Pharmacodynamics of Oral Cholecalciferol in Healthy Individuals with Vitamin D Deficiency: A Randomized Open-Label Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Study Design
2.2. Laboratory Analysis
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Laboratory Parameters
4. Discussion
5. Study Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bouillon, R.; Carmeliet, G. Vitamin D Insufficiency: Definition, Diagnosis and Management. Best Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 669–684. [Google Scholar] [CrossRef]
- Bouillon, R. Comparative Analysis of Nutritional Guidelines for Vitamin D. Nat. Rev. Endocrinol. 2017, 13, 466–479. [Google Scholar] [CrossRef] [PubMed]
- Tuckey, R.C.; Cheng, C.Y.S.; Slominski, A.T. The Serum Vitamin D Metabolome: What We Know and What is Still to Discover. J. Steroid Biochem. Mol. Biol. 2019, 186, 4–21. [Google Scholar] [CrossRef]
- Holick, M.F. High Prevalence of Vitamin D Inadequacy and Implications for Health. Mayo Clin. Proc. 2006, 81, 353–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holick, M.F. Vitamin D Deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Bouillon, R.; Marcocci, C.; Carmeliet, G.; Bikle, D.; White, J.H.; Dawson-Hughes, B.; Lips, P.; Munns, C.F.; Lazaretti-Castro, M.; Giustina, A.; et al. Skeletal and Extra-Skeletal Actions of Vitamin D: Current Evidence and Outstanding Questions. Endocr. Rev. 2018, 40, 1109–1151. [Google Scholar] [CrossRef] [Green Version]
- Gatti, D.; Bertoldo, F.; Adami, G.; Viapiana, O.; Lello, S.; Rossini, M.; Fassio, A. Vitamin D Supplementation: Much Ado about Nothing. Gynecol. Endocrinol. 2020, 36, 185–189. [Google Scholar] [CrossRef]
- Wylon, K.; Drozdenko, G.; Krannich, A.; Heine, G.; Dölle, S.; Worm, M. Pharmacokinetic Evaluation of a Single Intramuscular High Dose versus an Oral Long-Term Supplementation of Cholecalciferol. PLoS ONE 2017, 12, e0169620. [Google Scholar] [CrossRef] [Green Version]
- Meekins, M.E.; Oberhelman, S.S.; Lee, B.R.; Gardner, B.M.; Cha, S.S.; Singh, R.J.; Pettifor, J.M.; Fischer, P.R.; Thacher, T.D. Pharmacokinetics of Daily versus Monthly Vitamin D3 Supplementation in Non-Lactating Women. Eur. J. Clin. Nutr. 2014, 68, 632–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahme, M.; Sharara, S.L.; Baddoura, R.; Habib, R.H.; Halaby, G.; Arabi, A.; Singh, R.J.; Kassem, M.; Mahfoud, Z.; Hoteit, M.; et al. Impact of Calcium and Two Doses of Vitamin D on Bone Metabolism in the Elderly: A Randomized Controlled Trial. J. Bone Miner. Res. 2017, 32, 1486–1495. [Google Scholar] [CrossRef]
