Sex and Diet-Related Disparities in Low Handgrip Strength among Young and Middle-Aged Koreans: Findings Based on the Korea National Health and Nutrition Examination Survey (KNHANES) from 2014 to 2017
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Study Population
2.2. Assessment of Sociodemographic and Anthropometric Characteristics
2.3. Measurements of Handgrip Strength
2.4. Nutrients Intake Analysis
2.5. Dietary Pattern Analysis
2.6. Statistical Analysis
3. Results
3.1. Sociodemographic and Anthropometric Characteristics of the Participants
3.2. Nutrients Intake of the Participants
3.3. Identification of Dietary Patterns
3.4. ORs and 95% CIs for LGS According to Inadequacy of Dietary Intake
3.5. ORs and 95% CIs for LGS According to Dietary Patterns
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AWGS | Asian Working Groups for Sarcopenia |
BMI | Body Mass Index |
BP | Blood Pressure |
EAR | Estimated Average Requirement |
HGS | Handgrip Strength |
HGSWR | Handgrip Strength to Weight Ratio |
KDRIs | Dietary Reference Intakes for Koreans |
KNHANES | Korea National Health and Nutrition Examination Survey |
LGS | Low Handgrip Strength |
MET | Total Metabolic Equivalent |
NGS | Normal Handgrip Strength |
Q | Quartile |
SSBs | Sugar Sweetened Beverages |
WC | Waist Circumference |
References
- Hong, J.; Lee, K. The aging work force in Korea. Int. Arch. Occup. Environ. Health 2012, 85, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Koster, A.; Ding, J.; Stenholm, S.; Caserotti, P.; Houston, D.K.; Nicklas, B.J.; You, T.; Lee, J.S.; Visser, M.; Newman, B. Does the amount of fat mass predict age-related loss of lean mass, muscle strength, and muscle quality in older adults? J. Gerontol. A Biol. Sci. Med. Sci. 2011, 66, 888–895. [Google Scholar] [CrossRef] [PubMed]
- McGregor, R.A.; Cameron-Smith, D.; Poppitt, S.D. It is not just muscle mass: A review of muscle quality, composition and metabolism during ageing as determinants of muscle function and mobility in later life. Longev. Healthspan 2014, 3, 9. [Google Scholar] [CrossRef]
- Rolland, Y.; Czerwinski, S.; Van Kan, G.A.; Morley, J.E.; Cesari, M.; Onder, G.; Woo, J.; Baumgartner, R.; Pillard, F.; Boirie, Y.; et al. Sarcopenia: Its assessment, etiology, pathogenesis, consequences and future perspectives. J. Nutr. Health Aging 2008, 12, 433–450. [Google Scholar] [CrossRef]
- Ji, C.; Xia, Y.; Tong, S.; Wu, Q.; Zhao, Y. Association of handgrip strength with the prevalence of metabolic syndrome in US adults: The national health and nutrition examination survey. Aging 2020, 12, 7818–7829. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kwon, O. Higher diet quality is associated with lower odds of low hand grip strength in the Korean elderly population. Nutrients 2019, 11, 1487. [Google Scholar] [CrossRef]
- Cho, Y.; Lim, Y.; Yun, J.; Yoon, H.; Park, M. Sex- and age-specific effects of energy intake and physical activity on sarcopenia. Sci. Rep. 2020, 10, 9822. [Google Scholar] [CrossRef]
- Bae, E.-J.; Kim, Y.-H. Factors Affecting Sarcopenia in Korean Adults by Age Groups. Osong Public Health Res. Perspect. 2017, 8, 169–178. [Google Scholar] [CrossRef]
- Kim, C.R.; Jeon, Y.J.; Jeong, T. Risk factors associated with low handgrip strength in the older Korean population. PLoS ONE 2019, 14, e0214612. [Google Scholar] [CrossRef]
