Context Matters: Preliminary Evidence That the Association between Positive Affect and Adiposity in Infancy Varies in Social vs. Non-Social Situations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Measures
2.4. Analyses
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Inter-Rater Reliabilities for Lab-TAB Episodes | |
---|---|
Episode | icc |
4 months of age | |
Puppets | 0.76 *** |
Peek-a-boo | 0.90 *** |
12 months of age | |
Puppets | 0.73 *** |
Peek-a-boo | 0.89 *** |
References
- McCormick, D.P.; Sarpong, K.; Jordan, L.; Ray, L.A.; Jain, S. Infant obesity: Are we ready to make this diagnosis? J. Pediatr. 2010, 157, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Lamb, K.E.; Grimes, C.; Laws, R.; Bolton, K.; Ong, K.K.; Campbell, K. Rapid weight gain during infancy and subsequent adiposity: A systematic review and meta-analysis of evidence. Obes. Rev. 2018, 19, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Harder, T.; Roepke, K.; Diller, N.; Stechling, Y.; Dudenhausen, J.W.; Plagemann, A. Birth weight, early weight gain, and subsequent risk of type 1 diabetes: Systematic review and meta-analysis. Am. J. Epidemiol. 2009, 169, 1428–1436. [Google Scholar] [CrossRef] [Green Version]
- Pulgarón, E.R. Childhood obesity: A review of increased risk for physical and psychological comorbidities. Clin. Ther. 2013, 35, A18–A32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Starling, A.P.; Brinton, J.T.; Glueck, D.H.; Shapiro, A.L.; Harrod, C.S.; Lynch, A.M.; Siega-Riz, A.M.; Dabelea, D. Associations of maternal BMI and gestational weight gain with neonatal adiposity in the Healthy Start study. Am. J. Clin. Nutr. 2015, 101, 302–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herath, M.P.; Ahuja, K.D.K.; Beckett, J.M.; Jayasinghe, S.; Byrne, N.M.; Hills, A.P. Determinants of Infant Adiposity across the First 6 Months of Life: Evidence from the Baby-bod study. J. Clin. Med. 2021, 10, 1770. [Google Scholar] [CrossRef]
- Heerman, W.J.; Bian, A.; Shintani, A.; Barkin, S.L. Interaction between maternal prepregnancy body mass index and gestational weight gain shapes infant growth. Acad. Pediatr. 2014, 14, 463–470. [Google Scholar] [CrossRef] [Green Version]
- Logan, K.M.; Gale, C.; Hyde, M.J.; Santhakumaran, S.; Modi, N. Diabetes in pregnancy and infant adiposity: Systematic review and meta-analysis. Arch. Dis. Child. -Fetal Neonatal Ed. 2017, 102, F65–F72. [Google Scholar] [CrossRef]
- Kramer, M.S.; Barr, R.G.; Leduc, D.G.; Boisjoly, C.; McVey-White, L.; Pless, I.B. Determinants of weight and adiposity in the first year of life. J. Pediatr. 1985, 106, 10–14. [Google Scholar] [CrossRef]
- Elks, C.E.; den Hoed, M.; Zhao, J.H.; Sharp, S.J.; Wareham, N.J.; Loos, R.J.; Ong, K.K. Variability in the heritability of body mass index: A systematic review and meta-regression. Front. Endocrinol. 2012, 3, 29. [Google Scholar] [CrossRef] [Green Version]
- Silventoinen, K.; Jelenkovic, A.; Sund, R.; Hur, Y.M.; Yokoyama, Y.; Honda, C.; Hjelmborg, J.; Möller, S.; Ooki, S.; Aaltonen, S.; et al. Genetic and environmental effects on body mass index from infancy to the onset of adulthood: An individual-based pooled analysis of 45 twin cohorts participating in the Collaborative project of Development of Anthropometrical measures in Twins (CODATwins) study. Am. J. Clin. Nutr. 2016, 104, 371–379. [Google Scholar] [PubMed]
- Silventoinen, K.; Rokholm, B.; Kaprio, J.; Sørensen, T.I. The genetic and environmental influences on childhood obesity: A systematic review of twin and adoption studies. Int. J. Obes. 2010, 34, 29–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, W.; Choh, A.C.; Lee, M.; Towne, B.; Czerwinski, S.A.; Demerath, E.W. Characterization of the infant BMI peak: Sex differences, birth year cohort effects, association with concurrent adiposity, and heritability. Am. J. Hum. Biol. 2013, 25, 378–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llewellyn, C.H.; van Jaarsveld, C.H.; Plomin, R.; Fisher, A.; Wardle, J. Inherited behavioral susceptibility to adiposity in infancy: A multivariate genetic analysis of appetite and weight in the Gemini birth cohort. Am. J. Clin. Nutr. 2012, 95, 633–639. [Google Scholar] [CrossRef]
- Choh, A.C.; Curran, J.E.; Odegaard, A.O.; Nahhas, R.W.; Czerwinski, S.A.; Blangero, J.; Towne, B.; Demerath, E.W. Differences in the heritability of growth and growth velocity during infancy and associations with FTO variants. Obesity 2011, 19, 1847–1854. [Google Scholar] [CrossRef]
- Newton, S.; Braithwaite, D.; Akinyemiju, T.F. Socio-economic status over the life course and obesity: Systematic review and meta-analysis. PLoS ONE 2017, 12, e0177151. [Google Scholar] [CrossRef] [Green Version]
