Investigating the Relationship between Vitamin D and Persistent Symptoms Following SARS-CoV-2 Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Setting and Participants
2.2. Laboratory Analysis
2.3. Symptom Assessment
2.4. Statistical Analysis
3. Results
3.1. Cohort Characteristics
3.2. Relationship between Post-COVID-19 Ill Health and Vitamin D Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kerr, C.; Hughes, G.; Mckenna, L.; Bergin, C. Prevalence of smell and taste dysfunction in a cohort of CoVID19 outpatients managed through remote consultation from a large urban teaching hospital in Dublin, Ireland. Infect. Prev. Pract. 2020, 2, 100076. [Google Scholar] [CrossRef]
- Ward, S.E.; Curley, G.F.; Lavin, M.; Fogarty, H.; Karampini, E.; McEvoy, N.L.; Clarke, J.; Boylan, M.; Alalqam, R.; Worrall, A.P. Von Willebrand factor propeptide in severe coronavirus disease 2019 (COVID-19): Evidence of acute and sustained endothelial cell activation. Br. J. Haematol. 2021, 192, 714–719. [Google Scholar] [CrossRef] [PubMed]
- Giamarellos-Bourboulis, E.J.; Netea, M.G.; Rovina, N.; Akinosoglou, K.; Antoniadou, A.; Antonakos, N.; Damoraki, G.; Gkavogianni, T.; Adami, M.-E.; Katsaounou, P. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe 2020, 27, 992–1000.e3. [Google Scholar] [CrossRef]
- Ward, S.E.; Fogarty, H.; Karampini, E.; Lavin, M.; Schneppenheim, S.; Dittmer, R.; Morrin, H.; Glave, S.; Ni Cheallaigh, C.; Bergin, C. ADAMTS13 regulation of VWF multimer distribution in severe COVID-19. J. Thromb. Haemost. 2021. [Google Scholar] [CrossRef]
- Lee, C.C.; Ali, K.; Connell, D.; Mordi, I.R.; George, J.; Lang, E.M.; Lang, C.C. COVID-19-Associated Cardiovascular Complications. Diseases 2021, 9, 47. [Google Scholar] [CrossRef] [PubMed]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef] [PubMed]
- Logue, J.K.; Franko, N.M.; McCulloch, D.J.; McDonald, D.; Magedson, A.; Wolf, C.R.; Chu, H.Y. Sequelae in adults at 6 months after COVID-19 infection. JAMA Netw. Open 2021, 4, e210830. [Google Scholar] [CrossRef]
- Carfì, A.; Bernabei, R.; Landi, F. Persistent symptoms in patients after acute COVID-19. JAMA 2020, 324, 603–605. [Google Scholar] [CrossRef]
- Greenhalgh, T.; Knight, M.; A’Court, C.; Buxton, M.; Husain, L. Management of post-acute covid-19 in primary care. BMJ 2020, 370, m3026. [Google Scholar] [CrossRef] [PubMed]
- Townsend, L.; Dyer, A.H.; Jones, K.; Dunne, J.; Mooney, A.; Gaffney, F.; O’Connor, L.; Leavy, D.; O’Brien, K.; Dowds, J. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS ONE 2020, 15, e0240784. [Google Scholar]
- Moghimi, N.; Di Napoli, M.; Biller, J.; Siegler, J.E.; Shekhar, R.; McCullough, L.D.; Harkins, M.S.; Hong, E.; Alaouieh, D.A.; Mansueto, G. The Neurological Manifestations of Post-Acute Sequelae of SARS-CoV-2 infection. Curr. Neurol. Neurosci. Rep. 2021, 21, 1–17. [Google Scholar] [CrossRef]
- Ramadan, M.S.; Bertolino, L.; Zampino, R.; Durante-Mangoni, E.; Iossa, D.; Ursi, M.P.; D’Amico, F.; Karruli, A.; Ramadan, M.; Andini, R. Cardiac sequelae after COVID-19 recovery: A systematic review. Clin. Microbiol. Infect. 2021. [Google Scholar] [CrossRef]