- Shen, C.; Lu, J.; Xu, Z.; Xu, Y.; Yang, Y. Association between handgrip strength and the risk of new-onset metabolic syndrome: A population-based cohort study. BMJ Open 2020, 10, e041384. [Google Scholar] [CrossRef]
- Ouchi, N.; Ohashi, K.; Shibata, R.; Murohara, T. Protective Roles of Adipocytokines and Myokines in Cardiovascular Disease. Circ. J. 2016, 80, 2073–2080. [Google Scholar] [CrossRef] [PubMed]
- Leong, D.; Teo, K.; Rangarajan, S. Prognostic value of grip strength: Findings from the prospective urban rural epidemiology (pure) study. Lancet 2015, 386, 266–273. [Google Scholar] [CrossRef]
- Tamyris, L.; Vanessa, N.; Alessandra, M. Sarcopenia and poor muscle quality associated with severe obesity in young adults and middle-aged adults. Clin. Nutr. ESPEN 2021, 45, 299–305. [Google Scholar]
- Jung, C.-H.; Son, J.; Kang, S.; Kim, W.; Kim, H.-S.; Kim, H.; Seo, M.; Shin, H.-J.; Lee, S.-S.; Cho, Y.; et al. Diabetes Fact Sheet in Korea, 2020: An Appraisal of Current Status. Diabetes Metab. J. 2021, 45, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus update on sarcopenia diagnosis and treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307. [Google Scholar] [CrossRef]
- Sowa, A.; Tobiasz-Adamczyk, B.; Topór-Mądry, R.; Poscia, A.; La Milia, D.I. Predictors of healthy ageing: Public health policy targets. BMC Health Serv. Res. 2016, 16, 289. [Google Scholar] [CrossRef]
- Gedmantaite, A.; Morales, C.; Frederick, H.; Pell, J.P.; Ratkevicius, A.; Gray, S. Associations between diet and handgrip strength: A cross-sectional study from UK Biobank. Mech. Ageing Dev. 2020, 189, 111269. [Google Scholar] [CrossRef]
- Granic, A.; Sayer, A.; Robinson, S.M. Dietary Patterns, Skeletal Muscle Health, and Sarcopenia in Older Adults. Nutrients 2019, 11, 745. [Google Scholar] [CrossRef]
- Luigi, B.; Giovanna, M.; Carolina, S.; Giovanni, T.; Vincenzo, L.; Maddalena, I.; Annamaria, C.; Silvia, S. Association between Mediterranean diet and hand grip strength in older adult women. Clin. Nutr. 2019, 38, 721–729. [Google Scholar]
- Kwak, Y.; Kim, Y.; Chung, H. Sex-associated differences in the handgrip strength of elderly individuals. West. J. Nurs. Res. 2020, 42, 262–268. [Google Scholar] [CrossRef]
- Cetinus, E.; Byyukbese, A.; Uzel, M.; Ekerbicer, H.; Karaoguz, A. Hand grip strength in patients with type 2 diabetes meliitus. Diabetes Res. Clin. Pract. 2005, 70, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Spira, D.; Bucnamann, N.; Demuth, I.; SThiessen, E.; Volzke, H.; Ittermann, T. Association of Thyroid Function with Handgrip Strength: Data from the Study of Health in Pomerania and the Berlin Aging Study II. Thyroid 2019, 29, 1220. [Google Scholar] [CrossRef] [PubMed]
- Asteasu, M.; Steffens, T.; Velves, R.; Cadore, E.; Izquierdo, M.; Dias, C. Low handgrip strength is associated with higher cancer prevalence in frail nonagenarians and centernarians. Exp. Gerontol. 2022, 165, 111862. [Google Scholar] [CrossRef] [PubMed]
- Mbada, C.; Adeyemi, A.; Omosebi, O.; Olowokere, A.; Faremi, F. Hand Grip Strength in Pregnant and Non-Pregnant Females. Middle East J. Rehabil. Health 2015, 2, e27641. [Google Scholar] [CrossRef]
- Guidelines for Data Processing and Analysis of the International Physical Activity Questionnaire (IPAQ). The IPAQ Group, 2005. Available online: https://sites.google.com/site/theipaq/scoring-protocol (accessed on 2 September 2002).