- Kong, K.L.; Shisler, S.; Eiden, R.D.; Anzman-Frasca, S.; Piazza, J. Examining the Relationship between Infant Weight Status and Parent–Infant Interactions within a Food and Nonfood Context. Child. Obes. 2022. [Google Scholar] [CrossRef]
- Chong, S.Y. Children’s Temperament and Parenting Practices in the First Five Years of Life and Cognitive, Academic and Adiposity Outcomes in Later Childhood and Adolescence. Ph.D. Thesis, University of Adelaide, Adelaide, SA, Australia, 2016. [Google Scholar]
- Rothbart, M.K.; Ahadi, S.A.; Hershey, K.L.; Fisher, P. Investigations of temperament at three to seven years: The Children’s Behavior Questionnaire. Child Dev. 2001, 72, 1394–1408. [Google Scholar] [CrossRef]
- Graziano, P.A.; Calkins, S.D.; Keane, S.P. Toddler self-regulation skills predict risk for pediatric obesity. Int. J. Obes. 2010, 34, 633–641. [Google Scholar] [CrossRef] [Green Version]
- Graziano, P.A.; Kelleher, R.; Calkins, S.D.; Keane, S.P.; Brien, M.O. Predicting weight outcomes in preadolescence: The role of toddlers’ self-regulation skills and the temperament dimension of pleasure. Int. J. Obes. 2013, 37, 937–942. [Google Scholar] [CrossRef] [Green Version]
- Miller, A.L.; Rosenblum, K.L.; Retzloff, L.B.; Lumeng, J.C. Observed self-regulation is associated with weight in low-income toddlers. Appetite 2016, 105, 705–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanco-Gómez, A.; Ferré, N.; Luque, V.; Cardona, M.; Gispert-Llauradó, M.; Escribano, J.; Closa-Monasterolo, R.; Canals-Sans, J. Being overweight or obese is associated with inhibition control in children from six to ten years of age. Acta Paediatr. 2015, 104, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, H.; Özer, S.; Yılmaz, R.; Sönmezgöz, E.; Kazancı, Ö.; Erbaş, O.; Demir, O. Assessment of neurocognitive functions in children and adolescents with obesity. Appl. Neuropsychol. Child 2017, 6, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Gentier, I.; Augustijn, M.; Deforche, B.; Tanghe, A.; De Bourdeaudhuij, I.; Lenoir, M.; D’Hondt, E. A comparative study of performance in simple and choice reaction time tasks between obese and healthy-weight children. Res. Dev. Disabil. 2013, 34, 2635–2641. [Google Scholar] [CrossRef] [PubMed]
- Goldschmidt, A.B.; O’Brien, S.; Lavender, J.M.; Pearson, C.M.; Le Grange, D.; Hunter, S.J. Executive functioning in a racially diverse sample of children who are overweight and at risk for eating disorders. Appetite 2018, 124, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Kamijo, K.; Khan, N.A.; Pontifex, M.B.; Scudder, M.R.; Drollette, E.S.; Raine, L.B.; Evans, E.M.; Castelli, D.M.; Hillman, C.H. The relation of adiposity to cognitive control and scholastic achievement in preadolescent children. Obesity 2012, 20, 2406–2411. [Google Scholar] [CrossRef]
- Kamijo, K.; Pontifex, M.B.; Khan, N.A.; Raine, L.B.; Scudder, M.R.; Drollette, E.S.; Evans, E.M.; Castelli, D.M.; Hillman, C.H. The association of childhood obesity to neuroelectric indices of inhibition. Psychophysiology 2012, 49, 1361–1371. [Google Scholar] [CrossRef]
- Kamijo, K.; Pontifex, M.B.; Khan, N.A.; Raine, L.B.; Scudder, M.R.; Drollette, E.S.; Evans, E.M.; Castelli, D.M.; Hillman, C.H. The negative association of childhood obesity to cognitive control of action monitoring. Cereb. Cortex 2014, 24, 654–662. [Google Scholar] [CrossRef] [Green Version]
- Reyes, S.; Peirano, P.; Peigneux, P.; Lozoff, B.; Algarin, C. Inhibitory control in otherwise healthy overweight 10-year-old children. Int. J. Obes. 2015, 39, 1230–1235. [Google Scholar] [CrossRef] [Green Version]
- Skoranski, A.M.; Most, S.B.; Lutz-Stehl, M.; Hoffman, J.E.; Hassink, S.G.; Simons, R.F. Response monitoring and cognitive control in childhood obesity. Biol. Psychol. 2013, 92, 199–204. [Google Scholar] [CrossRef]
- Tsai, C.L.; Chen, F.C.; Pan, C.Y.; Tseng, Y.T. The neurocognitive performance of visuospatial attention in children with obesity. Front. Psychol. 2016, 7, 1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, N.; Chen, Y.; Yang, J.; Li, F. Childhood obesity and academic performance: The role of working memory. Front. Psychol. 2017, 8, 611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frazier-Wood, A.C.; Carnell, S.; Pena, O.; Hughes, S.O.; O’Connor, T.M.; Asherson, P.; Kuntsi, J. Cognitive performance and BMI in childhood: Shared genetic influences between reaction time but not response inhibition. Obesity 2014, 22, 2312–2318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lelakowska, G.; Kanya, M.J.; Balassone, B.R.; Savoree, S.L.; Boddy, L.E.; Power, T.G.; Bridgett, D.J. Toddlers’ impulsivity, inhibitory control, and maternal eating-related supervision in relation to toddler body mass index: Direct and interactive effects. Appetite 2019, 142, 104343. [Google Scholar] [CrossRef] [PubMed]
