Maternal Dietary Patterns during Pregnancy and Child Autism-Related Traits: Results from Two US Cohorts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Dietary Assessment
2.3. Dietary Pattern Indices
2.4. Outcome Assessment
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- APA. Diagnostic and Statistical Manual of Mental Disorders: DSM V; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Lyall, K.; Croen, L.; Daniels, J.; Fallin, M.D.; Ladd-Acosta, C.; Lee, B.K.; Park, B.Y.; Snyder, N.W.; Schendel, D.; Volk, H.; et al. The Changing Epidemiology of Autism Spectrum Disorders. Annu. Rev. Public Health 2017, 38, 81–102. [Google Scholar] [CrossRef] [Green Version]
- Rodier, P.M. The Early Origins of Autism. Sci. Am. 2000, 282, 56–63. [Google Scholar] [CrossRef]
- Wang, M.; Li, K.; Zhao, D.; Li, L. The association between maternal use of folic acid supplements during pregnancy and risk of autism spectrum disorders in children: A meta-analysis. Mol. Autism 2017, 8, 51. [Google Scholar] [CrossRef] [Green Version]
- DeVilbiss, E.A.; Gardner, R.M.; Newschaffer, C.J.; Lee, B.K. Maternal folate status as a risk factor for autism spectrum disorders: A review of existing evidence. Br. J. Nutr. 2015, 114, 663–672. [Google Scholar] [CrossRef] [Green Version]
- Zhong, C.; Tessing, J.; Lee, B.K.; Lyall, K. Maternal Dietary Factors and the Risk of Autism Spectrum Disorders: A Systematic Review of Existing Evidence. Autism Res. 2020, 13, 1634–1658. [Google Scholar] [CrossRef]
- Wiegersma, A.M.; Dalman, C.; Lee, B.K.; Karlsson, H.; Gardner, R.M. Association of Prenatal Maternal Anemia with Neurodevelopmental Disorders. JAMA Psychiatry 2019, 76, 1294–1304. [Google Scholar] [CrossRef]
- Wang, T.; Shan, L.; Du, L.; Feng, J.; Xu, Z.; Staal, W.G.; Jia, F. Serum concentration of 25-hydroxyvitamin D in autism spectrum disorder: A systematic review and meta-analysis. Eur. Child Adolesc. Psychiatry 2015, 25, 341–350. [Google Scholar] [CrossRef]
- Vecchione, R.; Vigna, C.; Whitman, C.; Kauffman, E.M.; Braun, J.M.; Chen, A.; Xu, Y.; Hamra, G.B.; Lanphear, B.P.; Yolton, K.; et al. The Association between Maternal Prenatal Fish Intake and Child Autism-Related Traits in the EARLI and HOME Studies. J. Autism Dev. Disord. 2020, 51, 487–500. [Google Scholar] [CrossRef]
- Lyall, K.; Windham, G.C.; Snyder, N.W.; Kuskovsky, R.; Xu, P.; Bostwick, A.; Robinson, L.; Newschaffer, C.J. Association between Midpregnancy Polyunsaturated Fatty Acid Levels and Offspring Autism Spectrum Disorder in a California Population-Based Case-Control Study. Am. J. Epidemiol. 2020, 190, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Lyall, K.; Munger, K.L.; O’Reilly, É.J.; Santangelo, S.L.; Ascherio, A. Maternal Dietary Fat Intake in Association with Autism Spectrum Disorders. Am. J. Epidemiol. 2013, 178, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Julvez, J.; Méndez, M.; Fernández-Barrés, S.; Romaguera, D.; Vioque, J.; Llop, S.; Ibarluzea, J.; Guxens, M.; Avella-Garcia, C.; Tardon, A.; et al. Maternal Consumption of Seafood in Pregnancy and Child Neuropsychological Development: A Longitudinal Study Based on a Population with High Consumption Levels. Am. J. Epidemiol. 2016, 183, 169–182. [Google Scholar] [CrossRef] [PubMed]