- Roberts, H.C.; Denison, H.J.; Martin, H.J.; Patel, H.P.; Syddall, H.; Cooper, C.; Sayer, A.A. A review of the measurement of grip strength in clinical and epidemiological studies: Towards a standardised approach. Age Ageing 2011, 40, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Kim, J.H.; Yoon, J.W.; Kang, S.M.; Choi, S.H.; Park, Y.J. Sarcopenic obesity: Prevalence and association with metabolic syndrome in the Korean Longitudinal Study on Health and Aging (KLoSHA). Diabetes Care 2010, 33, 1652–1654. [Google Scholar] [CrossRef]
- Yi, D.W.; Khang, A.R.; Lee, H.W.; Son, S.M.; Kang, Y.H. Relative handgrip strength as a marker of metabolic syndrome: The Korea National Health and Nutrition Examination Survey (KNHANES) VI (2014-2015). Diabetes Metab. Syndr. Obes. 2018, 11, 227–240. [Google Scholar] [CrossRef]
- Jung, H.; Sohn, J.; Kwon, O.; Kim, W.; Baik, I.; Lim, J.; Cho, Y.-O.; Lee, S.; Lim, H.; Chang, N. Dietary Reference Intakes for Koreans 2015; Ministry of Health and Welfare, The Korean Nutrition Society: Sejong, Korea, 2015. [Google Scholar]
- Murphy, C.H.; Shankaran, M.; Churchward-Venne, T.A.; Mitchell, C.J.; Kolar, N.M.; Burke, L.M.; Hawley, J.A.; Kassis, A.; Karagounis, L.G.; Li, K.; et al. Effect of resistance training and protein intake pattern on myofibrillar protein synthesis and proteome kinetics in older men in energy restriction. J. Physiol. 2018, 596, 2091–2120. [Google Scholar] [CrossRef]
- Silva, T.R.; Spritzer, P.M. Skeletal muscle mass is associated with higher dietary protein intake and lower body fat in postmenopausal women: A cross-sectional study. Menopause 2017, 24, 502–509. [Google Scholar] [CrossRef]
- Genaro Pde, S.; Pinheiro Mde, M.; Szejnfeld, V.L.; Martini, L.A. Dietary protein intake in elderly women: Association with muscle and bone mass. Nutr. Clin. Pract. 2015, 30, 283–289. [Google Scholar] [CrossRef]
- Frayn, K.N.; Karpe, F.; Fielding, B.A.; Macdonald, A.; Coppack, S.W. Integrative physiology of human adipose tissue. Int. J. Obes. Relat. Metab. Disord. 2003, 27, 875–888. [Google Scholar] [CrossRef] [PubMed]
- Brouns, F. Overweight and diabetes prevention: Is a low-carbohydrate-high-fat diet recommendable? Eur. J. Nutr. 2018, 57, 1301–1312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Song, S. Association between carbohydrate intake and body composition: The Korean National Health and Nutrition Examination Survey. Nutrition 2019, 61, 187–193. [Google Scholar] [CrossRef]
- Rondanelli, M.; Faliva, M.; Monteferrario, F.; Peroni, G.; Repaci, E.; Allieri, F.; Perna, S. Novel insights on nutrient management of sarcopenia in elderly. Biomed Res Int 2015, 524948. [Google Scholar] [CrossRef]
- Petermann-Rocha, F.; Chen, M.; Gray, S.R.; Ho, F.K.; Pell, J.P.; Celis-Morales, C. Factors associated with sarcopenia: A cross-sectional analysis using UK Biobank. Maturitas 2020, 133, 60–67. [Google Scholar] [CrossRef]
- Aytekin, N.; Mileva, K.N.; Cunliffe, A.D. Selected B vitamins and their possible link to the aetiology of age-related sarcopenia: Relevance of UK dietary recommendations. Nutr. Res. Rev. 2018, 31, 204–224. [Google Scholar] [CrossRef] [PubMed]
- Sakai, K.; Nakajima, T.F. A suspected case of alcoholic pellagra encephalopathy with marked response to niacin showing myoclonus and ataxia as chief complaints. Brain Nerve 2006, 58, 141–144. [Google Scholar] [PubMed]