- Baskaran, C.; Animashaun, A.; Rickard, F.; Toth, A.T.; Eddy, K.T.; Plessow, F.; Bredella, M.A.; Misra, M. Memory and Executive Function in Adolescent and Young Adult Females with Moderate to Severe Obesity Before and After Weight Loss Surgery. Obes. Surg. 2021, 31, 3372–3378. [Google Scholar] [CrossRef]
- Riggs, N.R.; Huh, J.; Chou, C.P.; Spruijt-Metz, D.; Pentz, M.A. Executive function and latent classes of childhood obesity risk. J. Behav. Med. 2012, 35, 642–650. [Google Scholar] [CrossRef]
- Davis, C.L.; Tomporowski, P.D.; Boyle, C.A.; Waller, J.L.; Miller, P.H.; Naglieri, J.A.; Gregoski, M. Effects of aerobic exercise on overweight children’s cognitive functioning: A randomized controlled trial. Res. Q. Exerc. Sport 2007, 78, 510–519. [Google Scholar] [CrossRef]
- Davis, C.L.; Tomporowski, P.D.; McDowell, J.E.; Austin, B.P.; Miller, P.H.; Yanasak, N.E.; Allison, J.D.; Naglieri, J.A. Exercise improves executive function and achievement and alters brain activation in overweight children: A randomized, controlled trial. Health Psychol. 2011, 30, 91. [Google Scholar] [CrossRef] [Green Version]
- Augustijn, M.J.C.M.; DʼHondt, E.; Van Acker, L.; De Guchtenaere, A.; Lenoir, M.; Caeyenberghs, K.; Deconinck, F.J.A. Role of motor competence and executive functioning in weight loss: A study in children with obesity. J. Dev. Behav. Pediatr. 2018, 39, 642–651. [Google Scholar] [CrossRef]
- Vantieghem, S.; Bautmans, I.; Guchtenaere, A.; Tanghe, A.; Provyn, S. Improved cognitive functioning in obese adolescents after a 30-week inpatient weight loss program. Pediatric Res. 2018, 84, 267–271. [Google Scholar] [CrossRef]
- Groppe, K.; Elsner, B. Executive function and weight status in children: A one-year longitudinal perspective. Child Neuropsychol. 2017, 23, 129–147. [Google Scholar] [CrossRef] [PubMed]
- Blair, C.; Kuzawa, C.W.; Willoughby, M.T. The development of executive function in early childhood is inversely related to change in body mass index: Evidence for an energetic tradeoff? Dev. Sci. 2020, 23, e12860. [Google Scholar] [CrossRef] [PubMed]
- Alarcón, G.; Ray, S.; Nagel, B.J. Lower working memory performance in overweight and obese adolescents is mediated by white matter microstructure. J. Int. Neuropsychol. Soc. 2016, 22, 281–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer, L.O.; Manning, K.J. Challenges in the detection of working memory and attention decrements among overweight adolescent girls. Neuropsychobiology 2016, 73, 43–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvo, D.; Galioto, R.; Gunstad, J.; Spitznagel, M.B. Uncontrolled eating is associated with reduced executive functioning. Clin. Obes. 2014, 4, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Fields, S.; Sabet, M.; Reynolds, B. Dimensions of impulsive behavior in obese, overweight, and healthy-weight adolescents. Appetite 2013, 70, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Galioto Wiedemann, R.; Calvo, D.; Meister, J.; Spitznagel, M.B. Self-reported physical activity is associated with cognitive function in lean, but not obese individuals. Clin. Obes. 2014, 4, 309–315. [Google Scholar] [CrossRef]
- Kittel, R.; Schmidt, R.; Hilbert, A. Executive functions in adolescents with binge-eating disorder and obesity. Int. J. Eat. Disord. 2017, 50, 933–941. [Google Scholar] [CrossRef] [Green Version]
- Maayan, L.; Hoogendoorn, C.; Sweat, V.; Convit, A. Disinhibited eating in obese adolescents is associated with orbitofrontal volume reductions and executive dysfunction. Obesity 2011, 19, 1382–1387. [Google Scholar] [CrossRef]
- Nederkoorn, C.; Braet, C.; Van Eijs, Y.; Tanghe, A.; Jansen, A. Why obese children cannot resist food: The role of impulsivity. Eat. Behav. 2006, 7, 315–322. [Google Scholar] [CrossRef]
- Qavam, S.E.; Anisan, A.; Fathi, M.; Pourabbasi, A. Study of relationship between obesity and executive functions among high school students in Bushehr, Iran. J. Diabetes Metab. Disord. 2015, 14, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sellaro, R.; Colzato, L.S. High body mass index is associated with impaired cognitive control. Appetite 2017, 113, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Steenbergen, L.; Colzato, L.S. Overweight and cognitive performance: High body mass index is associated with impairment in reactive control during task switching. Front. Nutr. 2017, 4, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sweat, V.; Yates, K.F.; Migliaccio, R.; Convit, A. Obese adolescents show reduced cognitive processing speed compared with healthy weight peers. Child. Obes. 2017, 13, 190–196. [Google Scholar] [CrossRef]
- Verbeken, S.; Braet, C.; Bosmans, G.; Goossens, L. Comparing decision making in average and overweight children and adolescents. Int. J. Obes. 2014, 38, 547–551. [Google Scholar] [CrossRef]
