Polypharmacy and Malnutrition Management of Elderly Perioperative Patients with Cancer: A Systematic Review
Abstract
:1. Introduction
2. Polypharmacy in Elderly Patients with Cancer
3. Effects of Polypharmacy and Malnutrition on Elderly Perioperative Patients with Cancer
4. Effects of Hypoalbuminemia on Drug Efficacy
5. Interaction of Drugs with Nutrients or Diet
5.1. Effects of Drugs on Nutrients
5.1.1. Antihypertensive Drugs and Zinc
5.1.2. Acetylcholinesterase Inhibitors
5.1.3. Proton Pump Inhibitors (PPIs)
5.1.4. Statins
5.1.5. Aspirin
5.1.6. Metformin
5.1.7. Sodium Glucose Transporter 2 Inhibitors
Drugs | Effects of Drugs on Nutrients | Symptoms Caused | Countermeasure | References |
---|---|---|---|---|
Antihypertensive drugs: thiazide diuretics, ARBs, ACE inhibitors, and potassium-retaining diuretics | Zinc deficiency | Taste disorder, anorexia, lethargy, and delayed wound healing | •Determination of zinc levels in plasma or urine •Blood pressure monitoring to determine the need for continued administration | [7] |
Acetylcholinesterase inhibitors | Unknown | Nausea, vomiting, diarrhea, and loss of appetite | •Monitoring changes in appetite and weight loss •Assessing the benefits of using medications for the risk of malnutrition | [34] |
Proton pump inhibitors | Deficiency of VB12, Mg, Ca, and Fe | Clostridium difficile diarrhea, pneumonia, femoral neck fracture, hypomagnesemia, and hypocalcemia | •Measurement of VB12, Mg, Ca, ferritin, and FRAX score •Evaluate the need for continued administration | [35,36,37,38,39,41,53] |
HMG-CoA reductase inhibitors (stains) | CoQ10 deficiency | Frailty, sarcopenia, and myopathy | •Examining the use of CoQ10 in combination •Evaluate the need for continuous administration in patients over ≥75 years | [7,54] |
Long-term, high-dose aspirin | VC deficiency | Gastric mucosal thinning | •Long-term use of low-dose aspirin (80–400 mg/day) •VC supplementation if higher doses are needed | [7] |
Metformin | •VB12 deficiency •Inhibits the breakdown of muscle proteins | •Anemia, fatigue, and cognitive impairment •Improvement of muscle mass and strength | Monitor vitamin B12 and consider switching to another drug if it is low | [7] |
SGLT-2 inhibitors | Protein degradation | Sarcopenia, decrease in muscle mass, and skeletal muscle mass index | Consider the need for continued administration | [62,63,64,65] |
Diuretics (loop, thiazide, and osmotic), corticosteroids, kanzo, insulin, β2-adrenergic stimulation | Lower potassium | Vomiting, anorexia, weakness, muscle weakness, tetany | Monitor potassium and consider eating foods rich in potassium or taking supplements | [66,67,68,69,70] |
5.1.8. Diuretics, Corticosteroids, Kanzo (Kampo), Insulin, and β2-Adrenergic Stimulation
5.2. Nutrient–Drug and Diet–Drug Interactions
6. Drug and Eating Habits
7. Intervention Effects on Polypharmacy, Cancer Cachexia, and Rehabilitation Nutrition
7.1. Intervention Effects on Polypharmacy
7.2. Intervention Effect on Cancer Cachexia
7.3. Intervention Effect on Rehabilitation Nutrition
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Fearon, K.; Hütterer, E.; Isenring, E.; Kaasa, S.; et al. ESPEN guidelines on nutrition in cancer patients. Clin. Nutr. 2017, 36, 11–48. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gillis, C.; Buhler, K.; Bresee, L.; Carli, F.; Gramlich, L.; Culos-Reed, N.; Sajobi, T.T.; Fenton, T.R. Effects of nutritional prehabilitation, with and without exercise, on outcomes of patients who undergo colorectal surgery: A systematic review and meta-analysis. Gastroenterology 2018, 155, 391–410. [Google Scholar] [CrossRef]
- Hewitt, J.; Long, S.; Carter, B.; Bach, S.; McCarthy, K.; Clegg, A. The prevalence of frailty and its association with clinical outcomes in general surgery: A systematic review and meta-analysis. Age Ageing 2018, 47, 793–800. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Huddy, J.R.; Huddy, F.M.S.; Markar, S.R.; Tucker, O. Nutritional optimization during neoadjuvant therapy prior to surgical resection of esophageal cancer- a narrative review. Dis. Esophagus 2018, 31, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Meyer, C.P.; Rios-Diaz, A.J.; Dalela, D.; Ravi, P.; Sood, A.; Hanske, J.; Chun, F.K.H.; Kibel, A.S.; Lipstiz, S.R.; Sun, M.; et al. The association of hypoalbuminemia with early perioperative outcomes- a comprehensive assessment across 16 major procedures. Am. J. Surg. 2017, 214, 871–883. [Google Scholar] [CrossRef] [PubMed]
- Pressoir, M.; Desne, S.; Berchery, D.; Rossignol, G.; Poiree, B.; Meslier, M.; Traversier, S.; Vittot, M.; Simon, M.; Gekiere, J.P.; et al. Risk factors and clinical implications of malnutrition in French Comprehensive Cancer Centres. Br. J. Cancer 2010, 102, 966–971. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Fenton, R.; Brook-Barclay, L.; Delaney, C.L.; Spark, J.I.; Miller, M.D. Do medications commonly prescribed to patients with peripheral arterial disease have an effect on nutritional status? A review of the literature. Ann. Vasc. Surg. 2016, 32, 145–175. [Google Scholar] [CrossRef]
- Syed, Q.; Hendler, K.T.; Koncilja, K. The impact of aging and medical status on dysgeusia. Am. J. Med. 2016, 129, 753.e1–753.e6. [Google Scholar] [CrossRef][Green Version]