- Choi, S.; Baek, S.; Choi, S. The effects of endurance training and thiamine supplementation on anti-fatigue during exercise. J. Exerc. Nutr. Biochem. 2013, 17, 189–198. [Google Scholar] [CrossRef]
- Doyle, M.R.; Webster, M.J.; Erdmann, L.D. Allithiamine ingestion does not enhance isokinetic parameters of muscle performance. Int. J. Sport Nutr. 1997, 7, 39–47. [Google Scholar] [CrossRef]
- Webster, M.J. Physiological and performance responses to supplementation with thiamin and pantothenic acid derivatives. Eur. J. Appl. Physiol. 1998, 77, 486–491. [Google Scholar] [CrossRef]
- Terada, N.; Kinoshita, K.; Taguchi, S.; Tokuda, Y. Wernicke encephalopathy and pellagra in an alcoholic and malnourished patient. BMJ Case Rep. 2015, bcr2015209412. [Google Scholar] [CrossRef] [PubMed]
- Fuller, T.J.; Carter, N.W.; Barcenas, C.; Knochel, J.P. Reversible changes of the muscle cell in experimental phosphorus defciency. J. Clin. Invest. 1976, 57, 1019–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schubert, L.; DeLuca, H.F. Hypophosphatemia is responsible for skeletal muscle weakness of vitamin D defciency. Arch. Biochem. Biophys. 2010, 500, 157–161. [Google Scholar] [CrossRef]
- Penninx, B.W.; Pahor, M.; Cesari, M.; Corsi, A.M.; Woodman, R.C.; Bandinelli, S.; Guralnik, J.M.; Ferrucci, L. Anemia is associated with disability and decreased physical performance and muscle strength in the elderly. J. Am. Geriatr. Soc. 2004, 52, 719–724. [Google Scholar] [CrossRef]
- Burden, R.J.; Pollock, N.; Whyte, G.P.; Richards, T.; Moore, B.; Busbridge, M.; Srai, S.K.; Otto, J.; Pedlar, C.R. Impact of intravenous iron on aerobic capacity and iron metabolism in elite athletes. Med. Sci. Sports Exerc. 2014, 47, 1399–1407. [Google Scholar] [CrossRef] [PubMed]
- Waldvogel, S.; Pedrazzini, B.; Vaucher, P.; Bize, R.; Cornuz, J.; Tissot, J.D.; Favrat, B. Clinical evaluation of iron treatment efficiency among non-anemic but iron-deficient female blood donors: A randomized controlled trial. BMC Med. 2012, 10, 8. [Google Scholar] [CrossRef] [PubMed]
- Garvican, L.A.; Saunders, P.U.; Cardoso, T.; Macdougall, I.C.; Lobigs, L.M.; Fazakerley, R.; Fallon, K.E.; Anderson, B.; Anson, J.M.; Thompson, K.G.; et al. Intravenous iron supplementation in distance runners with low or suboptimal ferritin. Med. Sci. Sports Exerc. 2014, 46, 376–385. [Google Scholar] [CrossRef]
- Dellavalle, D.M.; Haas, J.D. Iron supplementation improves energetic efficiency in iron-depleted female rowers. Med. Sci. Sports Exerc. 2014, 46, 1204–1215. [Google Scholar] [CrossRef] [PubMed]
- Sahni, S.; Mangano, K.M.; Hannan, M.T.; Kiel, D.P.; McLean, R.R. Higher protein intake is associated with higher lean mass and quadriceps muscle strength in adult men and women. J. Nutr. 2015, 145, 1569–1575. [Google Scholar] [CrossRef]
- McLean, R.R.; Mangano, K.M.; Hannan, M.T.; Kiel, D.P.; Sahni, S. Dietary protein intake is protective against loss of grip strength among older adults in the framingham offspring cohort. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 356–361. [Google Scholar] [CrossRef]
- Bradlee, M.L.; Mustafa, J.; Singer, M.R.; Moore, L.L. High-Protein Foods and Physical Activity Protect Against Age-Related Muscle Loss and Functional Decline. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Korea Health Industry Development Institute. National Food & Nutrition Statistics 2020. Osong, Korea. Available online: https://www.khidi.or.kr/kps/dhraStat/result5?menuId=MENU01657&gubun=age3&year=2020 (accessed on 7 July 2022).