- Haggarty, P. Effect of placental function on fatty acid requirements during pregnancy. Eur. J. Clin. Nutr. 2004, 58, 1559–1570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.M.; Shen, Y.D.; Li, Y.J.; Xun, G.L.; Liu, H.; Wu, R.R.; Xia, K.; Zhao, J.P.; Ou, J.J. Maternal dietary patterns, supplements intake and autism spectrum disorders: A preliminary case-control study. Medicine 2018, 97, e13902. [Google Scholar] [CrossRef] [PubMed]
- Moser, S.S.; Davidovitch, M.; Rotem, R.S.; Chodick, G.; Shalev, V.; Koren, G. High dose folic acid during pregnancy and the risk of autism; The birth order bias: A nested case-control study. Reprod. Toxicol. 2019, 89, 173–177. [Google Scholar] [CrossRef]
- Braun, J.M.; Froehlich, T.; Kalkbrenner, A.; Pfeiffer, C.M.; Fazili, Z.; Yolton, K.; Lanphear, B.P. Brief report: Are autistic-behaviors in children related to prenatal vitamin use and maternal whole blood folate concentrations? J. Autism. Dev. Disord. 2014, 44, 2602–2607. [Google Scholar] [CrossRef]
- DeVilbiss, E.A.; Magnusson, C.; Gardner, R.M.; Rai, D.; Newschaffer, C.J.; Lyall, K.; Dalman, C.; Lee, B.K. Antenatal nutritional supplementation and autism spectrum disorders in the Stockholm youth cohort: Population based cohort study. BMJ 2017, 359, j4273. [Google Scholar] [CrossRef] [Green Version]
- Graaff, J.S.-D.; Ghassabian, A.; Jaddoe, V.W.; Tiemeier, H.; Roza, S.J. Folate concentrations during pregnancy and autistic traits in the offspring. The Generation R Study. Eur. J. Public Health 2014, 25, 431–433. [Google Scholar] [CrossRef] [Green Version]
- Strøm, M.; Granström, C.; Lyall, K.; Ascherio, A.; Olsen, S. Research Letter: Folic acid supplementation and intake of folate in pregnancy in relation to offspring risk of autism spectrum disorder. Psychol. Med. 2017, 48, 1048–1054. [Google Scholar] [CrossRef] [Green Version]
- Virk, J.; Liew, Z.; Olsen, J.; Nohr, E.A.; Catov, J.M.; Ritz, B. Preconceptional and prenatal supplementary folic acid and multivitamin intake and autism spectrum disorders. Autism 2015, 20, 710–718. [Google Scholar] [CrossRef]
- Egorova, O.; Myte, R.; Schneede, J.; Hägglöf, B.; Bölte, S.; Domellöf, E.; A’Roch, B.I.; Elgh, F.; Ueland, P.M.; Silfverdal, S.A. Maternal blood folate status during early pregnancy and occurrence of autism spectrum disorder in offspring: A study of 62 serum biomarkers. Mol. Autism 2020, 11, 7. [Google Scholar] [CrossRef] [Green Version]
- López-Vicente, M.; Sunyer, J.; Lertxundi, N.; González-Safont, L.; Rodríguez-Dehli, C.; Sáenz-Torre, M.E.; Vrijheid, M.; Tardón, A.; Llop, S.; Torrent, M.; et al. Maternal circulating Vitamin D3 levels during pregnancy and behaviour across childhood. Sci. Rep. 2019, 9, 14792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Windham, G.C.; Pearl, M.; Anderson, M.C.; Poon, V.; Eyles, D.; Jones, K.L.; Lyall, K.; Kharrazi, M.; Croen, L.A. Newborn vitamin D levels in relation to autism spectrum disorders and intellectual disability: A case–control study in california. Autism Res. 2019, 12, 989–998. [Google Scholar] [CrossRef] [PubMed]