- Jyrkka, J.; Mursu, J.; Enlund, H.; Lönnroos, E. Polypharmacy and nutritional status in elderly people. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 1–6. [Google Scholar] [CrossRef]
- Shrestha, S.; Shrestha, S.; Khanal, S. Polypharmacy in elderly cancer patients: Challenges and the way clinical pharmacists can contribute in resource-limited settings. Aging Med. 2019, 2, 42–49. [Google Scholar] [CrossRef][Green Version]
- Shrestha, S.; Shakya, R.; Shrestha, S.; Shakya, S. Adverse drug reaction due to cancer chemotherapy and its financial burden in different hospitals of Nepal. Int. J. Pharmacovigil. 2017, 2, 1–7. [Google Scholar] [CrossRef][Green Version]
- Turner, J.P.; Shakib, S.; Singhal, N.; Hogan-Doran, J.; Prowse, R.; Johns, S.; Bell, J.S. Prevalence and factors associated with polypharmacy in older people with cancer. Support. Care Cancer 2014, 22, 1727–1734. [Google Scholar] [CrossRef]
- Prithviraj, G.K.; Koroukian, S.; Margevicius, S.; Berger, N.A.; Bagai, R.; Owusu, C. Patient characteristics associated with polypharmacy and inappropriate prescribing of medications among older adults with cancer. J. Geriatr. Oncol. 2012, 3, 228–237. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bushardt, R.L.; Massey, E.B.; Simpson, T.W.; Ariail, J.C.; Simpson, K.N. Polypharmacy: Misleading, but manageable. Clin. Interv. Aging 2008, 3, 383–389. [Google Scholar] [CrossRef][Green Version]
- Mortazavi, S.S.; Shati, M.; Keshtkar, A.; Malakouti, S.K.; Bazargan, M.; Assari, S. Defining polypharmacy in the elderly: A systematic review protocol. BMJ Open 2016, 6, e010989. [Google Scholar] [CrossRef] [PubMed]
- Masnoon, N.; Shakib, S.; Kalisch-Ellett, L.; Gillian, E. Caughey. What is polypharmacy? A systematic review of definitions. BMC Geriatr. 2017, 17, 230. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Dhalwani, N.N.; Fahami, R.; Sathanapally, H.; Seidu, S.; Davies, M.J.; Khunti, K. Association between polypharmacy and falls in older adults: A longitudinal study from England. BMJ Open 2017, 7, e016358. [Google Scholar] [CrossRef][Green Version]
- Wimmer, B.C.; Cross, A.J.; Jokanovic, N.; Wiese, M.D.; George, J.; Johnell, K.; Diug, B.; Bell, J.S. Clinical Outcomes Associated with Medication Regimen Complexity in Older People: A Systematic Review. J. Am. Geriatr. Soc. 2017, 65, 747. [Google Scholar] [CrossRef]
- Rawle, M.J.; Cooper, R.; Kuh, D.; Richards, M. Associations Between Polypharmacy and Cognitive and Physical Capability: A British Birth Cohort Study. J. Am. Geriatr. Soc. 2018, 66, 916. [Google Scholar] [CrossRef][Green Version]
- Kose, E.; Maruyama, R.; Okazoe, S.; Hayashi, H. Impact of Polypharmacy on the Rehabilitation Outcome of Japanese Stroke Patients in the Convalescent Rehabilitation Ward. J. Aging Res. 2016, 2016, 7957825. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kose, E.; Toyoshima, M.; Okazoe, S.; Oka, R.; Shiratsuchi, Y.; Hayashi, H. The relationship between polypharmacy and recovery of activities of daily living among convalescent stroke patients: A propensity score-matched analysis. Eur. Ger. Med. 2017, 8, 250–255. [Google Scholar] [CrossRef]
- Leelakanok, N.; Holcombe, A.L.; Lund, B.C.; Gu, X.; Schweizer, M.L. Association between polypharmacy and death: A systematic review and meta-analysis. J. Am. Pharm. Assoc. 2017, 57, 729–738.e10. [Google Scholar] [CrossRef] [PubMed]
- Nightingale, G.; Skonecki, E.; Boparai, M. The impact of polypharmacy on patient outcomes in older adults with cancer. Cancer J. 2017, 23, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Nightingale, G.; Hajjar, E.; Swartz, K.; Andrel, S.J.; Chapman, A. Evaluation of a pharmacist led medication assessment used to identify prevalence of and associations with polypharmacy and potentially inappropriate medication use among ambulatory senior adults with cancer. J. Clin. Oncol. 2015, 33, 1453–1459. [Google Scholar] [CrossRef] [PubMed]
- Elliot, K.; Tooze, J.A.; Geller, R.; Powell, B.L.; Pardee, T.S.; Ritchie, E.; Kennedy, L.; Callahan, K.E.; Klepin, H.D. The prognostic importance of polypharmacy in older adults treated for acute myelogenous leukemia (AML). Leuk. Res. 2014, 38, 1184–1190. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Schiessel, D.L.; Baracos, V.E. Barriers to cancer nutrition therapy: Excess catabolism of muscle and adipose tissues induced by tumour products and chemotherapy. Proc. Nutr. Soc. 2018, 30, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Boulos, C.; Salameh, P.; Barberger-Gateau, P. Malnutrition and frailty in community dwelling older adults living in a rural setting. Clin. Nutr. 2016, 35, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Kose, E.; Hirai, T.; Seki, T. Change in number of potentially inappropriate medications impacts on the nutritional status in a convalescent rehabilitation setting. Geriatr. Gerontol. Int. 2019, 19, 44–50. [Google Scholar] [CrossRef][Green Version]
- Kose, E.; Hirai, T.; Seki, T.; Yasuno, N. Anticholinergic Load and Nutritional Status in Older Individuals. J. Nutr. Health Aging 2020, 24, 20–27. [Google Scholar] [CrossRef]
- Bernstein, M.; Munoz, N. Academy of Nutrition and Dietetics. Position of the Academy of Nutrition and Dietetics: Food and nutrition for older adults: Promoting health and wellness. J. Acad. Nutr. Diet. 2012, 112, 1255–1277. [Google Scholar] [CrossRef] [PubMed]
