Dietary Patterns and the Risk of Inflammatory Bowel Disease: Findings from a Case-Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Setting and Study Approval
2.3. Data Collection
2.3.1. Sociodemographic Data
2.3.2. Dietary Assessment
2.3.3. Anthropometric Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vagianos, K.; Bector, S.; McConnell, J.; Bernstein, C.N. Nutrition Assessment of Patients with Inflammatory Bowel Disease. J. Parenter. Enter. Nutr. 2007, 31, 311–319. [Google Scholar] [CrossRef]
- Lovasz, B.D.; Golovics, P.A.; Vegh, Z.; Lakatos, P.L. New trends in inflammatory bowel disease epidemiology and disease course in Eastern Europe. Dig. Liver Dis. 2013, 45, 269–276. [Google Scholar] [CrossRef]
- Ng, S.C. Emerging leadership lecture: Inflammatory bowel disease in A sia: Emergence of a “Western” disease. J. Gastroenterol. Hepatol. 2015, 30, 440–445. [Google Scholar] [CrossRef] [Green Version]
- Durchschein, F.; Petritsch, W.; Hammer, H.F. Diet therapy for inflammatory bowel diseases: The established and the new. World J. Gastroenterol. 2016, 22, 2179–2194. [Google Scholar] [CrossRef] [PubMed]
- Racine, A.; Carbonnel, F.; Chan, S.S.; Hart, A.R.; Bueno-de-Mesquita, H.B.; Oldenburg, B.; Key, T. Dietary patterns and risk of inflammatory bowel disease in Europe: Results from the EPIC study. Inflamm. Bowel Dis. 2016, 22, 345–354. [Google Scholar] [CrossRef] [Green Version]
- Chapman-Kiddell, C.A.; Davies, P.S.; Gillen, L.; Radford-Smith, G.L. Role of diet in the development of inflammatory bowel disease. Inflamm. Bowel Dis. 2010, 16, 137–151. [Google Scholar] [CrossRef] [PubMed]
- Nickerson, K.P.; McDonald, C. Crohn’s disease-associated adherent-invasive Escherichia coli adhesion is enhanced by exposure to the ubiquitous dietary polysaccharide maltodextrin. PLoS ONE 2012, 7, e52132. [Google Scholar] [CrossRef] [Green Version]
- Manzel, A.; Muller, D.N.; Hafler, D.A.; Erdman, S.E.; Linker, R.A.; Kleinewietfeld, M. Role of “Western diet” in inflammatory autoimmune diseases. Curr. Allergy Asthma Rep. 2014, 14, 404. [Google Scholar] [CrossRef] [Green Version]
- Hart, A.R.; Luben, R.; Olsen, A.; Tjonneland, A.; Linseisen, J.; Nagel, G.; Berglund, G.; Lindgren, S.; Grip, O.; Key, T.; et al. Diet in the Aetiology of Ulcerative Colitis: A European Prospective Cohort Study. Digestion 2008, 77, 57–64. [Google Scholar] [CrossRef]
- Demetriou, C.A.; Hadjisavvas, A.; A Loizidou, M.; Loucaides, G.; Neophytou, I.; Sieri, S.; Kakouri, E.; Middleton, N.; Vineis, P.; Kyriacou, K. The mediterranean dietary pattern and breast cancer risk in Greek-Cypriot women: A case-control study. BMC Cancer 2012, 12, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altomare, R.; Cacciabaudo, F.; Damiano, G.; Palumbo, V.D.; Gioviale, M.C.; Bellavia, M.; Tomasello, G.; Monte, A.I.L. The Mediterranean Diet: A History of Health. Iran. J. Public Health 2013, 42, 449–457. [Google Scholar] [PubMed]
- Estruch, R. Anti-inflammatory effects of the Mediterranean diet: The experience of the PREDIMED study. Proc. Nutr. Soc. 2010, 69, 333–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Filippis, F.; Pellegrini, N.; Vannini, L.; Jeffery, I.B.; La Storia, A.; Laghi, L.; Serrazanetti, D.I.; Di Cagno, R.; Ferrocino, I.; Lazzi, C.; et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 2016, 65, 1812–1821. [Google Scholar] [CrossRef]
- Merra, G.; Noce, A.; Marrone, G.; Cintoni, M.; Tarsitano, M.G.; Capacci, A.; De Lorenzo, A. Influence of Mediterranean Diet on Human Gut Microbiota. Nutrients 2020, 13, 7. [Google Scholar] [CrossRef]
- Ghazzawe, E.; Al-Mrayat, Z. Review of chronic ulcerative colitis cases at King Hussein Medical Centre. Jordan East. Medierrian Health J. 2007, 13, 249–300. [Google Scholar]
- Chan, S.S.; Luben, R.; Olsen, A.; Tjonneland, A.; Kaaks, R.; Teucher, B.; Bergmann, M.M. Body Mass Index and the Risk for Crohn’s Disease and Ulcerative Colitis: Data from a European Prospective Cohort Study (TheIBDin EPIC Study). Am. J. Gastroenterol. 2013, 108, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Tayyem, R.F.; Abu-Mweis, S.S.; Bawadi, H.A.; Agraib, L.; Bani-Hani, K. Validation of a Food Frequency Questionnaire to Assess Macronutrient and Micronutrient Intake among Jordanians. J. Acad. Nutr. Diet. 2014, 114, 1046–1052. [Google Scholar] [CrossRef]
- Lee, R.D.; Nieman, D.C. Nutritional Assessment, 6th ed.; McGraw Hill: New York, NY, USA, 2012. [Google Scholar]