- Yusuf, F.; Fahriani, M.; Mamada, S.S.; Frediansyah, A.; Abubakar, A.; Maghfirah, D.; Fajar, J.K.; Maliga, H.A.; Ilmawan, M.; Emran, T.B. Global prevalence of prolonged gastrointestinal symptoms in COVID-19 survivors and potential pathogenesis: A systematic review and meta-analysis. F1000Research 2021, 10, 301. [Google Scholar] [CrossRef] [PubMed]
- Ahearn-Ford, S.; Lunjani, N.; McSharry, B.; MacSharry, J.; Fanning, L.; Murphy, G.; Everard, C.; Barry, A.; McGreal, A.; Al Lawati, S.M. Long Term Disruption of Cytokine Signalling Networks are Evident in Patients that Required Hospitalisation for SARS-CoV-2 Infection. Allergy 2021. [Google Scholar] [CrossRef]
- Grove, A.; Osokogu, O.; Al-Khudairy, L.; Mehrabian, A.; Zanganeh, M.; Brown, A.; Taylor-Phillips, S.; Uthman, O.A.; McCarthy, N.; Kumar, S. Association between vitamin D supplementation or serum vitamin D level and susceptibility to SARS-CoV-2 infection or COVID-19 including clinical course, morbidity and mortality outcomes? A systematic review. BMJ Open 2021, 11, e043737. [Google Scholar] [CrossRef] [PubMed]
- Lakkireddy, M.; Gadiga, S.G.; Malathi, R.; Karra, M.L.; Raju, I.P.M.; Chinapaka, S.; Baba, K.S.; Kandakatla, M. Impact of daily high dose oral vitamin D therapy on the inflammatory markers in patients with COVID 19 disease. Sci. Rep. 2021, 11, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Stroehlein, J.K.; Wallqvist, J.; Iannizzi, C.; Mikolajewska, A.; Metzendorf, M.-I.; Benstoem, C.; Meybohm, P.; Becker, M.; Skoetz, N.; Stegemann, M. Vitamin D supplementation for the treatment of COVID-19: A living systematic review. Cochrane Database Syst. Rev. 2021. [Google Scholar] [CrossRef]
- Tsiaras, W.G.; Weinstock, M.A. Factors influencing vitamin D status. Acta Derm. Venereol. 2011, 91, 115–124. [Google Scholar] [CrossRef]
- Ginde, A.A.; Camargo, C.A., Jr.; Shapiro, N.I. Vitamin D insufficiency and sepsis severity in emergency department patients with suspected infection. Acad. Emerg. Med. 2011, 18, 551–554. [Google Scholar] [CrossRef]
- Pludowski, P.; Holick, M.F.; Pilz, S.; Wagner, C.L.; Hollis, B.W.; Grant, W.B.; Shoenfeld, Y.; Lerchbaum, E.; Llewellyn, D.J.; Kienreich, K. Vitamin D effects on musculoskeletal health, immunity, autoimmunity, cardiovascular disease, cancer, fertility, pregnancy, dementia and mortality—A review of recent evidence. Autoimmun. Rev. 2013, 12, 976–989. [Google Scholar] [CrossRef]
- Wu, D.; Lewis, E.D.; Pae, M.; Meydani, S.N. Nutritional modulation of immune function: Analysis of evidence, mechanisms, and clinical relevance. Front. Immunol. 2019, 9, 3160. [Google Scholar] [CrossRef]
- Laird, E.; Rhodes, J.; Kenny, R.A. Vitamin D and inflammation: Potential implications for severity of Covid-19. Ir. Med. J. 2020, 113, 81. [Google Scholar]
- Yin, K.; Agrawal, D.K. Vitamin D and inflammatory diseases. J. Inflamm. Res. 2014, 7, 69. [Google Scholar]