- Maeda, K.; Koga, T.; Akagi, J. Tentative nil per os leads to poor outcomes in older adults with aspiration pneumonia. Clin. Nutr. 2016, 35, 1147–1152. [Google Scholar] [CrossRef] [PubMed]
- Nagraj, S.K.; George, R.P.; Shetty, N.; Levenson, D.; Ferraiolo, D.M.; Shrestha, A. Interventions for managing taste disturbances. Cochrane Database Syst. Rev. 2017, 12, CD010470. [Google Scholar] [CrossRef]
- Hoppe, C.; Kutschan, S.; Dörfler, J.; Büntzel, J.; Büntzel, J.; Huebner, J. Zinc as a complementary treatment for cancer patients: A systematic review. Clin. Exp. Med. 2021. [Google Scholar] [CrossRef]
- Soysal, P.; Isik, A.T. Effects of acetylcholinesterase inhibitors on nutritional status in elderly patients with dementia: A 6-month follow-up study. J. Nutr. Health Aging. 2016, 20, 398–403. [Google Scholar] [CrossRef] [PubMed]
- Nakamichi, M.; Wakabayashi, H. Effect of long-term proton pump inhibitor therapy on nutritional status in elderly hospitalized patients. J. Nutr. Sci. Vitaminol. 2016, 62, 330–334. [Google Scholar] [CrossRef][Green Version]
- Lam, J.R.; Schneider, J.L.; Zhao, W.; Corley, D.A. Proton pump inhibitor and histamine 2 receptor antagonist use and vitamin B12 deficiency. JAMA 2013, 310, 2435–2442. [Google Scholar] [CrossRef][Green Version]
- Den Elzen, W.P.J.; Groeneveld, Y.; de Ruijter, W.; Souverijn, J.H.M.; le Cessie, S.; Assendelft, W.J.J.; Gussekloo, J. Long-term use of proton pump inhibitors and vitamin B12 status in elderly individuals. Aliment Pharmacol. Ther. 2008, 27, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Srinutta, T.; Chewcharat, A.; Takkavatakarn, K.; Praditpornsilpa, K.; Eiam-Ong, S.; Jaber, B.L.; Susantitaphong, P. Proton pump inhibitors and hypomagnesemia: A meta-analysis of observational studies. Medicine 2019, 98, e17788. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cheungpasitporn, W.; Thongprayoon, C.; Kittanamongkolchai, W.; Srivali, N.; Edmonds, P.L.; Ungprasert, P.; O’Corragain, O.A.; Korpaisarn, S.; Erickson, S.B. Proton pump inhibitors linked to hypomagnesemia: A systematic review and meta-analysis of observational studies. Ren. Fail. 2015, 37, 1237–1241. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kanbay, M.; Yilmaz, M.I.; Apetrii, M.; Saglam, M.; Yaman, H.; Unal, H.U.; Gok, M.; Caglar, K.; Oguz, Y.; Yenicesu, M.; et al. Relationship between serum magnesium levels and cardiovascular events in chronic kidney disease patients. Am. J. Nephrol. 2012, 36, 228–237. [Google Scholar] [CrossRef]
- O’Connell, M.B.; Madden, D.M.; Murray, A.M.; Heaney, R.P.; Kerzner, L.J. Effects of proton pump inhibitors on calcium carbonate absorption in women: A randomized crossover trial. Am. J. Med. 2005, 118, 778–781. [Google Scholar] [CrossRef]
- Ivanovich, P.; Fellows, H.; Rich, C. The absorption of calcium carbonate. Ann. Intern. Med. 1967, 66, 917–923. [Google Scholar] [CrossRef] [PubMed]
- Serfaty-Lacrosniere, C.; Wood, R.J.; Voytko, D.; Saltzman, J.R.; Pedrosa, M.; Sepe, T.E.; Russell, R.R. Hypochlorhydria from short-term omeprazole treatment does not inhibit intestinal absorption of calcium, phosphorus, magnesium or zinc from food in humans. J. Am. Coll. Nutr. 1995, 14, 364–368. [Google Scholar] [CrossRef] [PubMed]
- Tuukkanen, J.; Väänänen, H.K. Omeprazole, a specific inhibitor of H+-K+-ATPase, inhibits bone resorption in vitro. Calcif. Tissue Int. 1986, 38, 123–125. [Google Scholar] [CrossRef] [PubMed]
- Mizunashi, K.; Furukawa, Y.; Katano, K.; Abe, K. Effect of omeprazole, an inhibitor of H+-K+-ATPase, on bone resorption in humans. Calcif. Tissue Int. 1986, 38, 123–125. [Google Scholar] [CrossRef]
- Khalili, H.; Huang, E.S.; Jacobson, B.C.; Camargo, C.A., Jr.; Feskanich, D.; Chan, A.T. Use of proton pump inhibitors and risk of hip fracture in relation to dietary and lifestyle factors: A prospective cohort study. BMJ 2012, 344, e372. [Google Scholar] [CrossRef][Green Version]
- McColl, K.E.L. Effect of proton pump inhibitors on vitamins and iron. Am. J. Gastroenterol. 2009, 104, S5–S9. [Google Scholar] [CrossRef]
- Hutchinson, C.; Geissler, C.A.; Powell, J.J.; Bomford, A. Proton pump inhibitors suppress absorption of dietary non-haem iron in hereditary haemochromatosis. Gut 2007, 56, 1291–1295. [Google Scholar] [CrossRef][Green Version]
- Sarzynski, E.; Puttarajappa, C.; Xie, Y.; Grover, M.; Laird-Fick, H. Association between proton pump inhibitor use and anemia: A retrospective cohort study. Dig. Dis. Sci. 2011, 56, 2349–2353. [Google Scholar] [CrossRef]
- Ajmera, A.V.; Shastri, G.S.; Gajera, M.J.; Judge, T.A. Suboptimal response to ferrous sulfate in iron-deficient patients taking omeprazole. Am. J. Ther. 2012, 19, 185–189. [Google Scholar] [CrossRef]
- Lam, J.R.; Schneider, J.L.; Quesenberry, C.P.; Corley, D.A. Proton pump inhibitor and Histamine-2 receptor antagonist use and iron deficiency. Gastroenterology 2017, 152, 821–829. [Google Scholar] [CrossRef][Green Version]
