron-Ruault, M.-C.; Kühn, T.; et al. Association Between Soft Drink Consumption and Mortality in 10 European Countries. JAMA Intern. Med. 2019, 179, 1479–1490. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Cheng, L.; Jiang, W. Sugar-sweetened beverages consumption and the risk of depression: A meta-analysis of observational studies. J. Affect. Disord. 2019, 245, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wang, J.; Li, Z.; Lam, C.W.K.; Xiao, Y.; Wu, Q.; Zhang, W. Consumption of Sugar-Sweetened Beverages Has a Dose-Dependent Effect on the Risk of Non-Alcoholic Fatty Liver Disease: An Updated Systematic Review and Dose-Response Meta-Analysis. Int. J. Environ. Res. Public Health 2019, 16, 2192. [Google Scholar] [CrossRef]
- Imamura, F.; O’Connor, L.; Ye, Z.; Mursu, J.; Hayashino, Y.; Bhupathiraju, S.N.; Forouhi, N. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: Systematic review, meta-analysis, and estimation of population attributable fraction. Br. J. Sports Med. 2016, 50, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Xi, B.; Huang, Y.; Reilly, K.H.; Li, S.; Zheng, R.; Barrio-Lopez, M.T.; Martinez-Gonzalez, M.A.; Zhou, D. Sugar-sweetened beverages and risk of hypertension and CVD: A dose–response meta-analysis. Br. J. Nutr. 2015, 113, 709–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litman, E.; Gortmaker, S.L.; Ebbeling, C.B.; Ludwig, D.S. Source of bias in sugar-sweetened beverage research: A systematic review. Public Health Nutr. 2018, 21, 2345–2350. [Google Scholar] [CrossRef] [PubMed]
- Ortolá, R.; García-Esquinas, E.; López-García, E.; León-Muñoz, L.M.; Banegas, J.R.; Rodríguez-Artalejo, F. Alcohol consumption and all-cause mortality in older adults in Spain: An analysis accounting for the main methodological issues. Addiction 2019, 114, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Woods, N.F.; LaCroix, A.Z.; Gray, S.L.; Aragaki, A.; Cochrane, B.B.; Brunner, R.L.; Masaki, K.; Murray, A.; Newman, A.B. Frailty: Emergence and Consequences in Women Aged 65 and Older in the Women’s Health Initiative Observational Study. J. Am. Geriatr. Soc. 2005, 53, 1321–1330. [Google Scholar] [CrossRef] [PubMed]
- Seematter-Bagnoud, L.; Spagnoli, J.; Bula, C.; Santos-Eggimann, B. Alcohol use and frailty in community-dwelling older persons aged 65 to 70 years. J Frailty Aging 2014, 3, 9–14. [Google Scholar] [CrossRef]
- Kojima, G.; Liljas, A.; Iliffe, S.; Jivraj, S.; Walters, K. A systematic review and meta-analysis of prospective associations between alcohol consumption and incident frailty. Age Ageing 2018, 47, 26–34. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture; U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025, 9th ed.; Department of Agriculture (USDA): Washington, DC, USA, 2020.