- Raghavan, R.; Riley, A.W.; Volk, H.; Caruso, D.; Hironaka, L.; Sices, L.; Hong, X.; Wang, G.; Ji, Y.; Brucato, M.; et al. Maternal Multivitamin Intake, Plasma Folate and Vitamin B(12) Levels and Autism Spectrum Disorder Risk in Offspring. Paediatr. Perinat. Epidemiol. 2018, 32, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Nardone, S.; Elliott, E. The Interaction between the Immune System and Epigenetics in the Etiology of Autism Spectrum Disorders. Front. Neurosci. 2016, 10, 329. [Google Scholar] [CrossRef] [Green Version]
- Han, V.X.; Patel, S.; Jones, H.F.; Dale, R.C. Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nat. Rev. Neurol. 2021, 17, 564–579. [Google Scholar] [CrossRef]
- Beversdorf, D.Q.; Stevens, H.E.; Jones, K.L. Prenatal Stress, Maternal Immune Dysregulation, and Their Association with Autism Spectrum Disorders. Curr. Psychiatry Rep. 2018, 20, 76. [Google Scholar] [CrossRef]
- Tabung, F.K.; Smith-Warner, S.A.; Chavarro, J.E.; Fung, T.T.; Hu, F.B.; Willett, W.C.; Giovannucci, E.L. An Empirical Dietary Inflammatory Pattern Score Enhances Prediction of Circulating Inflammatory Biomarkers in Adults. J. Nutr. 2017, 147, 1567–1577. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Nahm, S.; Mendez, M.; Robinson, W.; Murphy, S.K.; Hoyo, C.; Hogan, V.; Rowley, D. Low maternal adherence to a Mediterranean diet is associated with increase in methylation at the MEG3-IG differentially methylated region in female infants. Environ. Epigen. 2017, 3, dvx007. [Google Scholar] [CrossRef]
- House, J.S.; Mendez, M.; Maguire, R.L.; Gonzalez-Nahm, S.; Huang, Z.; Daniels, J.; Murphy, S.K.; Fuemmeler, B.; Wright, F.A.; Hoyo, C. Periconceptional Maternal Mediterranean Diet Is Associated with Favorable Offspring Behaviors and Altered CpG Methylation of Imprinted Genes. Front. Cell Dev. Biol. 2018, 6, 107. [Google Scholar] [CrossRef]
- Gao, L.; Cui, S.S.; Han, Y.; Dai, W.; Su, Y.Y.; Zhang, X. Does Periconceptional Fish Consumption by Parents Affect the Incidence of Autism Spectrum Disorder and Intelligence Deficiency? A Case-control Study in Tianjin, China. Biomed. Environ. Sci. 2016, 29, 885–892. [Google Scholar] [CrossRef]
- Lyall, K.; Song, L.; Botteron, K.; Croen, L.A.; Dager, S.R.; Fallin, M.D.; Hazlett, H.C.; Kauffman, E.; Landa, R.; Ladd-Acosta, C.; et al. The Association between Parental Age and Autism-Related Outcomes in Children at High Familial Risk for Autism. Autism Res. 2020, 13, 998–1010. [Google Scholar] [CrossRef] [PubMed]
- Newschaffer, C.J.; Croen, L.A.; Fallin, M.D.; Hertz-Picciotto, I.; Nguyen, D.; Lee, N.L.; Berry, C.A.; Farzadegan, H.; Hess, H.N.; Landa, R.J.; et al. Infant siblings and the investigation of autism risk factors. J. Neurodev. Disord. 2012, 4, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, Y.; Bertoia, M.L.; Lenart, E.B.; Stampfer, M.J.; Willett, W.C.; Speizer, F.E.; Chavarro, J.E. Origin, Methods, and Evolution of the Three Nurses’ Health Studies. Am. J. Public Health 2016, 106, 1573–1581. [Google Scholar] [CrossRef] [PubMed]
- Lyall, K.; Pauls, D.L.; Spiegelman, D.; Santangelo, S.L.; Ascherio, A. Fertility Therapies, Infertility and Autism Spectrum Disorders in the Nurses’ Health Study II. Paediatr. Périnat. Epidemiol. 2012, 26, 361–372. [Google Scholar] [CrossRef] [Green Version]