- Oh, C.; No, J.; Kim, H. Dietary pattern classifications with nutrient intake and body composition changes in Korean elderly. Nutr. Res. Pract. 2014, 8, 192–197. [Google Scholar] [CrossRef] [Green Version]
- Willett, W.C.; Sacks, F.; Trichopoulou, A.; Drescher, G.; Ferro-Luzzi, A.; Helsing, E.; Trichopoulos, D. Mediterranean diet pyramid: A cultural model for healthy eating. Am. J. Clin. Nutr. 1995, 61, 1402S–1406S. [Google Scholar] [CrossRef]
- Fulle, S.; Protasi, F.; Di, G.; Pietrangelo, T.; Beltramin, A.; Boncompagni, S.; Vecchiet, L.; Fano, G. The contribution of reactive oxygen species to sarcopenia and muscle ageing. Exp. Gerontol. 2004, 39, 17–24. [Google Scholar] [CrossRef]
- Kim, S.; Ha, J.; Lim, B.; Kim, J.; Shin, S. The Association between Major Dietary Pattern and Low Muscle Mass in Korean Middle-Aged and Elderly Populations: Based on the Korea National Health and Nutrition Examination Survey. Nutrients 2020, 12, 3543. [Google Scholar] [CrossRef] [PubMed]
- Tak, Y.; Lee, J.; Yi, Y.; Kim, Y.; Lee, S.; Cho, B.; Cho, Y. Association of Handgrip Strength with Dietary Intake in the Korean Population: Findings Based on the Seventh Korea National Health and Nutrition Examination Survey (KNHANES VII-1), 2016. Nutrients 2018, 10, 1180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Men (n = 5070, wn = 59,336,338) | Women (n = 6565, wn = 51,774,435) | ||||
---|---|---|---|---|---|---|
LGS (n = 111, wn = 1,175,179) | NGS (n = 4959, wn = 58,1161,159) | p Value | LGS (n = 305, wn = 2,354,354) | NGS (n = 6260, wn = 49,420,3081 | p Value | |
Age (year) 1 | 40.3 ± 1.5 | 40.2 ± 0.2 | 0.952 | 40.5 ± 1.1 | 39.9 ± 0.2 | 0.625 |
Height (cm) 1 | 167.5 ± 0.9 | 172.5 ± 0.1 | <0.001 | 157.3 ± 0.5 | 159.6 ± 0.1 | <0.001 |
Body weight (kg) 1 | 66.6 ± 1.5 | 73.2 ± 0.2 | <0.001 | 56.3 ± 0.7 | 58.0 ± 0.1 | 0.026 |
BMI (kg/m2) 1 | 23.7 ± 0.5 | 24.6 ± 0.1 | 0.097 | 22.7 ± 0.3 | 22.8 ± 0.1 | 0.967 |
WC (cm) 1 | 82.8 ± 1.4 | 85.4 ± 0.2 | 0.052 | 76.2 ± 0.7 | 76.1 ± 0.2 | 0.851 |
Systolic BP (mmHg) 1 | 114.5 ± 1.3 | 118.3 ± 0.3 | 0.004 | 109.9 ± 1.0 | 110.2 ± 0.2 | 0.792 |
Diastolic BP (mmHg) 1 | 76.2 ± 0.9 | 79.1 ± 0.2 | 0.003 | 71.6 ± 0.6 | 72.7 ± 0.2 | 0.072 |
HGS (kg) 1 | 23.8 ± 0.4 | 43.4 ± 0.1 | <0.001 | 15.8 ± 0.1 | 26.3 ± 0.1 | <0.001 |
HGSWR 1 | 37.2 ± 1.1 | 60.3 ± 0.2 | <0.001 | 28.8 ± 0.4 | 46.0 ± 0.1 | <0.001 |
Absolute HGS (kg) | 47.2 ± 1.1 | 83.9 ± 0.3 | <0.001 | 31.7 ± 0.3 | 50.4 ± 0.1 | <0.001 |
Relative HGS (m2) | 2.1 ± 0.1 | 3.5 ± 0.0 | <0.001 | 1.4 ± 0.0 | 2.3 ± 0.0 | <0.001 |
Household income 2 | ||||||