- Ford, C.N.; Poti, J.M.; Ng, S.W.; Popkin, B.M. SSB taxes and diet quality in US preschoolers: Estimated changes in the 2010 Healthy Eating Index. Pediatr. Obes. 2017, 12, 146–154. [Google Scholar] [CrossRef]
- Jacobs, D.R.; Orlich, M.J. Diet pattern and longevity: Do simple rules suffice? A commentary. Am. J. Clin. Nutr. 2014, 100 (Suppl. 1), 313S–319S. [Google Scholar] [CrossRef]
- Soysal, P.; Stubbs, B.; Lucato, P.; Luchini, C.; Solmi, M.; Peluso, R.; Sergi, G.; Isik, A.T.; Manzato, E.; Maggi, S.; et al. Inflammation and frailty in the elderly: A systematic review and meta-analysis. Ageing Res. Rev. 2016, 31, 1–8. [Google Scholar] [CrossRef]
- Marcos-Pérez, D.; Sánchez-Flores, M.; Proietti, S.; Bonassi, S.; Costa, S.; Teixeira, J.P.; Fernández-Tajes, J.; Pásaro, E.; Laffon, B.; Valdiglesias, V. Association of inflammatory mediators with frailty status in older adults: Results from a systematic review and meta-analysis. GeroScience 2020, 42, 1451–1473. [Google Scholar] [CrossRef]
- Ferrucci, L.; Fabbri, E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 2018, 15, 505–522. [Google Scholar] [CrossRef]
- Cleasby, M.E.; Jamieson, P.M.; Atherton, P.J. Insulin resistance and sarcopenia: Mechanistic links between common co-morbidities. J. Endocrinol. 2016, 229, R67–R81. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Milacic, V.; Chen, M.S.; Wan, S.B.; Lam, W.H.; Huo, C.; Landis-Piwowar, K.R.; Cui, Q.C.; Wali, A.; Chan, T.H.; et al. Tea polyphenols, their biological effects and potential molecular targets. Histol. Histopathol. 2008, 23, 487–496. [Google Scholar]
- Xu, Y.; Liu, X.; Liu, X.; Chen, D.; Wang, M.; Jiang, X.; Xiong, Z. The Roles of the Gut Microbiota and Chronic Low-Grade Inflammation in Older Adults With Frailty. Front. Cell. Infect. Microbiol. 2021, 11, 675414. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Niu, K.; Okazaki, T.; Wu, H.; Yoshikawa, T.; Ohrui, T.; Furukawa, K.; Ichinose, M.; Yanai, K.; Arai, H.; et al. Coffee treatment prevents the progression of sarcopenia in aged mice in vivo and in vitro. Exp. Gerontol. 2014, 50, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Pietrocola, F.; Malik, S.A.; Mariño, G.; Vacchelli, E.; Senovilla, L.; Chaba, K.; Niso-Santano, M.; Maiuri, M.C.; Madeo, F.; Kroemer, G. Coffee induces autophagy in vivo. Cell Cycle 2014, 13, 1987–1994. [Google Scholar] [CrossRef]
- Suez, J.; Korem, T.; Zeevi, D.; Zilberman-Schapira, G.; Thaiss, C.A.; Maza, O.; Israeli, D.; Zmora, N.; Gilad, S.; Weinberger, A.; et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 2014, 514, 181–186. [Google Scholar] [CrossRef]
- Frei, R.; Akdis, M.; O’Mahony, L. Prebiotics, probiotics, synbiotics, and the immune system: Experimental data and clinical evidence. Curr. Opin. Gastroenterol. 2015, 31, 153–158. [Google Scholar] [CrossRef] [Green Version]
Components | Minimum Score | Maximum Score | ||
---|---|---|---|---|
Adequacy | ||||
Low fat milk | 1 (Quartile 1) | 2 (Quartile 2) | 3 (Quartile 3) | 4 (Quartile 4) |