- Joyce, E.E.; Chavarro, J.E.; Rando, J.; Song, A.Y.; Croen, L.A.; Fallin, M.D.; Hertz-Picciotto, I.; Schmidt, R.J.; Volk, H.; Newschaffer, C.J.; et al. Prenatal exposure to pesticide residues in the diet and child autism-related traits in a high-risk cohort. Autism Res. 2022, in press. [Google Scholar]
- Yuan, C.; Spiegelman, D.; Rimm, E.B.; Rosner, B.A.; Stampfer, M.J.; Barnett, J.B.; Chavarro, J.; Subar, A.F.; Sampson, L.K.; Willett, W.C. Validity of a Dietary Questionnaire Assessed by Comparison with Multiple Weighed Dietary Records or 24-Hour Recalls. Am. J. Epidemiol. 2017, 185, 570–584. [Google Scholar] [CrossRef] [Green Version]
- Yuan, C.; Spiegelman, D.; Rimm, E.B.; Rosner, B.A.; Stampfer, M.J.; Barnett, J.B.; Chavarro, J.E.; Rood, J.C.; Harnack, L.J.; Sampson, L.K.; et al. Relative Validity of Nutrient Intakes Assessed by Questionnaire, 24-Hour Recalls, and Diet Records as Compared with Urinary Recovery and Plasma Concentration Biomarkers: Findings for Women. Am. J. Epidemiol. 2018, 187, 1051–1063. [Google Scholar] [CrossRef] [Green Version]
- Tabung, F.K.; Smith-Warner, S.A.; Chavarro, J.E.; Wu, K.; Fuchs, C.S.; Hu, F.B.; Chan, A.T.; Willett, W.C.; Giovannucci, E.L. Development and Validation of an Empirical Dietary Inflammatory Index. J. Nutr. 2016, 146, 1560–1570. [Google Scholar] [CrossRef]
- Rifas-Shiman, S.L.; Rich-Edwards, J.W.; Kleinman, K.P.; Oken, E.; Gillman, M.W. Dietary Quality during Pregnancy Varies by Maternal Characteristics in Project Viva: A US Cohort. J. Am. Diet. Assoc. 2009, 109, 1004–1011. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.B.; Rimm, E.; A Smith-Warner, S.; Feskanich, D.; Stampfer, M.J.; Ascherio, A.; Sampson, L.; Willett, W.C. Reproducibility and validity of dietary patterns assessed with a food-frequency questionnaire. Am. J. Clin. Nutr. 1999, 69, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Fung, T.T.; McCullough, M.L.; Newby, P.; Manson, J.E.; Meigs, J.B.; Rifai, N.; Willett, W.C.; Hu, F.B. Diet-quality scores and plasma concentrations of markers of inflammation and endothelial dysfunction. Am. J. Clin. Nutr. 2005, 82, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Chiuve, S.E.; Fung, T.T.; Rimm, E.B.; Hu, F.B.; McCullough, M.L.; Wang, M.; Stampfer, M.J.; Willett, W.C. Alternative Dietary Indices Both Strongly Predict Risk of Chronic Disease. J. Nutr. 2012, 142, 1009–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouellette, E.M.; Rosett, H.L.; Rosman, N.P.; Weiner, L. Adverse Effects on Offspring of Maternal Alcohol Abuse during Pregnancy. N. Engl. J. Med. 1977, 297, 528–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCullough, M.L.; Feskanich, D.; Stampfer, M.J.; Giovannucci, E.L.; Rimm, E.B.; Hu, F.B.; Spiegelman, D.; Hunter, D.J.; Colditz, G.; Willett, W.C. Diet quality and major chronic disease risk in men and women: Moving toward improved dietary guidance. Am. J. Clin. Nutr. 2002, 76, 1261–1271. [Google Scholar] [CrossRef] [Green Version]
- Constantino, J.N.; Gruber, C. Social Responsiveness Scale, 2nd ed.; Western Psychological Services: Los Angeles, CA, USA, 2012. [Google Scholar]