- Ketha, H.; Thacher, T.D.; Oberhelman, S.S.; Fischer, P.R.; Singh, R.J.; Kumar, R. Comparison of the Effect of Daily versus Bolus Dose Maternal Vitamin D3 Supplementation on the 24,25-Dihydroxyvitamin D3 to 25-Hydroxyvitamin D3 Ratio. Bone 2018, 110, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Chel, V.; Wijnhoven, H.A.H.; Smit, J.H.; Ooms, M.; Lips, P. Efficacy of Different Doses and Time Intervals of Oral Vitamin D Supplementation with or without Calcium in Elderly Nursing Home Residents. Osteoporos. Int. 2008, 19, 663–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollis, B.W.; Wagner, C.L. Clinical Review: The Role of the Parent Compound Vitamin D with Respect to Metabolism and Function: Why Clinical Dose Intervals Can Affect Clinical Outcomes. J. Clin. Endocrinol. Metab. 2013, 98, 4619–4628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, P.; Bennett, D.; Mafham, M.; Lin, X.; Chen, Z.; Armitage, J.; Clarke, R. Vitamin D and Calcium for the Prevention of Fracture: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2019, 2, e1917789. [Google Scholar] [CrossRef] [PubMed]
- Martineau, A.R.; Jolliffe, D.A.; Hooper, R.L.; Greenberg, L.; Aloia, J.F.; Bergman, P.; Dubnov-Raz, G.; Esposito, S.; Ganmaa, D.; Ginde, A.A.; et al. Vitamin D Supplementation to Prevent Acute Respiratory Tract Infections: Systematic Review and Meta-Analysis of Individual Participant Data. BMJ 2017, 356, i6583. [Google Scholar] [CrossRef] [Green Version]
- Keum, N.; Lee, D.H.; Greenwood, D.C.; Manson, J.E.; Giovannucci, E. Vitamin D Supplementation and Total Cancer Incidence and Mortality: A Meta-Analysis of Randomized Controlled Trials. Ann. Oncol. 2019, 30, 733–743. [Google Scholar] [CrossRef]
- Chandler, P.D.; Chen, W.Y.; Ajala, O.N.; Hazra, A.; Cook, N.; Bubes, V.; Lee, I.-M.; Giovannucci, E.L.; Willett, W.; Buring, J.E.; et al. Effect of Vitamin D3 Supplements on Development of Advanced Cancer: A Secondary Analysis of the VITAL Randomized Clinical Trial. JAMA Netw. Open 2020, 3, e2025850. [Google Scholar] [CrossRef]
- Dawson-Hughes, B.; Staten, M.A.; Knowler, W.C.; Nelson, J.; Vickery, E.M.; LeBlanc, E.S.; Neff, L.M.; Park, J.; Pittas, A.G. D2d Research Group Intratrial Exposure to Vitamin D and New-Onset Diabetes Among Adults with Prediabetes: A Secondary Analysis from the Vitamin D and Type 2 Diabetes (D2d) Study. Diabetes Care 2020, 43, 2916–2922. [Google Scholar] [CrossRef]
- Fassio, A.; Adami, G.; Rossini, M.; Giollo, A.; Caimmi, C.; Bixio, R.; Viapiana, O.; Milleri, S.; Gatti, M.; Gatti, D. Pharmacokinetics of Oral Cholecalciferol in Healthy Subjects with Vitamin D Deficiency: A Randomized Open-Label Study. Nutrients 2020, 12, 1553. [Google Scholar] [CrossRef]
- DIBASE. Summary of Product Characteristics. 2019. Available online: https://myhealthbox.eu/en/view/3547718/0db3d03955074a04c467d1d1a0c5a8b6/leaflet (accessed on 20 May 2020).