- Nowak, A.; Boesch, L.; Andres, E.; Battegay, E.; Hornemann, T.; Schmid, C.; Bischoff-Ferrari, H.A.; Suter, P.M.; Krayenbuehl, P.-A. Effect of vitamin D3 on self-perceived fatigue: A double-blind randomized placebo-controlled trial. Medicine 2016, 95, e5353. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Zhang, Y.; Wang, T.; Lin, Y.; Yu, J.; Xia, Q.; Zhu, P.; Zhu, D.M. Vitamin D supplementation improves anxiety but not depression symptoms in patients with vitamin D deficiency. Brain Behav. 2020, 10, e01760. [Google Scholar] [CrossRef] [PubMed]
- Jevalikar, G.; Mithal, A.; Singh, A.; Sharma, R.; Farooqui, K.J.; Mahendru, S.; Dewan, A.; Budhiraja, S. Lack of association of baseline 25-hydroxyvitamin D levels with disease severity and mortality in Indian patients hospitalized for COVID-19. Sci. Rep. 2021, 11, 1–8. [Google Scholar] [CrossRef]
- Nasiri, M.; Khodadadi, J.; Molaei, S. Does vitamin D serum level affect prognosis of COVID-19 patients? Int. J. Infect. Dis. 2021, 107, 264–267. [Google Scholar] [CrossRef] [PubMed]
- Alguwaihes, A.M.; Sabico, S.; Hasanato, R.; Al-Sofiani, M.E.; Megdad, M.; Albader, S.S.; Alsari, M.H.; Alelayan, A.; Alyusuf, E.Y.; Alzahrani, S.H. Severe vitamin D deficiency is not related to SARS-CoV-2 infection but may increase mortality risk in hospitalized adults: A retrospective case–control study in an Arab Gulf country. Aging Clin. Exp. Res. 2021, 33, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- Demir, M.; Demir, F.; Aygun, H. Vitamin D deficiency is associated with COVID-19 positivity and severity of the disease. J. Med. Virol. 2021, 93, 2992–2999. [Google Scholar] [CrossRef]
- Aygun, H. Vitamin D can prevent COVID-19 infection-induced multiple organ damage. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2020, 393, 1157–1160. [Google Scholar] [CrossRef]
- Oscanoa, T.J.; Amado, J.; Vidal, X.; Laird, E.; Ghashut, R.A.; Romero-Ortuno, R. The relationship between the severity and mortality of SARS-CoV-2 infection and 25-hydroxyvitamin D concentration—A metaanalysis. Adv. Respir. Med. 2021, 89, 145–157. [Google Scholar] [CrossRef]
- Butler-Laporte, G.; Nakanishi, T.; Mooser, V.; Morrison, D.R.; Abdullah, T.; Adeleye, O.; Mamlouk, N.; Kimchi, N.; Afrasiabi, Z.; Rezk, N. Vitamin D and COVID-19 susceptibility and severity in the COVID-19 Host Genetics Initiative: A Mendelian randomization study. PLoS Med. 2021, 18, e1003605. [Google Scholar] [CrossRef] [PubMed]
- Augustin, M.; Schommers, P.; Stecher, M.; Dewald, F.; Gieselmann, L.; Gruell, H.; Horn, C.; Vanshylla, K.; Di Cristanziano, V.; Osebold, L. Post-COVID syndrome in non-hospitalised patients with COVID-19: A longitudinal prospective cohort study. Lancet Reg. Health-Eur. 2021, 6, 100122. [Google Scholar] [CrossRef] [PubMed]
- Welch, C. Age and frailty are independently associated with increased COVID-19 mortality and increased care needs in survivors: Results of an international multi-centre study. Age Ageing 2021, 50, 617–630. [Google Scholar]
- Grant, E. Vitamin D deficiency ignored RE: Managing the long term effects of covid-19: Summary of NICE, SIGN and RCGP rapid guidelines. BMJ 2021, 372. [Google Scholar] [CrossRef]