Q1 | 35 (30.3) | 378 (7.7) | <0.001 | 50 (14.8) | 484 (7.6) | <0.001 |
Q2 | 29 (22.5) | 1102 (22.1) | 85 (25.5) | 1489 (23.6) | ||
Q3 | 28 (25.5) | 1606 (32.6) | 81 (29.1) | 2036 (32.4) | ||
Q4 | 18 (21.7) | 1860 (37.6) | 89 (30.6) | 2231 (36.5) | ||
Residential area 2 | ||||||
Urban | 90 (86.2) | 4139 (86.2) | 0.997 | 247 (85.1) | 5372 (88.2) | 0.179 |
Rural | 21 (13.8) | 820 (13.8) | 58 (14.9) | 878 (11.8) | ||
Alcohol consumption 2 | ||||||
None | 46 (54.7) | 601 (17.2) | <0.001 | 99 (35.5) | 1570 (29.9) | 0.126 |
Low | 30 (36.6) | 1688 (51.6) | 147 (59.1) | 3014 (61.7) | ||
High | 6 (8.7) | 1074 (31.3) | 13 (5.4) | 386 (8.4) | ||
Smoking status 2 | ||||||
Nonsmoker | 42 (46.2) | 1244 (27.6) | <0.001 | 270 (89.0) | 5396 (87.5) | 0.519 |
Ex-smoker | 29 (24.8) | 1649 (31.8) | 16 (7.0) | 401 (6.8) | ||
Current smoker | 35 (29.1) | 1929 (40.6) | 14 (4.0) | 320 (5.7) | ||
Physical activity 2 | ||||||
Low (<600 MET-min/week) | 89 (77.1) | 3417 (67.4) | 0.058 | 252 (80.3) | 4855 (76.8) | 0.320 |
Moderate (600–3000 MET-min/week) | 17 (20.5) | 1198 (25.3) | 47 (17.5) | 1189 (19.6) | ||
High (>3000 MET-min/week) | 5 (2.4) | 344 (7.2) | 6 (2.1) | 216 (3.7) |
Variables | Men (n = 5070, wn = 59,336,338) | Women (n = 6565, wn = 51,774,435) | ||||
---|---|---|---|---|---|---|
LGS (n = 111, wn = 1,175,179) | NGS (n = 4959, wn = 58,161,159) | p Value | LGS (n = 305, wn = 2,354,354) | NGS (n = 6260, wn = 49,420,081) | p Value | |
Energy intake and energy from macronutrients 1 | ||||||
Energy (kcal/day) | 2232 ± 120 | 2391 ± 31 | 0.188 | 1771 ± 53 | 1774 ± 28 | 0.944 |
Carbohydrate (% of energy) | 66.5 ± 1.5 | 63.5 ± 0.4 | 0.048 | 62.6 ± 0.9 | 62.7 ± 0.5 | 0.868 |
Protein (% of energy) | 13.8 ± 0.5 | 15.4 ± 0.2 | 0.001 | 15.7 ± 0.4 | 15.3 ± 0.2 | 0.245 |
Fat (% of energy) | 19.7 ± 1.4 | 21.1 ± 0.3 | 0.287 | 21.7 ± 0.7 | 22.0 ± 0.4 | 0.597 |
Nutrients intake 1 | ||||||
Protein (g/day) | 74.1 ± 5.1 | 86.7 ± 1.5 | 0.016 | 66.1 ± 2.8 | 64.3 ± 1.4 | 0.448 |
Vitamin A (μgRE/day) | 741.4 ± 121.7 | 774.0 ± 52.0 | 0.780 | 589.6 ± 63.3 | 610.0 ± 32.3 | 0.727 |
Vitamin B1 (mg/day) | 2.0 ± 0.2 | 2.2 ± 0.0 | 0.260 | 1.6 ± 0.1 | 1.7 ± 0.0 | 0.246 |
Vitamin B2 (mg/day) | 1.4 ± 0.1 | 1.7 ± 0.0 | 0.024 | 1.3 ± 0.1 | 1.3 ± 0.0 | 0.857 |
Vitamin C (mg/day) | 88.1 ± 10.3 | 95.3 ± 3.2 | 0.495 | 84.4 ± 8.4 | 96.8 ± 5.0 | 0.088 |
Niacin (mg/day) | 16.1 ± 1.3 | 19.2 ± 0.4 | 0.015 | 14.6 ± 0.6 | 14.7 ± 0.4 | 0.842 |
Calcium (mg/day) | 513.0 ± 48.9 | 562.8 ± 11.1 | 0.309 | 439.1 ± 19.4 | 455.1 ± 11.0 | 0.340 |