- Zittermann, A.; Berthold, H.K.; Pilz, S. The Effect of Vitamin D on Fibroblast Growth Factor 23: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Eur. J. Clin. Nutr 2020, 75, 980–987. [Google Scholar] [CrossRef]
- Ornoy, A.; Goodwin, D.; Noff, D.; Edelstein, S. 24, 25-Dihydroxyvitamin D Is a Metabolite of Vitamin D Essential for Bone Formation. Nature 1978, 276, 517–519. [Google Scholar] [CrossRef]
- Curtis, K.M.; Aenlle, K.K.; Roos, B.A.; Howard, G.A. 24R,25-Dihydroxyvitamin D3 Promotes the Osteoblastic Differentiation of Human Mesenchymal Stem Cells. Mol. Endocrinol. 2014, 28, 644–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ginsberg, C.; Katz, R.; De Boer, I.H.; Kestenbaum, B.R.; Chonchol, M.; Shlipak, M.G.; Sarnak, M.J.; Hoofnagle, A.N.; Rifkin, D.E.; Garimella, P.S.; et al. The 24,25 to 25-Hydroxyvitamin D Ratio and Fracture Risk in Older Adults: The Cardiovascular Health Study. Bone 2018, 107, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Weinstock-Guttman, B.; Wang, H.; Bang, E.; Li, J.; Ramanathan, M.; Qu, J. Ultrasensitive Quantification of Serum Vitamin D Metabolites Using Selective Solid-Phase Extraction Coupled to Microflow Liquid Chromatography and Isotope-Dilution Mass Spectrometry. Anal. Chem. 2010, 82, 2488–2497. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Brannon, P.M.; West, A.A.; Yan, J.; Jiang, X.; Perry, C.A.; Malysheva, O.V.; Mehta, S.; Caudill, M.A. Vitamin D Metabolism Varies among Women in Different Reproductive States Consuming the Same Intakes of Vitamin D and Related Nutrients. J. Nutr. 2016, 146, 1537–1545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papapoulos, S.E.; Clemens, T.L.; Fraher, L.J.; Gleed, J.; O’Riordan, J.L. Metabolites of Vitamin D in Human Vitamin-D Deficiency: Effect of Vitamin D3 or 1,25-Dihydroxycholecalciferol. Lancet 1980, 2, 612–615. [Google Scholar] [CrossRef]
- Rossini, M.; Adami, S.; Viapiana, O.; Fracassi, E.; Idolazzi, L.; Povino, M.R.; Gatti, D. Dose-Dependent Short-Term Effects of Single High Doses of Oral Vitamin D(3) on Bone Turnover Markers. Calcif. Tissue Int. 2012, 91, 365–369. [Google Scholar] [CrossRef]
- Rossini, M.; Gatti, D.; Viapiana, O.; Fracassi, E.; Idolazzi, L.; Zanoni, S.; Adami, S. Short-Term Effects on Bone Turnover Markers of a Single High Dose of Oral Vitamin D3. J. Clin. Endocrinol. Metab. 2012, 97, E622–E626. [Google Scholar] [CrossRef] [Green Version]
- Sanders, K.M.; Stuart, A.L.; Williamson, E.J.; Simpson, J.A.; Kotowicz, M.A.; Young, D.; Nicholson, G.C. Annual High-Dose Oral Vitamin D and Falls and Fractures in Older Women: A Randomized Controlled Trial. JAMA 2010, 303, 1815–1822. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, O.; Peña, C.; García, J.M.; Larriba, M.J.; Ordóñez-Morán, P.; Navarro, D.; Barbáchano, A.; López de Silanes, I.; Ballestar, E.; Fraga, M.F.; et al. The Wnt Antagonist DICKKOPF-1 Gene Is Induced by 1alpha,25-Dihydroxyvitamin D3 Associated to the Differentiation of Human Colon Cancer Cells. Carcinogenesis 2007, 28, 1877–1884. [Google Scholar] [CrossRef]