- Knutsen, K.V.; Brekke, M.; Gjelstad, S.; Lagerløv, P. Vitamin D status in patients with musculoskeletal pain, fatigue and headache: A cross-sectional descriptive study in a multi-ethnic general practice in Norway. Scand. J. Prim. Health Care 2010, 28, 166–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bischoff-Ferrari, H.A. Relevance of vitamin D in muscle health. Rev. Endocr. Metab. Disord. 2012, 13, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Rockwood, K.; Song, X.; MacKnight, C.; Bergman, H.; Hogan, D.B.; McDowell, I.; Mitnitski, A. A global clinical measure of fitness and frailty in elderly people. CMAJ 2005, 173, 489–495. [Google Scholar] [CrossRef] [Green Version]
- Del Valle, H.B.; Yaktine, A.L.; Taylor, C.L.; Ross, A.C. Dietary Reference Intakes for Calcium and Vitamin D; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Butler, S.; Chalder, T.; Ron, M.; Wessely, S. Cognitive behaviour therapy in chronic fatigue syndrome. J. Neurol. Neurosurg. Psychiatry 1991, 54, 153–158. [Google Scholar] [CrossRef]
- Chalder, T.; Berelowitz, G.; Pawlikowska, T.; Watts, L.; Wessely, S.; Wright, D.; Wallace, E. Development of a fatigue scale. J. Psychosom. Res. 1993, 37, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Jackson, C. The Chalder fatigue scale (CFQ 11). Occup. Med. 2015, 65, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morriss, R.; Wearden, A.; Mullis, R. Exploring the validity of the Chalder Fatigue scale in chronic fatigue syndrome. J. Psychosom. Res. 1998, 45, 411–417. [Google Scholar] [CrossRef]
- Loge, J.H.; Ekeberg, Ø.; Kaasa, S. Fatigue in the general Norwegian population: Normative data and associations. J. Psychosom. Res. 1998, 45, 53–65. [Google Scholar] [CrossRef]
- Jackson, C. The general health questionnaire. Occup. Med. 2007, 57, 79. [Google Scholar] [CrossRef] [Green Version]
- Weisman, I.M.; Zeballos, R.J. Clinical exercise testing. Clin. Chest Med. 2001, 22, 679–701. [Google Scholar] [CrossRef]
- ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [Google Scholar] [CrossRef]
- Borg, E.; Borg, G.; Larsson, K.; Letzter, M.; Sundblad, B.M. An index for breathlessness and leg fatigue. Scand. J. Med. Sci. Sports 2010, 20, 644–650. [Google Scholar] [CrossRef]
- Bausewein, C.; Farquhar, M.; Booth, S.; Gysels, M.; Higginson, I. Measurement of breathlessness in advanced disease: A systematic review. Respir. Med. 2007, 101, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Sudre, C.H.; Murray, B.; Varsavsky, T.; Graham, M.S.; Penfold, R.S.; Bowyer, R.C.; Pujol, J.C.; Klaser, K.; Antonelli, M.; Canas, L.S.; et al. Attributes and predictors of long COVID. Nat. Med. 2021, 27, 626–631. [Google Scholar] [CrossRef] [PubMed]
- La ird, E.; Walsh, J.B.; Lanham-New, S.; O’Sullivan, M.; Kenny, R.A.; Scully, H.; Crowley, V.; Healy, M. A High Prevalence of Vitamin D Deficiency Observed in an Irish South East Asian Population: A Cross-Sectional Observation Study. Nutrients 2020, 12, 3674. [Google Scholar] [CrossRef]