- Verdejo-García, A.; Pérez-Expósito, M.; Schmidt-Río-Valle, J.; Fernández-Serrano, M.J.; Cruz, F.; Pérez-García, M.; López-Belmonte, G.; Martín-Matillas, M.; Martín-Lagos, J.A.; Marcos, A.; et al. Selective alterations within executive functions in adolescents with excess weight. Obesity 2010, 18, 1572–1578. [Google Scholar] [CrossRef]
- Yau, P.L.; Kang, E.H.; Javier, D.C.; Convit, A. Preliminary evidence of cognitive and brain abnormalities in uncomplicated adolescent obesity. Obesity 2014, 22, 1865–1871. [Google Scholar] [CrossRef] [Green Version]
- Wood, A.C.; Vainik, U.; Engelhardt, L.E.; Briley, D.A.; Grotzinger, A.D.; Church, J.A.; Harden, K.P.; Tucker-Drob, E.M. Genetic overlap between executive functions and BMI in childhood. Am. J. Clin. Nutr. 2019, 110, 814–822. [Google Scholar] [CrossRef]
- Pauli-Pott, U.; Albayrak, O.; Hebebrand, J.; Pott, W. Association between inhibitory control capacity and body weight in overweight and obese children and adolescents: Dependence on age and inhibitory control component. Child Neuropsychol. 2010, 16, 592–603. [Google Scholar] [CrossRef]
- Kulendran, M.; Borovoi, L.; Purkayastha, S.; Darzi, A.; Vlaev, I. Impulsivity predicts weight loss after obesity surgery. Surg. Obes. Relat. Dis. 2017, 13, 1033–1040. [Google Scholar] [CrossRef]
- Xie, C.; Wang, X.; Zhou, C.; Xu, C.; Chang, Y.K. Exercise and dietary program-induced weight reduction is associated with cognitive function among obese adolescents: A longitudinal study. PeerJ 2017, 5, e3286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Deng, Z.Y.; Huang, Q.; Zhang, W.X.; Qi, C.Z.; Huang, J.A. Prefrontal cortex-mediated executive function as assessed by Stroop task performance associates with weight loss among overweight and obese adolescents and young adults. Behav. Brain Res. 2017, 321, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Brogan, A.; Hevey, D.; O’Callaghan, G.; Yoder, R.; O’Shea, D. Impaired decision making among morbidly obese adults. J. Psychosom. Res. 2011, 70, 189–196. [Google Scholar] [CrossRef]
- Catoira, N.P.; Tapajóz, F.; Allegri, R.F.; Lajfer, J.; Rodríguez Cámara, M.J.; Iturry, M.L.; Castaño, G.O. Obesity, metabolic profile, and inhibition failure: Young women under scrutiny. Physiol. Behav. 2016, 157, 87–93. [Google Scholar] [CrossRef]
- Cohen, J.I.; Yates, K.F.; Duong, M.; Convit, A. Obesity, orbitofrontal structure and function are associated with food choice: A cross-sectional study. BMJ Open 2011, 1, e000175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danner, U.N.; Ouwehand, C.; van Haastert, N.L.; Hornsveld, H.; de Ridder, D.T. Decision-making impairments in women with binge eating disorder in comparison with obese and normal weight women. Eur. Eat. Disord. Rev. 2012, 20, e56–e62. [Google Scholar] [CrossRef] [PubMed]
- Dassen, F.C.M.; Houben, K.; Allom, V.; Jansen, A. Self-regulation and obesity: The role of executive function and delay discounting in the prediction of weight loss. J. Behav. Med. 2018, 41, 806–818. [Google Scholar] [CrossRef] [Green Version]
- Deckers, K.; Van Boxtel, M.P.J.; Verhey, F.R.J.; Köhler, S. Obesity and cognitive decline in adults: Effect of methodological choices and confounding by age in a longitudinal study. J. Nutr. Health Aging 2017, 21, 546–553. [Google Scholar] [CrossRef]
- Demos, K.E.; McCaffery, J.M.; Thomas, J.G.; Mailloux, K.A.; Hare, T.A.; Wing, R.R. Identifying the mechanisms through which behavioral weight-loss treatment improves food decision-making in obesity. Appetite 2017, 114, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Fagundo, A.B.; de la Torre, R.; Jiménez-Murcia, S.; Agüera, Z.; Granero, R.; Tárrega, S.; Botella, C.; Baños, R.; Fernández-Real, J.M.; Rodríguez, R.; et al. Executive functions profile in extreme eating/weight conditions: From anorexia nervosa to obesity. PLoS ONE 2012, 7, e43382. [Google Scholar]
- Galioto, R.M.; Alosco, M.L.; Spitznagel, M.B.; Stanek, K.M.; Gunstad, J. Cognitive reserve preserves cognitive function in obese individuals. Aging Neuropsychol. Cogn. 2013, 20, 684–699. [Google Scholar] [CrossRef] [PubMed]
- Gameiro, F.; Perea, M.V.; Ladera, V.; Rosa, B.; García, R. Executive functioning in obese individuals waiting for clinical treatment. Psicothema 2017, 29, 61–66. [Google Scholar] [PubMed]
- Gunstad, J.; Paul, R.H.; Cohen, R.A.; Tate, D.F.; Spitznagel, M.B.; Gordon, E. Elevated body mass index is associated with executive dysfunction in otherwise healthy adults. Compr. Psychiatry 2007, 48, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Lasselin, J.; Magne, E.; Beau, C.; Aubert, A.; Dexpert, S.; Carrez, J.; Layé, S.; Forestier, D.; Ledaguenel, P.; Capuron, L. Low-grade inflammation is a major contributor of impaired attentional set shifting in obese subjects. Brain Behav. Immun. 2016, 58, 63–68. [Google Scholar] [CrossRef]