- Freedberg, D.E.; Kim, L.S.; Yang, Y.X. The risks and benefits of long-term use of proton pump inhibitors: Expert review and best practice advice from the american gastroenterological association. Gastroenterology 2017, 152, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.A.; Termanini, B.; Sutliff, V.E.; Serrano, J.; Yu, F.; Gibril, F.; Jensen, R.T. Iron absorption in patients with Zollinger-Ellison syndrome treated with long-term gastric acid antisecretory therapy. Aliment Pharmacol. Ther. 1998, 12, 83–98. [Google Scholar] [CrossRef]
- Mollazadeh, H.; Tavana, E.; Fanni, G.; Bo, S.; Banach, M.; Pirro, M.; Haehling, S.V.; Jamialahmadi, T.; Sahebkar, A. Effects of statins on mitochondrial pathways. J. Cachexia Sarcopenia Muscle 2021, 12, 237–251. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Guo, M.; Chai, H.; Wang, W.T.; Gao, Z.Y.; Shi, D.Z. Effects of Coenzyme Q10 on statin-induced myopathy: An updated meta-analysis of randomized controlled trials. J. Am. Heart Assoc. 2018, 7, e009835. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Marcoff, L.; Thompson, P.D. The role of coenzyme Q10 in statin-associated myopathy: A systematic review. J. Am. Coll. Cardiol. 2007, 49, 2231–2237. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Steinberg, G.R.; Carling, D. “AMP-activated protein kinase: The current landscape for drug development,” Nature Reviews. Drug Discov. 2019, 18, 527–551. [Google Scholar] [CrossRef] [PubMed]
- Laksmi, P.W.; Setiati, S.; Tamin, T.T.; Soewondo, P.; Rochmah, W.; Nafrialdi, N.; Prihartono, J. Effect of metformin on handgrip strength, gait speed, myostatin serum level, and health-related quality of life: A double blind randomized controlled trial among non-diabetic pre-frail elderly patients. Acta Med. Indones. 2017, 49, 118–127. [Google Scholar]
- Lee, C.G.; Schwartz, A.V.; Yaffe, K.; Hillier, T.A.; LeBlanc, E.S.; Cawthon, P.M. Changes in physical performance in older women according to presence and treatment of diabetes mellitus. J. Am. Geriatr. Soc. 2013, 61, 1872–1878. [Google Scholar] [CrossRef][Green Version]
- Lee, C.G.; Boyko, E.J.; Barrett-Connor, E.; Miljkovic, I.; Hoffman, A.R.; Everson-Rose, S.A.; Lewis, C.E.; Cawthon, P.M.; Strotmeyer, E.S.; Orwoll, E.S. Insulin sensitizers may attenuate lean mass loss in older men with diabetes. Diabetes Care. 2011, 34, 2381–2386. [Google Scholar] [CrossRef][Green Version]
- Yabe, D.; Nishikino, R.; Kaneko, M.; Iwasaki, M.; Seino, Y. Short-term impacts of sodium/glucose co-transporter 2 inhibitors in Japanese clinical practice: Considerations for their appropriate use to avoid serious adverse events. Expert. Opin. Drug Saf. 2015, 14, 795–800. [Google Scholar] [CrossRef][Green Version]
- Yasuda, M.; Iizuka, K.; Kato, T.; Liu, Y.; Takao, K.; Nonomura, K.; Mizuno, M.; Yabe, D. Sodium-glucose cotransporter 2 inhibitor and sarcopenia in a lean elderly adult with type 2 diabetes: A case report. J. Diabetes Investig. 2020, 11, 745–747. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Inoue, H.; Morino, K.; Ugi, S.; Tanaka-Mizuno, S.; Fuse, K.; Miyazawa, I.; Kondo, K.; Sato, D.; Ohashi, N.; Ida, S.; et al. Ipragliflozin, a sodiumglucose cotransporter 2 inhibitor, reduces bodyweight and fat mass, but not muscle mass, in Japanese type 2 diabetes patients treated with insulin: A randomized clinical trial. J. Diabetes Investig. 2019, 10, 1012–1021. [Google Scholar] [CrossRef]
- Tsurutani, Y.; Nakai, K.; Inoue, K.; Azuma, K.; Mukai, S.; Maruyama, S.; Iizuka, T.; Matsuzawa, Y.; Saito, J.; Omura, M.; et al. Comparative study of the effects of ipragliflozin and sitagliptin on multiple metabolic variables in Japanese patients with type 2 diabetes: A multicentre, randomized, prospective, open-label, active-controlled Journal of Diabetes Research 5 study. Diabetes Obes. Metab. 2018, 20, 2675–2679. [Google Scholar] [CrossRef]
- Gao, F.; Hall, S.; Bach, L.A. Myopathy secondary to empagliflozin therapy in type 2 diabetes. Endocrinol. Diabetes Metab. Case Rep. 2020, 2020, 20-0017. [Google Scholar] [CrossRef]
- Kardalas, E.; Paschou, S.A.; Anagnostis, P.; Muscogiuri, G.; Siasos, G.; Vryonidou, A. Hypokalemia: A clinical update. Endocr. Connect. 2018, 7, R135–R146. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, N.; Sato, N.; Goto, M.; Kobayashi, M.; Takehara, N.; Takeuchi, T.; Talib, A.K.; Sugiyama, E.; Minoshima, A.; Tanabe, Y.; et al. Three cases of corticosteroid therapy triggering ventricular fibrillation in J-wave syndromes. Heart Vessels 2014, 29, 867–872. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Penninkilampi, R.; Eslick, E.M.; Eslick, G.D. The association between consistent licorice ingestion, hypertension and hypokalaemia: A systematic review and meta-analysis. J. Hum. Hypertens. 2017, 31, 699–707. [Google Scholar] [CrossRef] [PubMed]
- Palmer, B.F.; Clegg, D.J. Physiology and pathophysiology of potassium homeostasis. Adv. Physiol. Educ. 2016, 40, 480–490. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kovesdy, C.P.; Appel, L.J.; Grams, M.E.; Gutekunst, L.; McCullough, P.A.; Palmer, B.F.; Pitt, B.; Sica, D.A.; Townsend, R.R. Potassium homeostasis in health and disease: A scientific workshop cosponsored by the National Kidney Foundation and the American Society of Hypertension. J. Am. Soc. Hypertens. 2017, 11, 783–800. [Google Scholar] [CrossRef]
- DynaMed. Available online: https://www.dynamed.com/drug-monograph/paclitaxel (accessed on 5 June 2021).