- Pendás-Franco, N.; Aguilera, O.; Pereira, F.; González-Sancho, J.M.; Muñoz, A. Vitamin D and Wnt/Beta-Catenin Pathway in Colon Cancer: Role and Regulation of DICKKOPF Genes. Anticancer Res 2008, 28, 2613–2623. [Google Scholar] [PubMed]
- Jo, S.; Yoon, S.; Lee, S.Y.; Kim, S.Y.; Park, H.; Han, J.; Choi, S.H.; Han, J.-S.; Yang, J.-H.; Kim, T.-H. DKK1 Induced by 1,25D3 Is Required for the Mineralization of Osteoblasts. Cells 2020, 9, 236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nsengiyumva, V.; Krishna, S.M.; Moran, C.S.; Moxon, J.V.; Morton, S.K.; Clarke, M.W.; Seto, S.-W.; Golledge, J. Vitamin D Deficiency Promotes Large Rupture-Prone Abdominal Aortic Aneurysms and Cholecalciferol Supplementation Limits Progression of Aneurysms in a Mouse Model. Clin. Sci. 2020, 134, 2521–2534. [Google Scholar] [CrossRef] [PubMed]
- Wijenayaka, A.R.; Yang, D.; Prideaux, M.; Ito, N.; Kogawa, M.; Anderson, P.H.; Morris, H.A.; Solomon, L.B.; Loots, G.G.; Findlay, D.M.; et al. 1α,25-Dihydroxyvitamin D3 Stimulates Human SOST Gene Expression and Sclerostin Secretion. Mol. Cell Endocrinol. 2015, 413, 157–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sankaralingam, A.; Roplekar, R.; Turner, C.; Dalton, R.N.; Hampson, G. Changes in Dickkopf-1 (DKK1) and Sclerostin Following a Loading Dose of Vitamin D 2 (300,000 IU). J. Osteoporos. 2014, 2014, 682763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Seo, D.H.; Choi, H.S.; Park, H.S.; Chung, Y.S.; Lim, S.K. Effects of Single Vitamin D₃ Injection (200,000 Units) on Serum Fibroblast Growth Factor 23 and Sclerostin Levels in Subjects with Vitamin D Deficiency. Endocrinol. Metab. 2017, 32, 451–459. [Google Scholar] [CrossRef]
- Dawson-Hughes, B.; Harris, S.S.; Ceglia, L.; Palermo, N.J. Effect of Supplemental Vitamin D and Calcium on Serum Sclerostin Levels. Eur. J. Endocrinol. 2014, 170, 645–650. [Google Scholar] [CrossRef] [Green Version]
- Acıbucu, F.; Dokmetas, H.S.; Acıbucu, D.O.; Kılıclı, F.; Aydemir, M.; Cakmak, E. Effect of Vitamin D Treatment on Serum Sclerostin Level. Exp. Clin. Endocrinol. Diabetes 2017, 125, 634–637. [Google Scholar] [CrossRef]