Phosphorus (mg/day) | 1121.8 ± 75.1 | 1271.8 ± 19.9 | 0.051 | 977.4 ± 33.1 | 982.6 ± 18.7 | 0.861 |
Iron (mg/day) | 16.0 ± 1.2 | 19.0 ± 0.5 | 0.006 | 14.4 ± 0.8 | 14.7 ± 0.4 | 0.675 |
Inadequate nutrients intake (Below the EAR) 2 | ||||||
Protein 3 | 65 (55.1) | 1855 (36.1) | <0.001 | 169 (57.4) | 2750 (47.2) | 0.004 |
Vitamin A | 76 (64.3) | 2655 (53.2) | 0.046 | 172 (57.3) | 3298 (53.2) | 0.232 |
Vitamin B1 | 20 (19.4) | 409 (8.4) | <0.001 | 53 (16.5) | 948 (16.0) | 0.832 |
Vitamin B2 | 61 (52.8) | 1843 (36.5) | 0.002 | 121 (36.8) | 2221 (35.2) | 0.619 |
Vitamin C | 75 (65.5) | 3074 (63.2) | 0.667 | 199 (65.6) | 3655 (59.8) | 0.086 |
Niacin | 53 (45.6) | 1210 (24.1) | <0.001 | 115 (36.2) | 2269 (36.3) | 0.976 |
Calcium | 84 (74.75) | 3341 (68.0) | 0.184 | 224 (75.0) | 4343 (69.4) | 0.061 |
Phosphorus | 20 (17.6) | 305 (6.4) | <0.001 | 52 (16.3) | 922 (15.1) | 0.632 |
Iron | 19 (19.4) | 407 (9.0) | 0.001 | 93 (34.7) | 1865 (32.5) | 0.537 |
Variables | Men | Women | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model 1 | p Value | Model 2 | p Value | Model 1 | p Value | Model 2 | p Value | |||||
OR | 95% CI | OR | 95% CI | OR | 95% CI | OR | 95% CI | |||||
Protein | 2.114 | 1.358–3.289 | <0.001 | 1.525 | 0.646–3.597 | 0.335 | 1.589 | 1.207–2.092 | 0.001 | 1.976 | 1.248–3.127 | 0.004 |
Vitamin A | 1.269 | 0.774–2.082 | 0.345 | 1.554 | 0.803–3.006 | 0.191 | 1.185 | 0.885–1.588 | 0.254 | 0.953 | 0.653–1.390 | 0.802 |
Vitamin B1 | 2.001 | 1.076–3.724 | 0.029 | 2.916 | 1.265–6.719 | 0.012 | 1.012 | 0.669–1.532 | 0.953 | 0.898 | 0.518–1.559 | 0.703 |
Vitamin B2 | 1.547 | 0.907–2.640 | 0.109 | 1.817 | 0.958–3.445 | 0.067 | 1.042 | 0.741–1.464 | 0.814 | 0.897 | 0.597–1.347 | 0.600 |
Vitamin C | 0.944 | 0.580–1.538 | 0.817 | 0.603 | 0.323–1.128 | 0.113 | 1.313 | 0.992–1.738 | 0.057 | 1.252 | 0.874–1.795 | 0.221 |
Niacin | 2.362 | 1.386–4.024 | 0.002 | 2.286 | 1.095–4.774 | 0.028 | 0.946 | 0.681–1.315 | 0.742 | 0.939 | 0.627–1.408 | 0.762 |
Calcium | 1.052 | 0.634–1.746 | 0.844 | 1.754 | 0.863–3.563 | 0.120 | 1.349 | 0.962–1.890 | 0.082 | 1.189 | 0.804–1.758 | 0.386 |
Phosphorus | 2.390 | 1.171–4.878 | 0.017 | 2.731 | 1.036–7.199 | 0.042 | 1.059 | 0.694–1.616 | 0.789 | 1.143 | 0.666–1.959 | 0.628 |
Iron | 1.902 | 1.003–3.604 | 0.049 | 2.591 | 1.102–6.088 | 0.029 | 1.152 | 0.814–1.632 | 0.424 | 0.956 | 0.626–1.458 | 0.833 |
Variables | Crude | p for Trend | Model 1 | p for Trend | Model 2 | p for Trend | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OR (95% CI) | OR (95% CI) | OR (95% CI) | ||||||||||
T1 | T2 | T3 | T1 | T2 | T3 | T1 | T2 | T3 | ||||