- Mole, T.B.; Irvine, M.A.; Worbe, Y.; Collins, P.; Mitchell, S.P.; Bolton, S.; Harrison, N.A.; Robbins, T.W.; Voon, V. Impulsivity in disorders of food and drug misuse. Psychol. Med. 2015, 45, 771–782. [Google Scholar] [CrossRef] [Green Version]
- Navas, J.F.; Vilar-López, R.; Perales, J.C.; Steward, T.; Fernández-Aranda, F.; Verdejo-García, A. Altered decision-making under risk in obesity. PLoS ONE 2016, 11, e0155600. [Google Scholar] [CrossRef] [Green Version]
- Perpina, C.; Segura, M.; Sánchez-Reales, S. Cognitive flexibility and decision-making in eating disorders and obesity. Eat. Weight. Disord. Stud. Anorex. Bulim. Obes. 2017, 22, 435–444. [Google Scholar] [CrossRef]
- Pignatti, R.; Bertella, L.; Albani, G.; Mauro, A.; Molinari, E.; Semenza, C. Decision-making in obesity: A study using the Gambling Task. Eat. Weight. Disord. Stud. Anorex. Bulim. Obes. 2006, 11, 126–132. [Google Scholar] [CrossRef]
- Restivo, M.R.; McKinnon, M.C.; Frey, B.N.; Hall, G.B.; Syed, W.; Taylor, V.H. The impact of obesity on neuropsychological functioning in adults with and without major depressive disorder. PLoS ONE 2017, 12, e0176898. [Google Scholar] [CrossRef] [Green Version]
- Spitoni, G.F.; Ottaviani, C.; Petta, A.M.; Zingaretti, P.; Aragona, M.; Sarnicola, A.; Antonucci, G. Obesity is associated with lack of inhibitory control and impaired heart rate variability reactivity and recovery in response to food stimuli. Int. J. Psychophysiol. 2017, 116, 77–84. [Google Scholar] [CrossRef]
- Stanek, K.M.; Strain, G.; Devlin, M.; Cohen, R.; Paul, R.; Crosby, R.D.; Mitchell, J.E.; Gunstad, J. Body mass index and neurocognitive functioning across the adult lifespan. Neuropsychology 2013, 27, 141. [Google Scholar] [CrossRef] [PubMed]
- Stingl, K.T.; Kullmann, S.; Ketterer, C.; Heni, M.; Häring, H.U.; Fritsche, A.; Preissl, H. Neuronal correlates of reduced memory performance in overweight subjects. Neuroimage 2012, 60, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Weller, R.E.; Cook EW 3rd Avsar, K.B.; Cox, J.E. Obese women show greater delay discounting than healthy-weight women. Appetite 2008, 51, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Coppin, G.; Nolan-Poupart, S.; Jones-Gotman, M.; Small, D.M. Working memory and reward association learning impairments in obesity. Neuropsychologia 2014, 65, 146–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadava, A.; Sharma, N.R. Cognitive functioning in relation to body mass index. J. Indian Acad. Appl. Psychol. 2014, 40, 203. [Google Scholar]
- Ihle, A.; Gouveia, É.R.; Gouveia, B.R.; Zuber, S.; Mella, N.; Desrichard, O.; Cullati, S.; Oris, M.; Maurer, J.; Kliegel, M. The relationship of obesity predicting decline in executive functioning is attenuated with greater leisure activities in old age. Aging Ment. Health 2021, 25, 613–620. [Google Scholar] [CrossRef] [Green Version]
- Menon, C.V.; Jahn, D.R.; Mauer, C.B.; O’Bryant, S.E. Executive functioning as a mediator of the relationship between premorbid verbal intelligence and health risk behaviors in a rural-dwelling cohort: A project FRONTIER study. Arch. Clin. Neuropsychol. 2013, 28, 169–179. [Google Scholar] [CrossRef] [Green Version]
- Schneider, B.C.; Lichtenberg, P.A. Physical performance is associated with executive functioning in older African American women. J. Aging Res. 2011, 2011, 578609. [Google Scholar] [CrossRef] [Green Version]
- Olivo, G.; Gour, S.; Schiöth, H.B. Low neuroticism and cognitive performance are differently associated to overweight and obesity: A cross-sectional and longitudinal UK Biobank study. Psychoneuroendocrinology 2019, 101, 167–174. [Google Scholar] [CrossRef]
- Philippou, E.; Michaelides, M.P.; Constantinidou, F. The role of metabolic syndrome factors on cognition using latent variable modeling: The neurocognitive study on aging. J. Clin. Exp. Neuropsychol. 2018, 40, 1030–1043. [Google Scholar] [CrossRef]
- Bryan, J.; Tiggemann, M. The effect of weight-loss dieting on cognitive performance and psychological well-being in overweight women. Appetite 2001, 36, 147–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witbracht, M.G.; Laugero, K.D.; Van Loan, M.D.; Adams, S.H.; Keim, N.L. Performance on the Iowa Gambling Task is related to magnitude of weight loss and salivary cortisol in a diet-induced weight loss intervention in overweight women. Physiol. Behav. 2012, 106, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Galioto, R.; Bond, D.; Gunstad, J.; Pera, V.; Rathier, L.; Tremont, G. Executive functions predict weight loss in a medically supervised weight loss programme. Obes. Sci. Pract. 2016, 2, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Spitznagel, M.B.; Garcia, S.; Miller, L.A.; Strain, G.; Devlin, M.; Wing, R.; Cohen, R.; Paul, R.; Crosby, R.; Mitchell, J.E.; et al. Cognitive function predicts weight loss after bariatric surgery. Surg. Obes. Relat. Dis. 2013, 9, 453–459. [Google Scholar] [CrossRef] [Green Version]