- Casanova, C.; Celli, B.; Barria, P.; Casas, A.; Cote, C.; De Torres, J.; Jardim, J.; Lopez, M.; Marin, J.; De Oca, M.M. The 6-min walk distance in healthy subjects: Reference standards from seven countries. Eur. Respir. J. 2011, 37, 150–156. [Google Scholar] [CrossRef] [Green Version]
- Townsend, L.; Dowds, J.; O’Brien, K.; Sheill, G.; Dyer, A.H.; O’Kelly, B.; Hynes, J.P.; Mooney, A.; Dunne, J.; Ni Cheallaigh, C. Persistent Poor Health Post-COVID-19 Is Not Associated with Respiratory Complications or Initial Disease Severity. Ann. Am. Thorac. Soc. 2021, 18, 997–1003. [Google Scholar] [CrossRef] [PubMed]
- Stavem, K.; Ghanima, W.; Olsen, M.K.; Gilboe, H.M.; Einvik, G. Prevalence and determinants of fatigue after covid-19 in non-hospitalized subjects: A population-based study. Int. J. Environ. Res. Public Health 2021, 18, 2030. [Google Scholar] [CrossRef]
- Witham, M.; Kennedy, G.; Belch, J.; Hill, A.; Khan, F. Association between vitamin D status and markers of vascular health in patients with chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). Int. J. Cardiol. 2014, 174, 139–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Earl, K.E.; Sakellariou, G.K.; Sinclair, M.; Fenech, M.; Croden, F.; Owens, D.J.; Tang, J.; Miller, A.; Lawton, C.; Dye, L. Vitamin D status in chronic fatigue syndrome/myalgic encephalomyelitis: A cohort study from the North-West of England. BMJ Open 2017, 7, e015296. [Google Scholar] [CrossRef] [Green Version]
- Bicikova, M.; Duskova, M.; Vitku, J.; Kalvachova, B.; Ripova, D.; Mohr, P.; Stárka, L. Vitamin D in anxiety and affective disorders. Physiol. Res. 2015, 64, S101. [Google Scholar] [CrossRef] [PubMed]
- Townsend, L.; Fogarty, H.; Dyer, A.; Martin-Loeches, I.; Bannan, C.; Nadarajan, P.; Bergin, C.; O’Farrelly, C.; Conlon, N.; Bourke, N.M. Prolonged elevation of D-dimer levels in convalescent COVID-19 patients is independent of the acute phase response. J. Thromb. Haemost. 2021, 19, 1064–1070. [Google Scholar] [CrossRef]
- Taquet, M.; Geddes, J.R.; Husain, M.; Luciano, S.; Harrison, P.J. 6-month neurological and psychiatric outcomes in 236,379 survivors of COVID-19: A retrospective cohort study using electronic health records. Lancet Psychiatry 2021. [Google Scholar] [CrossRef]
- Townsend, L.; Moloney, D.; Finucane, C.; McCarthy, K.; Bergin, C.; Bannan, C.; Bannan, C.; Kenny, R.-A. Fatigue following COVID-19 infection is not associated with autonomic dysfunction. PLoS ONE 2021, 16, e0247280. [Google Scholar] [CrossRef]
- Pizzini, A.; Aichner, M.; Sahanic, S.; Böhm, A.; Egger, A.; Hoermann, G.; Kurz, K.; Widmann, G.; Bellmann-Weiler, R.; Weiss, G. Impact of vitamin d deficiency on COVID-19—A prospective analysis from the CovILD registry. Nutrients 2020, 12, 2775. [Google Scholar] [CrossRef]
- Townsend, L.; Dyer, A.H.; Naughton, A.; Kiersey, R.; Holden, D.; Gardiner, M.; Dowds, J.; O’Brien, K.; Bannan, C.; Nadarajan, P. Longitudinal analysis of COVID-19 patients shows age-associated T cell changes independent of ongoing ill-health. Front. Immunol. 2021, 12, 1593. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Huang, L.; Wang, Y.; Li, X.; Ren, L.; Gu, X.; Kang, L.; Guo, L.; Liu, M.; Zhou, X. 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet 2021, 397, 220–232. [Google Scholar] [CrossRef]