- Fassio, A.; Idolazzi, L.; Viapiana, O.; Benini, C.; Vantaggiato, E.; Bertoldo, F.; Rossini, M.; Gatti, D. In Psoriatic Arthritis Dkk-1 and PTH Are Lower than in Rheumatoid Arthritis and Healthy Controls. Clin. Rheumatol. 2017, 36, 2377–2381. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, X.; Wang, M.; Xia, Q.; Yang, J.; Wu, M.; Han, R.; Chen, M.; Hu, X.; Yuan, Y.; et al. The Serum Level of Dickkopf-1 in Patients with Rheumatoid Arthritis: A Systematic Review and Meta-Analysis. Int. Immunopharmacol. 2018, 59, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Fassio, A.; Adami, G.; Idolazzi, L.; Giollo, A.; Viapiana, O.; Vantaggiato, E.; Benini, C.; Rossini, M.; Dejaco, C.; Gatti, D. Wnt Inhibitors and Bone Turnover Markers in Patients With Polymyalgia Rheumatica and Acute Effects of Glucocorticoid Treatment. Front. Med. 2020, 7, 551. [Google Scholar] [CrossRef] [PubMed]
- Fassio, A.; Adami, G.; Giollo, A.; Viapiana, O.; Malavolta, N.; Saviola, G.; Bortolotti, R.; Idolazzi, L.; Bertoldo, F.; Rossini, M.; et al. Acute Effects of Glucocorticoid Treatment, TNFα or IL-6R Blockade on Bone Turnover Markers and Wnt Inhibitors in Early Rheumatoid Arthritis: A Pilot Study. Calcif. Tissue Int. 2020. [Google Scholar] [CrossRef]
- Fassio, A.; Adami, G.; Gatti, D.; Orsolini, G.; Giollo, A.; Idolazzi, L.; Benini, C.; Vantaggiato, E.; Rossini, M.; Viapiana, O. Inhibition of Tumor Necrosis Factor-Alpha (TNF-Alpha) in Patients with Early Rheumatoid Arthritis Results in Acute Changes of Bone Modulators. Int. Immunopharmacol. 2019, 67, 487–489. [Google Scholar] [CrossRef] [PubMed]
- Atteritano, M.; Di Mauro, E.; Canale, V.; Bruzzese, A.M.; Ricciardi, C.A.; Cernaro, V.; Lacquaniti, A.; Buemi, M.; Santoro, D. Higher Serum Sclerostin Levels and Insufficiency of Vitamin D Are Strongly Associated with Vertebral Fractures in Hemodialysis Patients: A Case Control Study. Osteoporos. Int. 2017, 28, 577–584. [Google Scholar] [CrossRef]
- Gatti, D.; Viapiana, O.; Fracassi, E.; Idolazzi, L.; Dartizio, C.; Povino, M.R.; Adami, S.; Rossini, M. Sclerostin and DKK1 in Postmenopausal Osteoporosis Treated with Denosumab. J. Bone Miner. Res. 2012, 27, 2259–2263. [Google Scholar] [CrossRef]
- Gatti, D.; Viapiana, O.; Idolazzi, L.; Fracassi, E.; Ionescu, C.; Dartizio, C.; Troplini, S.; Kunnathully, V.; Adami, S.; Rossini, M. Distinct Effect of Zoledronate and Clodronate on Circulating Levels of DKK1 and Sclerostin in Women with Postmenopausal Osteoporosis. Bone 2014, 67, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Gatti, D.; Viapiana, O.; Idolazzi, L.; Fracassi, E.; Rossini, M.; Adami, S. The Waning of Teriparatide Effect on Bone Formation Markers in Postmenopausal Osteoporosis Is Associated with Increasing Serum Levels of DKK1. J. Clin. Endocrinol. Metab. 2011, 96, 1555–1559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, G.; Simpson, A.; Boscato, L.; Hickman, P.E. The Investigation of Interferences in Immunoassay. Clin. Biochem. 2017, 50, 1306–1311. [Google Scholar] [CrossRef] [Green Version]