- Constantino, J.N.; Gruber, C. Social Responsiveness Scale (SRS); Western Psychological Services: Los Angeles, CA, USA, 2005. [Google Scholar]
- Haraguchi, H.; Stickley, A.; Saito, A.; Takahashi, H.; Kamio, Y. Stability of Autistic Traits from 5 to 8 Years of Age among Children in the General Population. J. Autism Dev. Disord. 2018, 49, 324–334. [Google Scholar] [CrossRef] [Green Version]
- Ozonoff, S.; Young, G.S.; Carter, A.; Messinger, D.; Yirmiya, N.; Zwaigenbaum, L.; Bryson, S.; Carver, L.J.; Constantino, J.N.; Dobkins, K.; et al. Recurrence Risk for Autism Spectrum Disorders: A Baby Siblings Research Consortium Study. Pediatrics 2011, 128, e488–e495. [Google Scholar] [CrossRef] [Green Version]
- Ozonoff, S.; Young, G.S.; Belding, A.; Hill, M.; Hill, A.; Hutman, T.; Johnson, S.; Miller, M.; Rogers, S.J.; Schwichtenberg, A.J.; et al. The broader autism phenotype in infancy: When does it emerge? J. Am. Acad. Child Adolesc. Psychiatry 2014, 53, 398–407.e2. [Google Scholar] [CrossRef] [Green Version]
- Roberts, A.L.; Lyall, K.; Hart, J.E.; Laden, F.; Just, A.C.; Bobb, J.F.; Koenen, K.C.; Ascherio, A.; Weisskopf, M.G. Perinatal air pollutant exposures and autism spectrum disorder in the children of Nurses’ Health Study II participants. Environ. Health Perspect. 2013, 121, 978–984. [Google Scholar] [CrossRef] [Green Version]
- Koenker, R.; Hallock, K.F. Quantile Regression. J. Econ. Perspect. 2001, 15, 143–156. [Google Scholar] [CrossRef]
- Schaevitz, L.R.; Berger-Sweeney, J.E. Gene-Environment Interactions and Epigenetic Pathways in Autism: The Importance of One-Carbon Metabolism. ILAR J. 2012, 53, 322–340. [Google Scholar] [CrossRef] [Green Version]
- Geiman, T.M.; Muegge, K. DNA methylation in early development. Mol. Reprod. Dev. 2009, 77, 105–113. [Google Scholar] [CrossRef] [PubMed]
- McCullough, L.E.; Miller, E.E.; Calderwood, L.E.; Shivappa, N.; Steck, S.E.; Forman, M.R.; AMendez, M.; Maguire, R.; Fuemmeler, B.F.; Kollins, S.H.; et al. Maternal inflammatory diet and adverse pregnancy outcomes: Circulating cytokines and genomic imprinting as potential regulators? Epigenetics 2017, 12, 688–697. [Google Scholar] [CrossRef] [PubMed]
- Patterson, P.H. Immune involvement in schizophrenia and autism: Etiology, pathology and animal models. Behav. Brain Res. 2009, 204, 313–321. [Google Scholar] [CrossRef]
- Lyall, K.; Ashwood, P.; Van De Water, J.; Hertz-Picciotto, I. Maternal Immune-Mediated Conditions, Autism Spectrum Disorders, and Developmental Delay. J. Autism Dev. Disord. 2013, 44, 1546–1555. [Google Scholar] [CrossRef]
- Goines, P.; Van de Water, J. The immune system’s role in the biology of autism. Curr. Opin. Neurol. 2010, 23, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Bragg, M.; Chavarro, J.E.; Hamra, G.B.; Hart, J.E.; Tabb, L.P.; Weisskopf, M.G.; Volk, H.E.; Lyall, K. Prenatal diet as a modifier of environmental risk factors for autism and related neurodevelopmetnal outcomes. Curr. Environ. Health Rep. 2022, in press. [Google Scholar]
- Zhang, C.; Liu, S.; Solomon, C.G.; Hu, F.B. Dietary fiber intake, dietary glycemic load, and the risk for gestational diabetes mellitus. Diabetes Care 2006, 29, 2223–2230. [Google Scholar] [CrossRef] [Green Version]