- Moreno-Pérez, O.; Merino, E.; Leon-Ramirez, J.-M.; Andres, M.; Ramos, J.M.; Arenas-Jiménez, J.; Asensio, S.; Sanchez, R.; Ruiz-Torregrosa, P.; Galan, I. Post-acute COVID-19 syndrome. Incidence and risk factors: A Mediterranean cohort study. J. Infect. 2021, 82, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Zgaga, L.; Laird, E.; Healy, M. 25-Hydroxyvitamin D measurement in human hair: Results from a proof-of-concept study. Nutrients 2019, 11, 423. [Google Scholar] [CrossRef] [Green Version]
- Association, W.M. World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. Bull. World Health Organ. 2001, 79, 373. [Google Scholar]
Total (n = 149) | >50 nmol/L (n = 99) | 30–49 nmol/L | <30 nmol/L | Statistic | |
---|---|---|---|---|---|
(n = 36) | (n = 14) | ||||
Age, years; mean (SD) | 48 (15) | 47 (15) | 52 (14) | 45 (12) | Χ2 = 0.79, p = 0.12 |
Sex, female; n (%) | 88 (59) | 66 (66.7) | 18 (50) | 4 (28.6) | Χ2 = 0.26, p = 0.01 |
Ethnicity; n (%) | Χ2 = 33.1, p < 0.001 | ||||
-White | −111 (75) | −81 (82) | −25 (69) | −5 (36) | |
-Asian | −26 (17) | −15 (15) | −6 (17) | −5 (36) | |
-Hispanic | −4 (3) | −2 (2) | −1 (3) | −1 (7) | |
-African | −8 (5) | 1 (1) | −4 (11) | −3 (21) | |
Clinical frailty score; median (IQR) | 1 (1–2) | 1 (1–2) | 2 (1–2) | 1.5 (1–2) | Χ2 = 1.56, p = 0.21 |
BMI; median (IQR) | 28 (25–32) | 27 (24–33) | 29 (27–32) | 27 (25–32) | Χ2 = 0.79, p = 0.68 |
Vitamin D; median (IQR) | 62 (44–79) | 74 (62–84) | 39 (37–45) | 22 (19–24) | Χ2 = 78.1, p<0.001 |
CRP, mg/L; median (IQR) | 1 (1–3) | 1 (1–3) | 1 (1–3) | 1 (1–6) | Χ2 = 0.23, p = 0.08 |
IL-6, pg/mL; median (IQR) | 3 (3–4) | 3 (3–4) | 3 (3–4) | 3 (3–6) | Χ2 = 0.15, p = 0.96 |
Vitamin D supplementation; n (%) | 15 (10) | 9 (9) | 5 (14) | 1 (7) | Χ2 = 2.42, p = 0.67 |
Required admission; n (%) | 68 (46) | 40 (40) | 19 (53) | 9 (64) | Χ2 = 0.04, p = 0.15 |
Admitted to ICU; n (%) | 17 (19) | 11 (11) | 5 (14) | 1 (7) | Χ2 = 0.93, p = 0.67 |
Time to OPD, days; median (IQR) | 79 (67–110) | 85 (67–112) | 75 (67–109) | 70 (66–73) | Χ2 = 14.97, p = 0.04 |
Distance at 6MWT, m; median (IQR) | 450 (390–510) | 470 (390–510) | 443 (390–495) | 443 (398–500) | Χ2 = 5.29, p = 0.46 |
Maximal MBS; median (IQR) | 3 (2–5) | 3 (2–5) | 3 (2–5) | 3 (3–4) | Χ2 = 2.06, p = 0.77 |
Fatigue score; median (IQR) | 15 (11–21) | 17 (12–22) | 15 (11–20) | 13 (11–16) | Χ2 = 0.65, p = 0.01 |
Fatigue case; n (%) | 86 (58) | 62 (63) | 18 (50) | 6 (43) | Χ2 = 0.13, p = 0.21 |
6MWT Distance | 6MWT MBS | CFQ | Fatigue Case | |||||
---|---|---|---|---|---|---|---|---|
β Coefficient (95% CI) | p Value | β Coefficient (95% CI) | p Value | β Coefficient (95% CI) | p Value | Odds Ratio (95% CI) | p Value | |
Vitamin D | 0.21 (−0.5–1.0) | 0.58 | −0.01 (−0.1–0.1) | 0.78 | 0.02 (−0.01–0.1) | 0.19 | 1.01 (0.99–1.02) | 0.28 |
Female sex | −37.6 (−74–−1.3) | 0.04 | 1.0 (0.02–2.0) | 0.04 | 5.0 (3.1–6.8) | <0.001 | 4.2 (1.9–9.1) | <0.001 |