- Sturgeon, C.M.; Viljoen, A. Analytical Error and Interference in Immunoassay: Minimizing Risk. Ann. Clin. Biochem. 2011, 48, 418–432. [Google Scholar] [CrossRef]
- Oliai Araghi, S.; Van Dijk, S.C.; Ham, A.C.; Brouwer-Brolsma, E.M.; Enneman, A.W.; Sohl, E.; Swart, K.M.A.; Van der Zwaluw, N.L.; Van Wijngaarden, J.P.; Dhonukshe-Rutten, R.a.M.; et al. BMI and Body Fat Mass Is Inversely Associated with Vitamin D Levels in Older Individuals. J. Nutr. Health Aging 2015, 19, 980–985. [Google Scholar] [CrossRef] [PubMed]
- Jones, G. The Discovery and Synthesis of the Nutritional Factor Vitamin D. Int. J. Paleopathol. 2018, 23, 96–99. [Google Scholar] [CrossRef] [PubMed]
Baseline Characteristics | Total Population (n = 75) | Group A (n = 25) | Group B (n = 25) | Group C (n = 25) | p-Value (ANOVA) | |
---|---|---|---|---|---|---|
Sex | ||||||
Male | N (%) | 31 (41.3) | 12 (48) | 7 (28) | 12 (48) | NS |
Female | N (%) | 44 (58.7) | 13 (52) | 18 (72) | 13 (52) | NS |
Age (years) | Years (SD) | 34.1 (10.2) | 30.2 (10) | 36.7 (8.8) | 35.4 (11) | NS NS |
Male | Years (SD) | 33.4 (8.1) | 31.1 (8.6) | 34.6 (5.7) | 35 (8.7) | NS NS |
Female | Years (SD) | 34.6 (11.6) | 29.5 (11.4) | 37.5 (9.7) | 35.9 (13.1) | NS NS |
Weight (Kg) | Mean (SD) | 66.7 (12.4) | 65.2 (13.5) | 67.4 (9.8) | 67.6 (13.7) | NS |
Male | Mean (SD) | 70.5 (12.2) | 70.2 (10.4) | 70.2 (13.3) | 70.9 (14.3) | NS |
Female | Mean (SD) | 64.3 (12.2) | 61.9 (14.7) | 66.9 (10) | 63 (12.7) | NS |
BMI (Kg/M2) | Mean (SD) | 23.1 (2.6) | 22.6 (2.9) | 23.4 (2.1) | 23.2 (2.8) | NS |
Male | Mean (SD) | 23.7 (2.9) | 23.4 (2.5) | 24.7 (2.9) | 23.3 (3.4) | NS |
Female | Mean (SD) | 22.6 (2.4) | 21.7 (2.9) | 23.5 (1.9) | 22.4 (2.2) | NS |
Time | Total Population (n = 73) | Group A (n = 24) | Group B (n = 25) | Group C (n = 24) | ANOVA p-Value | |
---|---|---|---|---|---|---|
1,25-dihydroxyvitamin D (pg/mL) | ||||||
Baseline | N | 73 | 24 | 25 | 24 | 0.23 |
Mean (SD) | 44 (11.5) | 42 (8.8) | 47.2 (12.7) | 42.8 (12.3) | ||
Median (IQR) | 43.7 (36.5–50.2) | 43.5 (36.5–49.2) | 45.4 (38.2–54.8) | 40.5 (35.9–48.1) | ||
16.8–77.1 | 24.4–58.4 | 28.2–77.1 | 16.8–65.5 | |||
24,25-dihydroxyvitamin D (ng/mL) | ||||||
Baseline | N | 73 | 24 | 25 | 24 | 0.87 |
Mean (SD) | 93.9 (185.1) | 98 (169) | 105.6 (257.2) | 77.7 (95.9) | ||
Median (IQR) | 33.2 (16–90.1) | 31.5 (17.5–96.1) | 29.4 (12.1–89.5) | 39.7 (17.2–84.7) | ||
4.9–1308 | 9.9–817.6 | 4.9–1308 | 5.7–361.6 | |||
PTH (pg/mL) | ||||||
Baseline | N | 73 | 24 | 25 | 24 | 0.32 |
Mean (SD) | 36.4 (14) | 37.2 (15.4) | 33.1 (10.5) | 39.1 (15.7) | ||
Median (IQR) | 33.4 (25.9–43.1) | 32.8 (25.6–43.1) | 32.8 (25.5–40.9) | 36 (27.2–48) | ||
11.5–79.3 | 14.9–74.4 | 11.5–59.2 | 12.8–79.3 | |||
Ionized calcium (mmol/L) | ||||||
Baseline | N | 73 | 24 | 25 | 24 | 0.21 |
Mean (SD) | 1.2 (0) | 1.2 (0) | 1.2 (0) | 1.2 (0) | ||