- Hansson, O.; Sillanpaa, M. Pyridoxine and serum concentration of phenytoin and phenobarbitone. Lancet 1976, 1, 256. [Google Scholar] [CrossRef]
- Feldman, S.; Hedrick, W. Antacid effects on the gastrointestinal absorption of riboflavin. J. Pharm. Sci. 1983, 72, 121–123. [Google Scholar] [CrossRef]
- Yahr, M.D.; Duvoisin, R.C. Pyridoxine, levodopa, and l-α-methyldopa hydrazine regimen in Parkinsonism. JAMA 1971, 216, 2141. [Google Scholar] [CrossRef]
- Streeter, A.K.; Goulston, K.J.; Bathur, F.A.; Hilmer, R.S.; Crane, G.G.; Pheils, M.T. Cimetidine and malabsorption of cobalamin. Dig. Dis. Sci. 1982, 27, 13–16. [Google Scholar] [CrossRef] [PubMed]
- Brise, H.; Hallberg, L. Effect of ascorbic acid on iron absorption. Acta. Med. Scand. Suppl. 1962, 376, 51–58. [Google Scholar] [CrossRef]
- Parfitt, A.M. Thiazide-induced hypercalcemia in vitamin D-treated hypoparathyroidism. Ann. Intern. Med. 1972, 77, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Up to Date. Available online: https://www.uptodate.com/contents/digoxin-drug-information?search=digoxin&source=panel_search_result&selectedTitle=1~148&usage_type=panel&kp_tab=drug_general&display_rank=1 (accessed on 5 June 2021).
- Corrigan, J.J., Jr.; Marcus, F.I. Coagulopathy associated with vitamin E ingestion. JAMA 1974, 230, 1300–1301. [Google Scholar] [CrossRef] [PubMed]
- Karlson, B.; Leijd, B.; Hellström, K. On the influence of vitamin K-rich vegetables and wine on the effectiveness of warfarin treatment. Acta Med. Scand. 1986, 220, 347–350. [Google Scholar] [CrossRef]
- Odou, P.; Barthélémy, C.; Robert, H. Influence of seven beverages on salicylate disposition in humans. J. Clin. Pharm. Ther. 2001, 26, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Leyden, J.J. Absorption of minocycline hydrochloride and tetracycline hydrochloride. Effect of food, milk, and iron. J. Am. Acad. Dermatol. 1985, 12, 308–312. [Google Scholar] [CrossRef]
- Minami, R.; Inotsume, N.; Nakano, M.; Sudo, Y.; Higashi, A.; Matsuda, I. Effect of milk on absorption of norfloxacin in healthy volunteers. J. Clin. Pharmacol. 1993, 33, 1238–1240. [Google Scholar] [CrossRef]
- Boonen, S.; Bouillon, R.; Haentjens, P.; Vanderschueren, D. Optimizing the benefits of bisphosphonates in osteoporosis: The importance of appropriate calcium intake. Treat. Endocrinol. 2006, 5, 375–383. [Google Scholar] [CrossRef]
- Gunnarsson, P.O.; Davidsson, T.; Andersson, S.B.; Backman, C.; Johansson, S.A. Impairment of estramustine phosphate absorption by concurrent intake of milk and food. Eur. J. Clin. Pharmacol. 1999, 38, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Vella, A.; Gerber, T.C.; Hayes, D.L.; Reeder, G.S. Digoxin, hypercalcaemia, and cardiac conduction. Postgrad. Med. J. 1999, 75, 554–556. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Minisola, S.; Pepe, J.; Piemonte, S.; Cipriani, C. The diagnosis and management of hypercalcaemia. BMJ 2015, 350, h2723. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mueller, E.A.; Kovarik, J.M.; van Bree, J.B.; Grevel, J.; Lücker, P.W.; Kutz, K. Influence of a fat-rich meal on the pharmacokinetics of a new oral formulation of cyclosporine in a crossover comparison with the market formulation. Pharm. Res. 1994, 11, 151–155. [Google Scholar] [CrossRef]
- Welling, P.G.; Lyons, L.L.; Craig, W.A.; Trochta, G.A. Influence of diet and fluid on bioavailability of theophylline. Clin. Pharmacol. Ther. 1975, 17, 475–480. [Google Scholar] [CrossRef]
- Ogunbona, F.A.; Smith, I.F.; Olawoye, O.S. Fat contents of meals and bioavailability of griseofulvin in man. J. Pharm. Pharmacol. 1985, 37, 283–284. [Google Scholar] [CrossRef]
- Up to Date. Available online: https://www.uptodate.com/contents/oxycodone-drug-information?search=Oxycodone&source=panel_search_result&selectedTitle=1~148&usage_type=panel&kp_tab=drug_general&display_rank=1 (accessed on 5 June 2021).