Age | −3.5 (−4.9–−2.1) | <0.001 | 0.02 (−0.1–0.1) | 0.28 | 0.01 (−0.1–0.1) | 0.68 | 1.02 (0.99–1.04) | 0.31 |
Time to OPD | 0.2 (−0.4–0.8) | 0.59 | −0.01 (−0.1–0.1) | 0.15 | −0.02 (−0.1–0.1) | 0.86 | 0.99 (0.98–1.01) | 0.70 |
Admission | −30 (−71–11) | 0.15 | −0.1 (−1.2–1.0) | 0.80 | 0.5 (−1.6–2.6) | 0.62 | 0.9 (0.4–2.2) | 0.84 |
Season | 7 (−27–41) | 0.68 | 0.6 (−0.3–1.5) | 0.22 | 0.3 (−1.6–2.1) | 0.79 | 1.1 (0.5–2.3) | 0.88 |
Supplement | −11 (−75–52) | 0.73 | 0.2 (−1.5–1.9) | 0.78 | −0.5 (−3.6–2.6) | 0.73 | 1.6 (0.4–5.9) | 0.49 |
6MWT Distance | 6MWT MBS | CFQ | Fatigue Case | |||||
---|---|---|---|---|---|---|---|---|
β Coefficient | p Value | β Coefficient | p Value | β Coefficient | p Value | Odds Ratio | p Value | |
(95% CI) | (95% CI) | (95% CI) | (95% CI) | |||||
Vitamin D | ||||||||
-sufficient | Reference | n/a | Reference | n/a | Reference | n/a | Reference | n/a |
-insufficient | −4 (−45–36) | 0.83 | −0.2 (−1.3–0.8) | 0.68 | −1.0 (−3.1–1.0) | 0.33 | 0.6 (0.3–1.4) | 0.23 |
-deficient | −6 (−66–55) | 0.85 | 0.4 (−1.3–2.0) | 0.66 | −2.7 (−5.9–0.5) | 0.09 | 0.9 (0.2–3.4) | 0.89 |
Female sex | −36 (−73–0.7) | 0.06 | 0.9 (0.1–2.0) | 0.05 | 4.7 (2.9–6.6) | <0.001 | 4.2 (1.9–9.4) | <0.001 |
Age | −3.5 (−4.9–-2.0) | <0.001 | 0.01 (−0.1–0.1) | 0.23 | 0.01 (−0.1–0.1) | 0.75 | 1.01 (0.9–1.1) | 0.24 |
Time to OPD | 0.2 (−0.5–0.9) | 0.60 | −0.01 (−0.1–0.1) | 0.18 | −0.01 (−0.1–0.1) | 0.76 | 0.99 (0.98–1.01) | 0.76 |
Admission | −31 (−72–10) | 0.14 | −0.2 (−1.3–0.9) | 0.78 | 0.6 (−1.5–2.7) | 0.58 | 0.9 (0.4–2.1) | 0.76 |
Season | 8 (−26–42) | 0.65 | 0.5 (−0.4–1.4) | 0.26 | 0.4 (−1.5–2.2) | 0.69 | 1.1 (0.5–2.3) | 0.82 |
Supplement | −10 (−73–54) | 0.77 | 0.2 (−1.5–1.9) | 0.79 | −0.5 (−3.6–2.6) | 0.75 | 1.7 (0.5–6.3) | 0.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Townsend, L.; Dyer, A.H.; McCluskey, P.; O’Brien, K.; Dowds, J.; Laird, E.; Bannan, C.; Bourke, N.M.; Ní Cheallaigh, C.; Byrne, D.G.; et al. Investigating the Relationship between Vitamin D and Persistent Symptoms Following SARS-CoV-2 Infection. Nutrients 2021, 13, 2430. https://doi.org/10.3390/nu13072430
Townsend L, Dyer AH, McCluskey P, O’Brien K, Dowds J, Laird E, Bannan C, Bourke NM, Ní Cheallaigh C, Byrne DG, et al. Investigating the Relationship between Vitamin D and Persistent Symptoms Following SARS-CoV-2 Infection. Nutrients. 2021; 13(7):2430. https://doi.org/10.3390/nu13072430
Chicago/Turabian StyleTownsend, Liam, Adam H. Dyer, Patrick McCluskey, Kate O’Brien, Joanne Dowds, Eamon Laird, Ciaran Bannan, Nollaig M. Bourke, Cliona Ní Cheallaigh, Declan G. Byrne, and et al. 2021. "Investigating the Relationship between Vitamin D and Persistent Symptoms Following SARS-CoV-2 Infection" Nutrients 13, no. 7: 2430. https://doi.org/10.3390/nu13072430
APA StyleTownsend, L., Dyer, A. H., McCluskey, P., O’Brien, K., Dowds, J., Laird, E., Bannan, C., Bourke, N. M., Ní Cheallaigh, C., Byrne, D. G., & Kenny, R. A. (2021). Investigating the Relationship between Vitamin D and Persistent Symptoms Following SARS-CoV-2 Infection. Nutrients, 13(7), 2430. https://doi.org/10.3390/nu13072430