Tea/coffee | 1 (Quartile 1) | 2 (Quartile 2) | 3 (Quartile 3) | 4 (Quartile 4) |
Moderation | ||||
Whole milk | 1 (Tertile 3 among consumers) | 2 (Tertile 2 among consumers) | 3 (Tertile 1 among consumers) | 4 (No consumption) |
Fruit Juice | 1 (Any consumption) | -- | -- | 4 (No consumption) |
Artificially sweetened beverages | 1 (Any consumption) | -- | -- | 4 (No consumption) |
Sugar-Sweetened beverages | 1 (Any consumption) | -- | -- | 4 (No consumption) |
Alcohol | 1 (No consumption or heavy drinking) a | -- | -- | 4 (Moderate drinking) |
Total | 7 | 28 |
HBS | ||||
---|---|---|---|---|
Tertile 1 (9–19) n = 741 | Tertile 2 (20–22) n = 623 | Tertile 3 (23–28) n = 536 | p Value | |
Age, mean (SD) years | 69.1 (6.6) | 68.5 (6.4) | 68.3 (6) | 0.097 |
Sex, % of women | 49.9 | 60.4 | 44.0 | <0.001 |
Educational level, % | 0.134 | |||
Primary | 50.2 | 56.8 | 52.4 | |
Secondary | 25.8 | 24.1 | 25.4 | |
University | 24.0 | 19.1 | 22.2 | |
Smoking, % | <0.001 | |||
No smoker | 57.1 | 64.2 | 50.4 | |
Former smoker | 31.7 | 25.0 | 36.0 | |
Current smoker | 11.2 | 10.8 | 13.6 | |
Body mass index, % | 0.941 | |||
<25 kg/m2 | 20.1 | 19.6 | 20.1 | |
25- < 30 kg/m2 | 50.6 | 49.0 | 49.6 | |
≥30 kg/m2 | 29.3 | 31.5 | 30.2 | |
Physical activity, % | 0.079 | |||
Inactive | 48.2 | 47.5 | 40.3 | |
Moderately inactive | 30.9 | 33.1 | 34.1 | |
Moderately active | 15.7 | 14.6 | 19.0 | |
Active | 5.26 | 4.82 | 6.53 | |
Energy intake, mean (SD) Kcal/day | 2089 (568) | 1964 (561) | 2009 (546) | <0.001 |
Fiber consumption, mean (SD) g/day | 24 (9) | 24 (8) | 24 (8) | 0.996 |
Fruit consumption, mean (SD) mL/day | 321 (191) | 332 (185) | 321 (175) | 0.510 |
Vegetable consumption, mean (SD) g/day | 219 (146) | 226 (144) | 221 (141) | 0.683 |
Mediterranean diet score (calculated with the Trichopoulou index), mean (SD) | 4.51 (1.62) | 4.59 (1.50) | 4.50 (1.52) | 0.553 |
Hypertriglyceridemia, % | 20.2 | 18.6 | 19.0 | 0.731 |
Hypercholesterolemia, % | 70.2 | 70.9 | 70.9 | 0.941 |
Hypertension, % | 64.6 | 66.1 | 64.6 | 0.806 |
Number of chronic conditions a, % | 0.075 | |||
None | 41.3 | 35.8 | 41.2 | |
One | 41.0 | 41.4 | 40.7 | |
Two or more | 17.7 | 22.8 | 18.1 | |
Number of medications, % | 0.002 | |||
Three or less | 48.5 | 56.3 | 48.5 | |
More than three | 23.8 | 17.0 | 23.8 | |
Number of frailty components at baseline, % | ||||
None | 78.5 | 77.5 | 83.2 | |
One | 16.3 | 17.2 | 14.2 | |
Two | 5.1 | 5.3 | 2.6 | |
HBS items | ||||
Adequacy | ||||
Low fat milk, mean (SD) mL/day | 104 (137) | 184 (156) | 220 (163) | <0.001 |
Tea/coffee, mean (SD) mL/day | 89 (132) | 109 (122) | 173 (140) | <0.001 |
Moderation | ||||
Whole milk, mean (SD) mL/day | 91 (138) | 25 (60) | 7 (20) | <0.001 |
Fruit Juice, mean (SD) mL/day | 65 (101) | 27 (71) | 8 (38) | <0.001 |
Artificially sweetened beverages, mean (SD) mL/day | 16 (71) | 7 (47) | 1 (12) | <0.001 |
Sugar-Sweetened beverages, mean (SD) mL/day | 43 (92) | 11 (50) | 5 (41) | <0.001 |
Alcohol, mean (SD) g/day | 11 (22) | 8 (15) | 12 (13) | <0.001 |
Incident Frailty | Tertile 1 (Lowest) OR (95% CI) | Tertile 2 OR (95% CI) | Tertile 3 OR (95% CI) | p for Linear Trend |