- Rifas-Shiman, S.L.; Rich-Edwards, J.W.; Willett, W.C.; Kleinman, K.; Oken, E.; Gillman, M.W. Changes in dietary intake from the first to the second trimester of pregnancy. Paediatr. Périnat. Epidemiol. 2006, 20, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Hirokawa, K.; Japan Environment & Children’s Study Group; Kimura, T.; Ikehara, S.; Honjo, K.; Ueda, K.; Sato, T.; Iso, H. Associations between Broader Autism Phenotype and Dietary Intake: A Cross-Sectional Study (Japan Environment & Children’s Study). J. Autism Dev. Disord. 2020, 50, 2698–2709. [Google Scholar] [CrossRef]
EARLI | NHSII 1 | |
---|---|---|
n (%) | ||
Child sex | ||
Male | 83 (53.9) | 423 (58.2) |
Female | 71 (46.1) | 304 (41.8) |
Maternal ethnicity | ||
Hispanic/Latino | 30 (19.5) | 14 (1.9) |
Not Hispanic/Latino | 124 (80.5) | 713 (98.1) |
Maternal race | ||
White | 104 (67.5) | 708 (97.4) |
Black/African American | 9 (5.8) | 1 (0.1) |
Native American or Native Alaskan | 2 (1.3) | |
Asian & Pacific Islander | 20 (13.0) | 9 (1.2) |
Multiple/Other Race | 14 (9.1) | 7 (1.0) |
Other/unknown | 5 (3.3) | 2 (0.3) |
Household income | ||
$0–50,000/$0–40,000 | 36 (23.4) | 27 (3.7) |
$50,001–100,000/$40,001–100,000 | 58 (37.7) | 316 (43.5) |
$100,001+ | 60 (39.0) | 249 (34.3) |
Missing | 0 (0) | 135 (18.6) |
Prenatal smoking | ||
Active | 5 (3.3) | 51 (7.0) |
Not active | 122 (79.2) | 676 (93.0) |
Missing | 27 (17.5) | 0 (0) |
Birthweight | ||
Low | 9 (5.8) | 7 (1.0) |
Normal | 143 (92.9) | 436 (60.0) |
Missing | 2 (1.3) | 284 (39.1) |
Ever breastfeed | ||
Yes | 98 (63.6) | 691 (95.1) |
No | 37 (24.0) | 35 (4.8) |
Missing | 19 (12.3) | 1 (0.1) |
Prenatal vitamin use | ||
Yes | 145 (94.2) | 532 (73.2) |
No | 8 (5.2) | 194 (26.7) |
Missing | 1 (0.7) | 1 (0.1) |
Prenatal vitamin use (first month) | ||
Yes | 88 (57.1) | - |
No | 65(42.2) | - |
Missing | 1 (0.7) | - |
ASD diagnosis | ||
Yes | 32 (20.8) | 106 (14.6) |
No | 120 (77.9) | 621 (85.4) |
Missing | 2 (1.3) | 0 (0) |
Mean (std) | ||
Maternal age, years | 33.9 (4.6) | 34.2 (4.2) |
Birthweight (lb) | 7.6 (1.2) | - |
Parity | 1.8 (0.9) | 1.3 (1.2) |
Pre-Pregnancy BMI, kg/m2 | 28.0 (7.1) | 23.4 (4.2) |
Physical activity, METs/week | 366.8 (617.8) | 20.3 (26.1) |
Total caloric intake, kcal | 1828.9 (801.4) | 1946.2 (549.4) |
Total SRS raw score | 35.8 (26.2) | 28.2 (34.0) |
n | Crude (ß, 95% CI) | Adjusted (ß, 95% CI) | Fully Adjusted (ß, 95% CI) | |
---|---|---|---|---|
EDIP | ||||
Q1 | 31 | 0 (reference) | 0 (reference) | 0 (reference) |
Q2 | 35 | −4.00 (−17.53, 6.02) | −8.42 (−15.22, 3.01) | −8.29 (−14.49, 3.02) |
Q3 | 29 | −10.00 (−16.99, 0.66) | −8.72 (−16.65, 4.04) | −7.72 (−15.58, 3.80) |
Q4 | 36 | 3.00 (−8.61, 11.08) | −4.60 (−9.47, 5.37) | −6.70 (−10.71, 6.55) |
AHEI-2010 | ||||
Q1 | 35 | 0 (reference) | 0 (reference) | 0 (reference) |
Q2 | 40 | −11.00 (−22.55, 2.10) | −6.14 (−13.45, 4.44) | −6.30 (−14.38, 3.91) |
Q3 | 24 | −7.00 (−20.47, 5.47) | −0.08 (−8.68, 5.41) | −5.86 (−11.45, 5.10) |
Q4 | 32 | −8.00 (−19.18, 3.55) | −2.97 (−18.22, 9.52) | −6.03 (−23.11, 11.96) |
AHEI-P | ||||
Q1 | 34 | 0 (reference) | 0 (reference) | 0 (reference) |