Men | ||||||||||||
Westernized Korean | 1.000 | 0.785 (0.175–0.596) | 0.323 (0.175–0.596) | 0.002 | 1.000 | 0.843 (0.515–1.380) | 0.386 (0.190–0.782) | 0.030 | 1.000 | 0.887 (0.486–1.619) | 0.506 (0.217–1.175) | 0.285 |
Convenience | 1.000 | 0.848 (0.503–1.403) | 0.772 (0.430–1.210) | 0.458 | 1.000 | 0.786 (0.462–1.338) | 0.800 (0.468–1.368) | 0.588 | 1.000 | 0.747 (0.372–1.501) | 0.684 (0.331–1.414) | 0.550 |
Traditional Korean | 1.000 | 0.728 (0.421–1.257) | 1.092 (0.667–1.787) | 0.347 | 1.000 | 0.719 (0.405–1.276) | 1.311 (0.724–2.373) | 0.121 | 1.000 | 0.524 (0.258–1.064) | 0.830 (0.408–1.689) | 0.185 |
Women | ||||||||||||
Westernized Korean | 1.000 | 0.880 (0.609–1.273) | 0.929 (0.678–1.274) | 0.784 | 1.000 | 0.902 (0.612–1.330) | 0.989 (0.643–1.521) | 0.847 | 1.000 | 0.919 (0.609–1.387) | 1.032 (0.674–1.645) | 0.860 |
Traditional Korean | 1.000 | 1.119 (0.805–1.555) | 1.046 (0.732–1.495) | 0.791 | 1.000 | 1.096 (0.784–1.532) | 1.027 (0.722–1.463) | 0.851 | 1.000 | 1.015 (0.706–1.461) | 0.932 (0.625–1.389) | 0.887 |
Healthy | 1.000 | 0.896 (0.660–1.217) | 0.946 (0.705–1.319) | 0.778 | 1.000 | 0.858 (0.625–1.177) | 0.929 (0.626–1.275) | 0.636 | 1.000 | 0.809 (0.565–1.160) | 0.827 (0.571–1.200) | 0.462 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, I.; Son, K.; Jeong, S.J.; Lim, H. Sex and Diet-Related Disparities in Low Handgrip Strength among Young and Middle-Aged Koreans: Findings Based on the Korea National Health and Nutrition Examination Survey (KNHANES) from 2014 to 2017. Nutrients 2022, 14, 3816. https://doi.org/10.3390/nu14183816
Kim I, Son K, Jeong SJ, Lim H. Sex and Diet-Related Disparities in Low Handgrip Strength among Young and Middle-Aged Koreans: Findings Based on the Korea National Health and Nutrition Examination Survey (KNHANES) from 2014 to 2017. Nutrients. 2022; 14(18):3816. https://doi.org/10.3390/nu14183816
Chicago/Turabian StyleKim, Inhye, Kumhee Son, Su Jin Jeong, and Hyunjung Lim. 2022. "Sex and Diet-Related Disparities in Low Handgrip Strength among Young and Middle-Aged Koreans: Findings Based on the Korea National Health and Nutrition Examination Survey (KNHANES) from 2014 to 2017" Nutrients 14, no. 18: 3816. https://doi.org/10.3390/nu14183816
APA StyleKim, I., Son, K., Jeong, S. J., & Lim, H. (2022). Sex and Diet-Related Disparities in Low Handgrip Strength among Young and Middle-Aged Koreans: Findings Based on the Korea National Health and Nutrition Examination Survey (KNHANES) from 2014 to 2017. Nutrients, 14(18), 3816. https://doi.org/10.3390/nu14183816