---|---|---|---|---|
Cases, n | 70/741 | 43/623 | 23/536 | |
Model 1 a | 1 (ref.) | 0.66 (0.44,1.01) | 0.51 (0.31, 0.84) | 0.005 |
Model 2 b | 1 (ref.) | 0.59 (0.38, 0.92) | 0.51 (0.30, 0.87) | 0.005 |
Model 3 c | 1 (ref.) | 0.59 (0.38, 0.92) | 0.52 (0.31, 0.88) | 0.007 |
Tertile 1 (Lowest) OR (95% CI) | Tertile 2 OR (95% CI) | Tertile 3 OR (95% CI) | p for Linear Trend | |
---|---|---|---|---|
Exhaustion | ||||
Cases, n | 99/741 | 95/623 | 61/536 | |
Model 1 a | 1 (ref.) | 1.09 (0.80, 1.50) | 0.94 (0.67, 1.34) | 0.828 |
Model 2 b | 1 (ref.) | 0.99 (0.71, 1.38) | 0.89 (0.62, 1.29) | 0.572 |
Model 3 c | 1 (ref.) | 0.99 (0.71, 1.37) | 0.90 (0.62, 1.29) | 0.576 |
Weak grip strength | ||||
Cases, n | 268/739 | 212/621 | 176/535 | |
Model 1 a | 1 (ref.) | 0.92 (0.72, 1.17) | 0.97 (0.75, 1.25) | 0.764 |
Model 2 b | 1 (ref.) | 0.81 (0.63, 1.05) | 0.89 (0.68, 1.16) | 0.322 |
Model 3 c | 1 (ref.) | 0.81 (0.63, 1.05) | 0.89 (0.69, 1.16) | 0.341 |
Low physical activity | ||||
Cases, n | 128/741 | 107/623 | 67/536 | |
Model 1 a | 1 (ref.) | 0.96 (0.73, 1.28) | 0.71 (0.52, 0.98) | 0.048 |
Model 2 b | 1 (ref.) | 0.95 (0.71, 1.28) | 0.76 (0.55, 1.06) | 0.120 |
Model 3 c | 1 (ref.) | 0.95 (0.71, 1.28) | 0.76 (0.55, 1.06) | 0.118 |
Slow gait speed | ||||
Cases, n | 128/729 | 87/615 | 65/527 | |
Model 1 a | 1 (ref.) | 0.80 (0.59, 1.08) | 0.67 (0.49, 0.93) | 0.015 |
Model 2 b | 1 (ref.) | 0.79 (0.58, 1.07) | 0.70 (0.50, 0.98) | 0.028 |
Model 3 c | 1 (ref.) | 0.79 (0.58, 1.07) | 0.71 (0.51, 0.99) | 0.033 |
Unintentional weight loss | ||||
Cases, n | 71/733 | 42/614 | 37/531 | |
Model 1 a | 1 (ref.) | 0.65 (0.44, 0.97) | 0.75 (0.49, 1.14) | 0.112 |
Model 2 b | 1 (ref.) | 0.63 (0.42, 0.96) | 0.75 (0.49, 1.16) | 0.124 |
Model 3 c | 1 (ref.) | 0.63 (0.42, 0.96) | 0.77 (0.50, 1.18) | 0.140 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dominguez, L.J.; Donat-Vargas, C.; Banegas, J.R.; Barbagallo, M.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. Adherence to a Healthy Beverage Score Is Associated with Lower Frailty Risk in Older Adults. Nutrients 2022, 14, 3861. https://doi.org/10.3390/nu14183861
Dominguez LJ, Donat-Vargas C, Banegas JR, Barbagallo M, Rodríguez-Artalejo F, Guallar-Castillón P. Adherence to a Healthy Beverage Score Is Associated with Lower Frailty Risk in Older Adults. Nutrients. 2022; 14(18):3861. https://doi.org/10.3390/nu14183861
Chicago/Turabian StyleDominguez, Ligia J., Carolina Donat-Vargas, José R. Banegas, Mario Barbagallo, Fernando Rodríguez-Artalejo, and Pilar Guallar-Castillón. 2022. "Adherence to a Healthy Beverage Score Is Associated with Lower Frailty Risk in Older Adults" Nutrients 14, no. 18: 3861. https://doi.org/10.3390/nu14183861
APA StyleDominguez, L. J., Donat-Vargas, C., Banegas, J. R., Barbagallo, M., Rodríguez-Artalejo, F., & Guallar-Castillón, P. (2022). Adherence to a Healthy Beverage Score Is Associated with Lower Frailty Risk in Older Adults. Nutrients, 14(18), 3861. https://doi.org/10.3390/nu14183861