- Guzzo, C.A.; Furtek, C.I.; Porras, A.G.; Chen, C.; Tipping, R.; Clineschmidt, C.M.; Sciberras, D.G.; Hsieh, J.Y.K.; Lasseter, K. Safety, tolerability, and pharmacokinetics of escalating high doses of ivermectin in healthy adult subjects. J. Clin. Pharmacol. 2002, 42, 1122–1133. [Google Scholar] [CrossRef]
- Ling, J.; Fettner, S.; Lum, B.L.; Riek, M.; Rakhit, A. Effect of food on the pharmacokinetics of erlotinib, an orally active epidermal growth factor receptor tyrosine-kinase inhibitor, in healthy individuals. Anticancer Drugs 2008, 19, 209–216. [Google Scholar] [CrossRef]
- Zimmerman, J.J.; Ferron, G.M.; Lim, H.K.; Parker, V. The effect of a high-fat meal on the oral bioavailability of the immunosuppressant sirolimus (rapamycin). J. Clin. Pharmacol. 1999, 39, 1155–1161. [Google Scholar] [PubMed]
- Product Information: STIVARGA(R) Oral Tablets, Regorafenib Oral Tablets; Bayer HealthCare Pharmaceuticals Inc. (per FDA): Whippany, NJ, USA, 2020. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/203085lbl.pdf (accessed on 5 June 2021).
- Product Information: NEXAVAR(R) Oral Tablets, Sorafenib Oral Tablets; Bayer HealthCare Pharmaceuticals Inc. (per FDA): Whippany, NJ, USA, 2013. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/021923s020lbl.pdf (accessed on 5 June 2021).
- Product Information: REVLIMID(R) Oral Capsules, Lenalidomide Oral Capsules; Celgene Corporation (per FDA): Summit, NJ, USA, 2013. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/021880s034lbl.pdf (accessed on 5 June 2021).
- Cox, D.S.; Papadopoulos, K.; Fang, L.; Bauman, J.; LoRusso, P.; Tolcher, A.; Patnaik, A.; Pendry, C.; Orford, K.; Ouellet, K. Evaluation of the effects of food on the single-dose pharmacokinetics of trametinib, a first-in-class MEK inhibitor, in patients with cancer. J. Clin. Pharmacol. 2013, 53, 946–954. [Google Scholar] [CrossRef] [PubMed]
- Ouellet, D.; Grossmann, K.F.; Limentani, G.; Nebot, N.; Lan, K.; Knowles, L.; Gordon, M.S.; Sharma, S.; Infante, J.R.; Lorusso, P.M.; et al. Effects of particle size, food, and capsule shell composition on the oral bioavailability of dabrafenib, a BRAF inhibitor, in patients with BRAF mutation-positive tumors. J. Pharm. Sci. 2013, 102, 3100–3109. [Google Scholar] [CrossRef] [PubMed]
- Fagan, T.C.; Walle, T.; Oexmann, M.J.; Walle, U.K.; Bai, S.A.; Gaffney, T.E. Increased clearance of propranolol and theophylline by high-protein compared with high-carbohydrate diet. Clin. Pharmacol. Ther. 1987, 41, 402–406. [Google Scholar] [CrossRef]
- Nutt, J.G.; Woodward, W.R.; Hammerstad, J.P.; Carter, J.H.; Anderson, J.L. The “on-off” phenomenon in Parkinson’s disease. Relation to levodopa absorption and transport. N. Engl. J. Med. 1984, 310, 483–488. [Google Scholar] [CrossRef]
- Halter, F.; Huber, R.; Häcki, W.H.; Varga, L.; Bachmann, C. Effect of food on antacid neutralizing capacity in man. Eur. J. Clin. Investig. 1982, 12, 209–217. [Google Scholar] [CrossRef]
- Sugiyama, T.; Tsugawa, Y.; Tseng, C.H.; Kobayashi, Y.; Shapiro, M.F. Different time trends of caloric and fat intake between statin users and nonusers among US adults: Gluttony in the time of statins? JAMA Intern. Med. 2014, 174, 1038–1045. [Google Scholar] [CrossRef][Green Version]
- Ono, A.; Shibaoka, M.; Yano, J.; Asai, Y.; Fujita, T. Eating habits and intensity of medication in elderly hypertensive outpatients. Hypertens. Res. 2000, 23, 195–200. [Google Scholar] [CrossRef][Green Version]
- O’Sullivan, D.; Byrne, S.; O’Connor, M.N.; Ryan, C.; Gallagher, P. STOPP/START criteria for potentially inappropriate prescribing in older people: Version 2. Age Ageing 2015, 44, 213–218. [Google Scholar] [CrossRef]
- O’Connor, M.N.; Gallagher, P.; O’Mahony, D. Inappropriate prescribing: Criteria, detection and prevention. Drugs Aging 2012, 29, 437–452. [Google Scholar] [CrossRef]
- Spinewine, A.; Schmader, K.E.; Barber, N.; Hughes, C.; Lapane, K.L.; Swine, C.; Hanlon, J.T. Appropriate prescribing in elderly people: How well can it be measured and optimised? Lancet 2007, 370, 173–184. [Google Scholar] [CrossRef]
- Hill-Taylor, B.; Walsh, K.A.; Stewart, S.; Hayden, J.; Byrne, S.; Sketris, I.S. Effectiveness of the STOPPSTART (Screening Tool of Older Persons’ potentially inappropriate Prescriptions Screening Tool to Alert doctors to the Right Treatment) criteria: Systematic review and meta-analysis of randomized controlled studies. J. Clin. Pharm. Ther. 2016, 41, 158–169. [Google Scholar] [CrossRef] [PubMed]
- Kimura, T.; Ogura, F.; Yamamoto, K.; Uda, A.; Nishioka, T.; Makimoto, H.; Yano, I.; Hirai, M. Potentially inappropriate medications in elderly Japanese patients: Effects of pharmacists’ assessment and intervention based on Screening Tool of Older Persons’ Potentially Inappropriate Prescriptions criteria ver.2. J. Clin. Pharm. Ther. 2017, 42, 209–214. [Google Scholar] [CrossRef]