- Spitznagel, M.B.; Alosco, M.; Galioto, R.; Strain, G.; Devlin, M.; Sysko, R.; Crosby, R.D.; Mitchell, J.E.; Gunstad, J. The role of cognitive function in postoperative weight loss outcomes: 36-month follow-up. Obes. Surg. 2014, 24, 1078–1084. [Google Scholar] [CrossRef] [Green Version]
- Alosco, M.L.; Galioto, R.; Spitznagel, M.B.; Strain, G.; Devlin, M.; Cohen, R.; Crosby, R.D.; Mitchell, J.E.; Gunstad, J. Cognitive function after bariatric surgery: Evidence for improvement 3 years after surgery. Am. J. Surg. 2014, 207, 870–876. [Google Scholar] [CrossRef] [Green Version]
- Alosco, M.L.; Spitznagel, M.B.; Strain, G.; Devlin, M.; Cohen, R.; Crosby, R.D.; Mitchell, J.E.; Gunstad, J. The effects of cystatin C and alkaline phosphatase changes on cognitive function 12-months after bariatric surgery. J. Neurol. Sci. 2014, 345, 176–180. [Google Scholar] [CrossRef] [Green Version]
- Alosco, M.L.; Spitznagel, M.B.; Strain, G.; Devlin, M.; Crosby, R.D.; Mitchell, J.E.; Gunstad, J. Family history of Alzheimer’s disease limits improvement in cognitive function after bariatric surgery. SAGE Open Med. 2014, 2, 2050312114539477. [Google Scholar] [CrossRef]
- Stinson, E.J.; Krakoff, J.; Gluck, M.E. Depressive symptoms and poorer performance on the Stroop Task are associated with weight gain. Physiol. Behav. 2018, 186, 25–30. [Google Scholar] [CrossRef]
- Gunstad, J.; Lhotsky, A.; Wendell, C.R.; Ferrucci, L.; Zonderman, A.B. Longitudinal examination of obesity and cognitive function: Results from the Baltimore longitudinal study of aging. Neuroepidemiology 2010, 34, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Wachs, T.D. Linking nutrition and temperament. In Temperament and Personality Development Across the Life Span; Molfese, V.J., Molfese, D.L., Eds.; Lawrence Erlbaum Associates Publishers: Mahwah, NJ, USA, 2000; pp. 57–84. [Google Scholar]
- Johnson, M.H.; Posner, M.I.; Rothbart, M.K. Components of visual orienting in early infancy: Contingency learning, anticipatory looking, and disengaging. J. Cogn. Neurosci. 1991, 3, 335–344. [Google Scholar] [CrossRef]
- Ruff, H.A.; Rothbart, M.K. Attention in Early Development: Themes and Variations; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Rothbart, M.K.; Sheese, B.E.; Rueda, M.R.; Posner, M.I. Developing mechanisms of self-regulation in early life. Emot. Rev. 2011, 3, 207–213. [Google Scholar] [CrossRef] [Green Version]
- Stifter, C.A.; Moding, K.J. Understanding and measuring parent use of food to soothe infant and toddler distress: A longitudinal study from 6 to 18 months of age. Appetite 2015, 95, 188–196. [Google Scholar] [CrossRef] [Green Version]
- Bridgett, D.J.; Oddi, K.B.; Laake, L.M.; Murdock, K.W.; Bachmann, M.N. Integrating and differentiating aspects of self-regulation: Effortful control, executive functioning, and links to negative affectivity. Emotion 2013, 13, 47. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Kochanska, G. Child temperament moderates effects of parent–child mutuality on self-regulation: A relationship-based path for emotionally negative infants. Child Dev. 2012, 83, 1275–1289. [Google Scholar] [CrossRef] [Green Version]
- Diamond, L.M.; Aspinwall, L.G. Emotion regulation across the life span: An integrative perspective emphasizing self-regulation, positive affect, and dyadic processes. Motiv. Emot. 2003, 27, 125–156. [Google Scholar] [CrossRef]
- Niegel, S.; Ystrom, E.; Vollrath, M.E. Is difficult temperament related to overweight and rapid early weight gain in infants? A prospective cohort study. J. Dev. Behav. Pediatr. 2007, 28, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Carey, W.B. Temperament and increased weight gain in infants. J. Dev. Behav. Pediatr. 1985, 6, 128–131. [Google Scholar] [CrossRef]
- Darlington, A.S.; Wright, C.M. The influence of temperament on weight gain in early infancy. J. Dev. Behav. Pediatr. 2006, 27, 329–335. [Google Scholar] [CrossRef]
- Riese, M.L. Neonatal temperament in full-term twin pairs discordant for birth weight. J. Dev. Behav. Pediatr. 1994, 15, 342–347. [Google Scholar] [CrossRef]