Q2 | 33 | 1.00 (−10.29, 11.10) | 7.98 (−7.47, 14.08) | 3.70 (−10.91, 14.04) |
Q3 | 34 | 3.00 (−22.32, 13.08) | 7.80 (−5.52, 12.92) | 0.02 (−16.34, 17.43) |
Q4 | 30 | −1.00 (−14.70, 8.85) | 2.12 (−13.78, 7.12) | −7.58 (−25.64, 9.14) |
Western † | ||||
Q1 | 30 | 0 (reference) | 0 (reference) | 0 (reference) |
Q2 | 32 | 11.00 (2.21, 21.89) | 12.87 (4.46, 22.59) | 11.71 (2.16, 22.71) |
Q3 | 33 | 3.00 (−6.69, 13.42) | 7.55 (0.62, 15.81) | 5.29 (−6.85, 16.77) |
Q4 | 36 | 14.00 (−3.01, 24.00) | 11.19 (3.30, 19.90) | 8.01 (−19.90, 22.14) |
Prudent † | ||||
Q1 | 33 | 0 (reference) | 0 (reference) | 0 (reference) |
Q2 | 35 | −5.00 (−20.16, 6.31) | −6.45 (−10.78, 8.51) | −7.69 (−13.31, 7.30) |
Q3 | 31 | 0.00 (−9.91, 10.82) | −1.59 (−11.46, 15.39) | −6.04 (−12.14, 14.62) |
Q4 | 32 | −7.00 (−19.95, 8.90) | −9.54 (−18.97, 5.62) | −14.17 (−22.76, 2.11) |
aMED | ||||
Q1 | 20 | 0 (reference) | 0 (reference) | 0 (reference) |
Q2 | 55 | −7.00 (−19.58, −0.21) | −8.29 (−13.11, 4.74) | −9.02 (−12.88, 5.85) |
Q3 | 27 | −1.00 (−12.41, 5.71) | 1.53 (−3.40, 12.08) | 0.24 (−8.50, 9.99) |
Q4 | 29 | −8.00 (−21.62, 4.81) | −8.31 (−14.03, 5.65) | −12.32 (−23.33, 4.05) |
n | Crude (ß, 95% CI) | Adjusted (ß, 95% CI) | Fully Adjusted (ß, 95% CI) | |
---|---|---|---|---|
EDIP | ||||
Q1 | 167 | 0 (reference) | 0 (reference) | 0 (reference) |
Q2 | 200 | −3.00 (−10.36, 8.36) | −3.92 (−6.78, −0.54) | −3.94 (−6.71, −0.58) |
Q3 | 175 | −3.00 (−9.57, 9.57) | −1.82 (−5.13, 0.76) | −1.92 (−4.44, 1.17) |
Q4 | 185 | 0.00 (−9.70, 12.70) | 1.04 (−2.79, 3.76) | 0.96 (−2.74, 3.17) |
AHEI-2010 | ||||
Q1 | 199 | 0 (reference) | 0 (reference) | 0 (reference) |
Q2 | 178 | 3.00 (−8.52, 11.02) | 0.33 (−1.40, 3.70) | 0.36 (−2.78, 4.22) |
Q3 | 175 | 3.00 (−8.97, 6.97) | 0.19 (−3.12, 3.16) | 0.13 (−3.61, 3.46) |
Q4 | 175 | 5.00 (−9.97, 10.97) | 2.21 (−1.35, 5.89) | 2.62 (−2.03, 6.93) |
AHEI-P | ||||
Q1 | 193 | 0 (reference) | 0 (reference) | 0 (reference) |
Q2 | 169 | −2.00 (−6.82, 9.82) | −0.49 (−4.29, 1.99) | −1.31 (−5.51, 1.72) |
Q3 | 174 | −1.00 (−10.89, 9.89) | −0.80 (−4.30, 1.31) | −1.61 (−4.53, 1.06) |
Q4 | 191 | 1.00 (−7.12, 13.12) | 2.69 (−2.12, 6.49) | 1.51 (−3.32, 4.44) |
Western † | ||||
Q1 | 168 | 0 (reference) | 0 (reference) | 0 (reference) |
Q2 | 178 | 5.00 (−9.18, 16.18) | 2.79 (0.19, −7.71) | 2.71 (−0.31, 7.73) |
Q3 | 188 | 3.00 (−8.19, 12.69) | 2.50 (−1.05, 6.94) | 1.68 (−2.46, 6.78) |
Q4 | 193 | 5.00 (−8.20, 14.41) | 3.34 (0.39, 7.99) | 1.83 (−2.35, 9.38) |
Prudent † | ||||
Q1 | 197 | 0 (reference) | 0 (reference) | 0 (reference) |
Q2 | 182 | −2.00 (−11.00, 11.50) | −0.73 (−5.05, 2.04) | −1.09 (−4.81, 2.89) |
Q3 | 170 | 0.00 (−8.70, 14.35) | 1.15 (−2.49, 3.65) | 0.23 (−4.04, 3.93) |
Q4 | 178 | 3.00 (−7.39, 15.39) | 3.88 (−1.14, 7.10) | 2.73 (−1.92, 8.16) |
aMED | ||||
Q1 | 170 | 0 (reference) | 0 (reference) | 0 (reference) |
Q2 | 248 | 2.00 (−6.86, 12.86) | 0.61 (−0.74, 4.01) | 0.27 (−1.76, 3.87) |
Q3 | 146 | 2.00 (−5.70, 12.40) | 0.30 (−2.47, 4.38) | −0.49 (−4.75, 4.51) |
Q4 | 163 | 2.00 (−4.95, 11.45) | 3.10 (−0.77, 6.04) | 2.16 (−3.70, 5.98) |
Cases/n | Crude (RR, 95% CI) | Adjusted (RR, 95% CI) | Fully Adjusted (RR, 95% CI) | |