- Kose, E.; Wakabayashi, H. Rehabiitation pharmacotherapy: A scoping review. Geriatr. Gerontol. Int. 2020, 20, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Fick, D.M.; Semla, T.P.; Steinman, M.; Beizer, J.; Brandt, N.; Dombrowski, R.; DuBeau, C.E.; Pezzullo, L.; Epplin, J.J.; Flanagan, N.; et al. American Geriatrics Society 2019 updated AGS Beers Criteria® for potentially inappropriate medication use in older adults. J. Am. Geriatr. Soc. 2019, 67, 674–694. [Google Scholar] [CrossRef]
- Kose, E.; Hirai, T.; Seki, T.; Yasuno, N. The impact of decreasing potentially inappropriate medications on activities of daily living in a convalescent rehabilitation setting. Int. J. Clin. Pharm. 2020, 2. [Google Scholar] [CrossRef]
- Johansson, T.; Abuzahra, M.E.; Keller, S.; Mann, E.; Faller, B.; Sommerauer, C.; Höck, J.; Löffler, C.; Köchling, A.; Schuler, J.; et al. Impact of strategies to reduce polypharmacy on clinically relevant endpoints: A systematic review and meta-analysis. Br. J. Clin. Pharmacol. 2016, 532–548. [Google Scholar] [CrossRef][Green Version]
- Rankin, A.; Cadogan, C.A.; Patterson, S.M.; Kerse, N.; Cardwell, C.R.; Bradley, M.C.; Ryan, C.; Hughes, C. Interventions to improve the appropriate use of polypharmacy for older people. Cochrane Database Syst. Rev. 2018, 9, CD008165. [Google Scholar] [CrossRef][Green Version]
- Huiskes, V.J.B.; Burger, D.M.; Van Den Ende, C.H.M.; Van Den Bemt, B.J.F. Effectiveness of medication review: A systematic review and meta-analysis of randomized controlled trials. BMC Fam. Pract. 2017, 18. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ravn-Nielsen, L.V.; Duckert, M.L.; Lund, M.L.; Henriksen, J.P.; Nielsen, M.L.; Eriksen, C.S.; Buck, T.C.; Pottegård, A.; Hansen, M.R.; Hallas, J. Effect of an in-hospital multifaceted clinical pharmacist intervention on the risk of readmission a randomized clinical trial. JAMA Intern. Med. 2018, 178, 375–382. [Google Scholar] [CrossRef][Green Version]
- Gillespie, U.; Alassaad, A.; Henrohn, D.; Garmo, H.; Hammarlund-Udenaes, M.; Toss, H.; Kettis-Lindblad, A.; Melhus, H.; Mörlin, C. A comprehensive pharmacist intervention to reduce morbidity in patients 80 years or older: A randomized controlled trial. Arch. Intern. Med. 2009, 169, 894–900. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lisby, M.; Bonnerup, D.K.; Brock, B.; Gregersen, P.A.; Jensen, J.; Larsen, M.L.; Rungby, J.; Sonne, J.; Mainz, J. Medication Review and Patient Outcomes in an Orthopedic Department: A Randomized Controlled Study. J. Patient Saf. 2018, 14, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Schcolnik-Cabrera, A.; Chávez-Blanco, A.; Domínguez-Gómez, G.; Dueñas-González, A. Understanding tumor anabolism and patient catabolism in cancerassociated cachexia. Am. J. Cancer Res. 2017, 7, 1107–1135. [Google Scholar] [PubMed]
- Arends, J.; Strasser, F.; Gonella, S.; Solheim, T.S.; Madeddu, C.; Ravasco, P.; Buonaccorso, L.; de van der Schueren, M.A.E.; Baldwin, C.; Chasen, C.I.; et al. Cancer cachexia in adult patients: ESMO Clinical Practice Guidelines. ESMO Open 2021. [Google Scholar] [CrossRef]
- Roeland, E.J.; Bohlke, K.; Baracos, V.E.; Bruera, E.; Fabbro, E.D.; Dixon, S.; Fallon, M.; Herrstedt, J.; Lau, H.; Platek, M.; et al. Management of cancer cachexia: ASCO guideline. J. Clin. Oncol. 2020, 38, 2438–2453. [Google Scholar] [CrossRef]
- Temel, J.S.; Abernethy, A.P.; Currow, D.C.; Friend, J.; Duus, E.M.; Yan, Y.; Fearon, K.C. Anamorelin in patients with non-small cell lung cancer and cachexia (ROMANA 1 and ROMANA 2): Results from two randomized, double-blind, phase 3 trials. Lancet Oncol. 2016, 17, 519–531. [Google Scholar] [CrossRef]
- Currow, D.; Temel, J.S.; Abernethy, A.; Milanowski, J.; Friend, J.; Fearon, K.C. ROMANA. 3: A phase 3 safety extension study of anamorelin in advanced nonsmall-cell lung cancer (NSCLC) patients with cachexia. Ann. Oncol. 2017, 28, 1949–1956. [Google Scholar] [CrossRef]
- Wakabayashi, H.; Arai, H.; Inui, A. The regulatory approval of anamorelin for treatment of cachexia in patients with non-small cell lung cancer, gastric cancer, pancreatic cancer, and colorectal cancer in Japan: Facts and numbers. J. Cachexia Sarcopenia Muscle 2021, 12, 14–16. [Google Scholar] [CrossRef]
- Wakabayashi, H.; Sakuma, K. Rehabilitation nutrition for sarcopenia with disability: A combination of both rehabilitation and nutrition care management. J. Cachexia Sarcopenia Muscle 2014, 5, 269–277. [Google Scholar] [CrossRef]
- Wakabayashi, H. Rehabilitation nutrition in general and family medicine. J. Gen. Fam. Med. 2017, 18, 153–154. [Google Scholar] [CrossRef][Green Version]
- Nishioka, S.; Aragane, H.; Suzuki, N.; Yoshimura, Y.; Fujiwara, D.; Mori, T.; Kanehisa, Y.; Iida, Y.; Higashi, K.; Yoshimura-Yokoi, Y.; et al. Clinical practice guidelines for rehabilitation nutrition in cerebrovascular disease, hip fracture, cancer, and acute illness: 2020 update. Clin. Nutr. ESPEN 2021. [Google Scholar] [CrossRef] [PubMed]