- Stifter, C.A.; Anzman-Frasca, S.; Birch, L.L.; Voegtline, K. Parent use of food to soothe infant/toddler distress and child weight status. An exploratory study. Appetite 2011, 57, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Wright, C.M.; Cox, K.M.; Le Couteur, A. How does infant behaviour relate to weight gain and adiposity? Proc. Nutr. Soc. 2011, 70, 485–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haycraft, E.; Farrow, C.; Meyer, C.; Powell, F.; Blissett, J. Relationships between temperament and eating behaviours in young children. Appetite 2011, 56, 689–692. [Google Scholar] [CrossRef] [Green Version]
- Hughes, S.O.; Shewchuk, R.M.; Baskin, M.L.; Nicklas, T.A.; Qu, H. Indulgent feeding style and children’s weight status in preschool. J. Dev. Behav. Pediatr. 2008, 29, 403–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carey, W.B.; Hegvik, R.L.; McDevitt, S.C. Temperamental factors associated with rapid weight gain and obesity in middle childhood. Annu. Prog. Dev Behav Pediatr. 1988, 9, 194–198. [Google Scholar] [CrossRef]
- Kochanska, G.; Aksan, N.; Penney, S.J.; Doobay, A.F. Early positive emotionality as a heterogenous trait: Implications for children’s self-regulation. J. Personal. Soc. Psychol. 2007, 93, 1054. [Google Scholar] [CrossRef]
- Spinrad, T.L.; Stifter, C.A. Toddlers’ empathy-related responding to distress: Predictions from negative emotionality and maternal behavior in infancy. Infancy 2006, 10, 97–121. [Google Scholar] [CrossRef]
- He, J.; Hane, A.A.; Degnan, K.A.; Henderson, H.A.; Xu, Q.; Fox, N.A. Anger and positive reactivity in infancy: Effects on maternal report of surgency and attention focusing in early childhood. Infancy 2013, 18, 184–201. [Google Scholar] [CrossRef] [Green Version]
- Rose, S.A.; Futterweit, L.R.; Jankowski, J.J. The relation of affect to attention and learning in infancy. Child Dev. 1999, 70, 549–559. [Google Scholar] [CrossRef]
- Martinez-Torteya, C.; Dayton, C.J.; Beeghly, M.; Seng, J.S.; McGinnis, E.; Broderick, A.; Rosenblum, K.; Muzik, M. Maternal parenting predicts infant biobehavioral regulation among women with a history of childhood maltreatment. Dev. Psychopathol. 2014, 26, 379–392. [Google Scholar] [CrossRef] [Green Version]
- Loman, M.M.; Gunnar, M.R. Early experience and the development of stress reactivity and regulation in children. Neurosci. Biobehav. Rev. 2010, 34, 867–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burton, P.; Wells, J.C.; Kennedy, K.; Nicholl, R.; Khakoo, A.; Fewtrell, M.S. Association between infant correlates of impulsivity-surgency (extraversion)-and early infant growth. Appetite 2011, 57, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Gartstein, M.A.; Rothbart, M.K. Studying infant temperament via the revised infant behavior questionnaire. Infant Behav. Dev. 2003, 26, 64–86. [Google Scholar] [CrossRef]
- Putnam, S.P.; Helbig, A.L.; Gartstein, M.A.; Rothbart, M.K.; Leerkes, E. Development and assessment of short and very short forms of the Infant Behavior Questionnaire—Revised. J. Personal. Assess. 2014, 96, 445–458. [Google Scholar] [CrossRef] [Green Version]
- Rothbart, M.K.; Hwang, J. Measuring infant temperament. Infant Behav. Dev. 2002, 25, 113–116. [Google Scholar] [CrossRef]
- Rothbart, M.K.; Goldsmith, H.H. Three approaches to the study of infant temperament. Dev. Rev. 1985, 5, 237–260. [Google Scholar] [CrossRef]
- Zeskind, P.S. Cross-cultural differences in maternal perceptions of cries of low-and high-risk infants. Child Dev. 1983, 54, 1119–1128. [Google Scholar] [CrossRef]
- Pinto, R.; Rijsdijk, F.; Frazier-Wood, A.C.; Asherson, P.; Kuntsi, J. Bigger families fare better: A novel method to estimate rater contrast effects in parental ratings on ADHD symptoms. Behav. Genet. 2012, 42, 875–885. [Google Scholar] [CrossRef] [Green Version]
- Peterson, E.R.; Waldie, K.E.; Mohal, J.; Reese, E.; Atatoa Carr, P.E.; Grant, C.C.; Morton, S.M.B. Infant Behavior Questionnaire–Revised Very Short Form: A new factor structure’s associations with parenting perceptions and child language outcomes. J. Personal. Assess. 2017, 99, 561–573. [Google Scholar] [CrossRef]
- Momin, S.R.; Senn, M.K.; Buckley, S.; Buist, N.R.M.; Gandhi, M.; Hair, A.B.; Hughes, S.O.; Hodges, K.R.; Lange, W.C.; Papaioannou, M.A.; et al. Rationale and design of the Baylor Infant Twin Study-A study assessing obesity-related risk factors from infancy. Obes. Sci. Pract. 2021, 7, 63–70. [Google Scholar] [CrossRef]
- Goldsmith, H.; Rothbart, M. Prelocomotor and Locomotor Laboratory Temperament Assessment Battery (Lab-TAB; Version 3.0, Technical Manual); University of Wisconsin: Madison, WI, USA, 1996. [Google Scholar]
- World Health Organization. WHO Child Growth Standards: Length/Height-for-Age, Weight-for-Age, Weight-for-Length, Weight-for-Height and Body Mass Index-for-Age: Methods and Development; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- RCore Team, R. A language and Environment for Statistical Computing. 2017. Available online: https://www.R-project.org (accessed on 30 November 2021).