---|---|---|---|---|
EDIP | ||||
Q1 | 23/167 | 1 (reference) | 1 (reference) | 1 (reference) |
Q2 | 24/200 | 0.85 (0.46, 1.58) | 0.95 (0.50, 1.79) | 0.96 (0.51, 1.81) |
Q3 | 25/175 | 1.04 (0.57, 1.92) | 1.04 (0.55, 1.96) | 1.04 (0.55, 1.96) |
Q4 | 34/185 | 1.41 (0.79, 2.51) | 1.55 (0.85, 2.84) | 1.41 (0.76, 2.62) |
AHEI-2010 | ||||
Q1 | 27/199 | 1 (reference) | 1 (reference) | 1 (reference) |
Q2 | 27/178 | 1.14 (0.64, 2.03) | 1.06 (0.58, 1.93) | 1.09 (0.60, 2.00) |
Q3 | 25/175 | 1.06 (0.59, 1.91) | 1.00 (0.54, 1.83) | 1.07 (0.58, 1.99) |
Q4 | 27/175 | 1.16 (0.65, 2.07) | 1.02 (0.56, 1.87) | 1.12 (0.60, 2.07) |
AHEI-P | ||||
Q1 | 27/193 | 1 (reference) | 1 (reference) | 1 (reference) |
Q2 | 16/169 | 0.64 (0.33, 1.24) | 0.62 (0.32, 1.23) | 0.56 (0.28, 1.12) |
Q3 | 27/174 | 1.13 (0.63, 2.01) | 0.99 (0.54, 1.82) | 0.84 (0.44, 1.60) |
Q4 | 36/191 | 1.43 (0.83, 2.46) | 1.30 (0.73, 2.33) | 0.98 (0.50, 1.96) |
Western † | ||||
Q1 | 26/168 | 1 (reference) | 1 (reference) | 1 (reference) |
Q2 | 23/178 | 0.83 (0.45, 1.53) | 0.78 (0.41, 1.47) | 0.61 (0.32, 1.19) |
Q3 | 27/188 | 0.91 (0.50, 1.64) | 0.90 (0.48, 1.66) | 0.55 (0.27, 1.14) |
Q4 | 30/193 | 1.01 (0.57, 1.81) | 0.91 (0.49, 1.69) | 0.36 (0.14, 0.91) |
Prudent † | ||||
Q1 | 32/197 | 1 (reference) | 1 (reference) | 1 (reference) |
Q2 | 16/182 | 0.50 (0.26, 0.94) | 0.48 (0.25, 0.94) | 0.38 (0.19, 0.76) |
Q3 | 25/170 | 0.89 (0.50, 1.57) | 0.82 (0.45, 1.49) | 0.57 (0.29, 1.10) |
Q4 | 33/178 | 1.17 (0.68, 2.01) | 1.09 (0.61, 1.93) | 0.57 (0.27, 1.21) |
aMED | ||||
Q1 | 23/170 | 1 (reference) | 1 (reference) | 1 (reference) |
Q2 | 30/248 | 0.88 (0.49, 1.57) | 0.87 (0.47, 1.60) | 0.79 (0.43, 1.47) |
Q3 | 22/146 | 1.13 (0.60, 2.13) | 0.95 (0.49, 1.84) | 0.79 (0.40, 1.58) |
Q4 | 31/163 | 1.50 (0.83, 2.70) | 1.45 (0.78, 2.69) | 1.19 (0.62, 2.31) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vecchione, R.; Wang, S.; Rando, J.; Chavarro, J.E.; Croen, L.A.; Fallin, M.D.; Hertz-Picciotto, I.; Newschaffer, C.J.; Schmidt, R.J.; Lyall, K. Maternal Dietary Patterns during Pregnancy and Child Autism-Related Traits: Results from Two US Cohorts. Nutrients 2022, 14, 2729. https://doi.org/10.3390/nu14132729
Vecchione R, Wang S, Rando J, Chavarro JE, Croen LA, Fallin MD, Hertz-Picciotto I, Newschaffer CJ, Schmidt RJ, Lyall K. Maternal Dietary Patterns during Pregnancy and Child Autism-Related Traits: Results from Two US Cohorts. Nutrients. 2022; 14(13):2729. https://doi.org/10.3390/nu14132729
Chicago/Turabian StyleVecchione, Rachel, Siwen Wang, Juliette Rando, Jorge E. Chavarro, Lisa A. Croen, M. Daniele Fallin, Irva Hertz-Picciotto, Craig J. Newschaffer, Rebecca J. Schmidt, and Kristen Lyall. 2022. "Maternal Dietary Patterns during Pregnancy and Child Autism-Related Traits: Results from Two US Cohorts" Nutrients 14, no. 13: 2729. https://doi.org/10.3390/nu14132729
APA StyleVecchione, R., Wang, S., Rando, J., Chavarro, J. E., Croen, L. A., Fallin, M. D., Hertz-Picciotto, I., Newschaffer, C. J., Schmidt, R. J., & Lyall, K. (2022). Maternal Dietary Patterns during Pregnancy and Child Autism-Related Traits: Results from Two US Cohorts. Nutrients, 14(13), 2729. https://doi.org/10.3390/nu14132729