- Nishioka, S.; Wakabayashi, H.; Nishioka, E.; Yoshida, T.; Mori, N.; Watanabe, R. Nutritional improvement correlates with recovery of activities of daily living among malnourished elderly stroke patients in the convalescent stage: A cross-sectional study. J. Acad. Nutr. Diet. 2016, 116, 837–843. [Google Scholar] [CrossRef]
- Uno, C.; Maeda, K.; Wakabayashi, H.; Nishioka, S.; Ogawa, N.; Okamoto, T.; Hoyano, K.; Momosaki, R. Nutritional status change and activities of daily living in elderly pneumonia patients admitted to acute care hospital: A retrospective cohort study from the Japan Rehabilitation Nutrition Database. Nutrition 2020, 71, 110613. [Google Scholar] [CrossRef] [PubMed]
- Nishioka, S.; Wakabayashi, H.; Momosaki, R. Nutritional status changes and activities of daily living after hip fracture in convalescent rehabilitation units: A retrospective observational cohort study from the Japan rehabilitation nutrition database. J. Acad. Nutr. Diet. 2018, 118, 1270–1276. [Google Scholar] [CrossRef] [PubMed]
Vitamin | |||
---|---|---|---|
Vitamin | Drug | Effects of Interactions | Reference |
A | Paclitaxel | Vitamin A inhibits the metabolism of paclitaxel and increases the blood concentration of paclitaxel | [71] |
B6 | Phenytoin | Decrease in blood phenytoin level | [72] |
Aluminum hydroxide | Decreased absorption of riboflavin and prolonged time for urinary excretion to reach its maximum | [73] | |
Levodopa | Accelerates levodopa degradation and reduces its migration in the brain | [74] | |
B12 | Cimetidine | Decreased absorption of vitamin B12 with intake of 1000 mg/day | [75] |
C | Iron sulfate | Iron absorption increases with concurrent intake of ≥200 mg of vitamin C | [76] |
D | Thiazide Diuretics | Hypercalcemia | [77] |
Digoxin | Hypercalcemia can lead to digitalis poisoning | [78] | |
E | Warfarin | Prolongation of prothrombin time and appearance of ecchymosis | [79] |
K | Warfarin | Decreased effect of warfarin | [80] |
Calcium | |||
Drug | Effectsof Interactions | Reference | |
Aspirin | AUC and Cmax significantly decreased by approximately 30% and 28%, respectively, and disappearance speed rate of aspirin also decreased | [81] | |
Tetracycline antibiotics | Calcium and the drug bind together to form a chelate, which reduces absorption from the small intestine | [82] | |
New quinolone antibiotics | [83] | ||
Bisphosphonate osteoporosis drugs | [84] | ||
Estramustine phosphate | [85] | ||
Digoxin | Large amounts of calcium should be avoided as hypercalcemia causes digitalis toxicity | [86] | |
Alfacalcidol, rocartrol, andeldecalcitol | Promotes the absorption of calcium in the intestinal tract | [87] | |
High-fat meals | |||
Drug | Effects of Interactions | Reference | |
Cyclosporine | Significantly increased blood concentration (approximate 1.5-fold AUC increase) | [88] | |
Theophylline | Faster absorption of theophylline, significant increase in AUC | [89] | |
Griseofulvin | Significantly increased absorption of griseofulvin by approximately 120% | [90] | |
Oxycodone | Approximately 20% increase in AUC | [91] | |
Ivermectin | AUC increased to approximately 2.6 times that of fasting administration | [92] | |
Erlotinib | AUC of erlotinib almost doubled compared to fasting | [93] | |
Sirolimus | Increased tmax, Cmax, and AUC | [94] | |
Regorafenib | Decrease in Cmax and AUC of active metabolites | [95] | |
Sorafenib | Decrease in plasma concentration | [96] | |
Lenalidomide | Decrease in AUC and Cmax | [97] | |
Trametinib | Plasma trametinib AUC and Cmax of plasma trametinib were decreased by approximately 10% and 70%, respectively, compared to fasting | [98] | |
Dabrafenib | AUC and Cmax decreased by approximately 31% and 51%, respectively, compared to fasting | [99] | |
High-protein meals | |||
Drug | Effects of Interactions | Reference | |
Propranolol | 74% increase in clearance of propranolol | [100] | |
Theophylline | 32% increase in the clearance of theophylline and 26% decrease in half-life | [100] | |
Levodopa | Reduced levodopa absorption due to drug transporter competition | [101] | |
Aluminum hydroxide | Decreased antacid effect of aluminum hydroxide | [102] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kose, E.; Wakabayashi, H.; Yasuno, N. Polypharmacy and Malnutrition Management of Elderly Perioperative Patients with Cancer: A Systematic Review. Nutrients 2021, 13, 1961. https://doi.org/10.3390/nu13061961
Kose E, Wakabayashi H, Yasuno N. Polypharmacy and Malnutrition Management of Elderly Perioperative Patients with Cancer: A Systematic Review. Nutrients. 2021; 13(6):1961. https://doi.org/10.3390/nu13061961
Chicago/Turabian StyleKose, Eiji, Hidetaka Wakabayashi, and Nobuhiro Yasuno. 2021. "Polypharmacy and Malnutrition Management of Elderly Perioperative Patients with Cancer: A Systematic Review" Nutrients 13, no. 6: 1961. https://doi.org/10.3390/nu13061961