- Rothbart, M.K. Longitudinal observation of infant temperament. Dev. Psychol. 1986, 22, 356. [Google Scholar] [CrossRef]
- Hane, A.A.; Fox, N.A. Ordinary variations in maternal caregiving influence human infants’ stress reactivity. Psychol. Sci. 2006, 17, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Frazier-Wood, A.C.; Saudino, K.J. Activity level in the lab: Overlap with shyness indicates it is more than pure motoric activity. Dev. Psychol. 2017, 53, 1611. [Google Scholar] [CrossRef] [PubMed]
4 Months | 12 Months | |
---|---|---|
Demographic Information | ||
Gender, male | ||
Male | 61 (48%) | |
Female | 65 (52%) | |
Race | ||
Asian | 9 (7.4%) | |
Black | 16 (13.1%) | |
White | 75 (61.2%) | |
Other or mixed race | 22 (18.0%) | |
Ethnicity | ||
Hispanic/Latino | 32 (25.8%) | |
Not Hispanic/Latino | 92 (72.4%) | |
Positive Affect | ||
Non-social * | 0.55 (0.21) | 0.61 (0.23) |
Social c | 0.34 (0.22) | 0.44 (0.22) |
Adiposity | ||
Weight-for-length, z score | 0.85 (1.10) | 1.19 (0.93) |
Fat mass, % * | 33.88 (6.09) | 29.5 (6.30) |
Standardized BMI, kg/m2 | 0.06 (1.17) | 0.65 (1.01) |
WFL, z Score | Body Fat, % | BMI, z Score | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
4 Months | 12 Months | 4 Months | 12 Months | 4 Months | 12 Months | |||||||
β (SE) | p | β (SE) | p | β (SE) | p | β (SE) | p | β (SE) | p | β (SE) | p | |
Positive affect at 4 months | ||||||||||||
Non-social | −0.32 (0.49) | 0.51 | 1.49 (0.67) | 0.03 | −0.47 (2.98) | 0.88 | 6.76 (4.79) | 0.16 | −0.37 (0.49) | 0.44 | 1.05 (0.64) | 0.11 |
Social | −0.16 (0.63) | 0.80 | −1.25 (0.70) | 0.08 | −1.02 (3.27) | 0.76 | −11.41 (5.44) | 0.04 | −0.13 (0.59) | 0.83 | −0.37 (0.72) | 0.61 |
Model 2: Positive affect at 12 months | ||||||||||||
Non-social | - | - | 0.25 (0.54) | 0.65 | - | - | 4.43 (4.08) | 0.28 | - | - | −0.05 (0.52) | 0.92 |
Social | - | - | 0.20 (0.90) | 0.82 | - | - | 0.40 (3.79) | 0.92 | - | - | 0.61 (0.71) | 0.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wood, A.C.; Momin, S.R.; Senn, M.K.; Bridgett, D.J. Context Matters: Preliminary Evidence That the Association between Positive Affect and Adiposity in Infancy Varies in Social vs. Non-Social Situations. Nutrients 2022, 14, 2391. https://doi.org/10.3390/nu14122391
Wood AC, Momin SR, Senn MK, Bridgett DJ. Context Matters: Preliminary Evidence That the Association between Positive Affect and Adiposity in Infancy Varies in Social vs. Non-Social Situations. Nutrients. 2022; 14(12):2391. https://doi.org/10.3390/nu14122391
Chicago/Turabian StyleWood, Alexis C., Shabnam R. Momin, MacKenzie K. Senn, and David J. Bridgett. 2022. "Context Matters: Preliminary Evidence That the Association between Positive Affect and Adiposity in Infancy Varies in Social vs. Non-Social Situations" Nutrients 14, no. 12: 2391. https://doi.org/10.3390/nu14122391