Median (IQR) | 1.2 (1.2–1.2) | 1.2 (1.2–1.3) | 1.2 (1.2–1.2) | 1.2 (1.2–1.2) | ||
1.2–1.3 | 1.2–1.3 | 1.2–1.3 | 1.2–1.3 | |||
FGF-23 (pmol/L) | ||||||
Baseline | N | 73 | 24 | 25 | 24 | 0.19 |
Mean (SD) | 1 (1.6) | 0.5 (0.4) | 1.3 (2.2) | 1.1 (1.4) | ||
Median (IQR) | 0.5 (0.3–1) | 0.4 (0.2–0.8) | 0.6 (0.3–1.1) | 0.6 (0.3–1.1) | ||
0–10.8 | 0–1.6 | 0–10.8 | 0–5.4 | |||
CTX-I (ng/mL) | ||||||
Baseline | N | 73 | 24 | 25 | 24 | 0.02 |
Mean (SD) | 0.4 (0.2) | 0.4 (0.2) | 0.3 (0.2) | 0.3 (0.1) | ||
Median (IQR) | 0.3 (0.2–0.5) | 0.4 (0.3–0.5) | 0.3 (0.2–0.4) | 0.4 (0.3–0.4) | ||
0.1–0.9 | 0.1–0.9 | 0.1–0.8 | 0.1–0.5 | |||
P1NP (ng/mL) | ||||||
Baseline | N | 73 | 24 | 25 | 24 | 0.003 |
Mean (SD) | 62.6 (24.1) | 75.9 (29) | 53.8 (18.7) | 58.6 (18.2) | ||
Median (IQR) | 58 (45.9–72.2) | 68.2 (57.9–90.9) | 50.5 (42.5–57.1) | 58.3 (43.5–71.4) | ||
22.7–149.8 | 22.7–149.8 | 28.6–128.1 | 32.9–88.9 | |||
BALP (ug/L) | ||||||
Baseline | N | 73 | 24 | 25 | 24 | 0.08 |
Mean (SD) | 15.6 (6.7) | 18 (8.5) | 13.8 (3.9) | 15.2 (6.6) | ||
Median (IQR) | 13.9 (11.1–18.3) | 16.4 (12.5–20.8) | 12.8 (11.1–15.6) | 14.2 (10.4–18.3) | ||
5.8–40.7 | 7.3–40.7 | 7.5–24.7 | 5.8–33.5 | |||
Dkk-1 (pmol/L) | ||||||
Baseline | N | 73 | 24 | 25 | 24 | 0.34 |
Mean (SD) | 18.6 (11.1) | 16.7 (8.3) | 17.7 (12.6) | 21.2 (11.9) | ||
Median (IQR) | 15.7 (10.6–23.1) | 17.3 (11.9–23.2) | 13.7 (10.3–21) | 18.6 (13.3–26.4) | ||
2.2–56 | 2.2–32.6 | 4–50.3 | 6.1–56 | |||
Sclerostin (pmol/L) | ||||||
Baseline | N | 73 | 24 | 25 | 24 | 0.56 |
Mean (SD) | 25 (25.5) | 20.5 (13.7) | 28.2 (27) | 26.1 (32.5) | ||
Median (IQR) | 18.9 (11.9–31.7) | 16.8 (11.8–24.4) | 19.5 (11.9–36.4) | 19.2 (15.5–25.1) | ||
4.1–173 | 4.1–66.2 | 5.8–139.1 | 5–173 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fassio, A.; Gatti, D.; Rossini, M.; Benini, C.; Fracassi, E.; Bertoldo, E.; Viapiana, O.; Milleri, S.; Gatti, M.; Adami, G. Pharmacodynamics of Oral Cholecalciferol in Healthy Individuals with Vitamin D Deficiency: A Randomized Open-Label Study. Nutrients 2021, 13, 2293. https://doi.org/10.3390/nu13072293
Fassio A, Gatti D, Rossini M, Benini C, Fracassi E, Bertoldo E, Viapiana O, Milleri S, Gatti M, Adami G. Pharmacodynamics of Oral Cholecalciferol in Healthy Individuals with Vitamin D Deficiency: A Randomized Open-Label Study. Nutrients. 2021; 13(7):2293. https://doi.org/10.3390/nu13072293
Chicago/Turabian StyleFassio, Angelo, Davide Gatti, Maurizio Rossini, Camilla Benini, Elena Fracassi, Eugenia Bertoldo, Ombretta Viapiana, Stefano Milleri, Matteo Gatti, and Giovanni Adami. 2021. "Pharmacodynamics of Oral Cholecalciferol in Healthy Individuals with Vitamin D Deficiency: A Randomized Open-Label Study" Nutrients 13, no. 7: 2293. https://doi.org/10.3390/nu13072293