- Sallis, J.F.; Haskell, W.L.; Wood, P.D.; Fortmann, S.P.; Rogers, T.; Blair, S.N.; Paffenbarger, R.S. Physical Activity Assessment Methodology in the Five-City Project1. Am. J. Epidemiol. 1985, 121, 91–106. [Google Scholar] [CrossRef] [PubMed]
- Vasseur, P.; Dugelay, E.; Benamouzig, R.; Savoye, G.; Lan, A.; Srour, B.; Hercberg, S.; Touvier, M.; Hugot, J.P.; Julia, C.; et al. Dietary Patterns, Ultra-processed Food, and the Risk of Inflammatory Bowel Diseases in the NutriNet-Santé Cohort. Inflamm. Bowel Dis. 2021, 27, 65–73. [Google Scholar] [CrossRef]
- Limdi, J.K.; Aggarwal, D.; McLaughlin, J.T. Dietary Practices and Beliefs in Patients with Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2016, 22, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Limdi, J.K. Dietary practices and inflammatory bowel disease. Indian J. Gastroenterol. 2018, 37, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, N.; Kono, S.; Wakai, K.; Fukuda, Y.; Satomi, M.; Shimoyama, T.; Kobashi, G. Dietary risk factors for inflammatory bowel disease a Multicenter Case-Control Study in Japan. Inflamm. Bowel Dis. 2005, 11, 154–163. [Google Scholar] [CrossRef]
- Halfvarson, J.; Jess, T.; Magnuson, A.; Montgomery, S.M.; Orholm, M.; Tysk, C.; Binder, V.; Järnerot, G. Environmental factors in inflammatory bowel disease: A co-twin control study of a Swedish-Danish twin population. Inflamm. Bowel Dis. 2006, 12, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Amre, D.K.; D’souza, S.; Morgan, K.; Seidman, G.; Lambrette, P.; Grimard, G.; Chotard, V. Imbalances in dietary consumption of fatty acids, vegetables, and fruits are associated with risk for Crohn’s disease in children. Am. J. Gastroenterol. 2007, 102, 2016–2025. [Google Scholar] [CrossRef] [PubMed]
- Peters, V.; Spooren, C.E.G.M.; Pierik, M.J.; Weersma, R.K.; van Dullemen, H.M.; Festen, E.A.M.; Visschedijk, M.C.; Masclee, A.A.M.; Hendrix, E.M.B.; Almeida, R.J.; et al. Dietary Intake Pattern is Associated with Occurrence of Flares in IBD Patients. J. Crohn’s Coliti 2021. [Google Scholar] [CrossRef]
- Jantchou, P.; Morois, S.; Clavel-Chapelon, F.; Boutron-Ruault, M.-C.; Carbonnel, F. Animal Protein Intake and Risk of Inflammatory Bowel Disease: The E3N Prospective Study. Am. J. Gastroenterol. 2010, 105, 2195–2201. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.K.; Abraham, B.; El-Serag, H. Dietary Intake and Risk of Developing Inflammatory Bowel Disease: A Systematic Review of the Literature. Am. J. Gastroenterol. 2011, 106, 563–573. [Google Scholar] [CrossRef]
- Jowett, S.L.; Seal, C.J.; Pearce, M.S.; Phillips, E.; Gregory, W.; Barton, J.R.; Welfare, M.R. Influence of dietary factors on the clinical course of ulcerative colitis: A prospective cohort study. Gut 2004, 53, 1479–1484. [Google Scholar] [CrossRef]
- Blachier, F.; Beaumont, M.; Kim, E. Cysteine-derived hydrogen sulfide and gut health. Curr. Opin. Clin. Nutr. Metab. Care 2019, 22, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Lletjós, S.; Beaumont, M.; Tomé, D.; Benamouzig, R.; Blachier, F.; Lan, A. Dietary Protein and Amino Acid Supplementation in Inflammatory Bowel Disease Course: What Impact on the Colonic Mucosa? Nutrients 2017, 9, 310. [Google Scholar] [CrossRef] [Green Version]
- Cioffi, I.; Imperatore, N.; Di Vincenzo, O.; Pagano, M.C.; Santarpia, L.; Pellegrini, L.; Testa, A.; Marra, M.; Contaldo, F.; Castiglione, F.; et al. Evaluation of nutritional adequacy in adult patients with Crohn’s disease: A cross-sectional study. Eur. J. Nutr. 2020, 59, 3647–3658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Food Items | Dietary Patterns | |
---|---|---|
High-Vegetables | High-Protein | |
Beef Mortadella | 0.842 | |
Burger | 0.877 | |
Canned Tuna | 0.874 | |
Chicken Mortadella | 0.648 | |
Chicken | 0.724 | |
Chicken Liver | 0.724 | |
Egg | 0.724 | |
Cauliflower | 0.471 | |
Colored Pepper | 0.890 | |
Mixed Vegetables | 0.890 | |
Fresh Tomato | 0.890 | |
Green Beans | 0.431 | |
Carrot | 0.454 | |
Onion | 0.890 | |
Peas | 0.462 | |
Labaneh | 0.423 | |
Milk | −0.360 | |
White Cheese | 0.423 | |
Olive Oil | −0.393 | |
Sunflower Oil | −0.393 | |
Olive Pickles | 0.890 | |
% Variance Explained | 24.33 | 21.27 |
Variables | Participants | p-Value | ||||
---|---|---|---|---|---|---|
Control (n = 150) | IBD Total | p-Value | UC (n = 100) | CD (n = 85) | ||
N (%) | ||||||
Gender | ||||||
Male | 74 (49.3) | 73 (39.5) | 0.244 | 35 (35) | 38 (44.7) | 0.081 |
Female | 76 (50.7) | 112 (60.5) | 65 (65) | 47 (55.3) | ||
Marital Status | ||||||
Married | 116 (77.3) | 141 (78.4) | 0.493 | 75 (75) | 66 (77.6) | 0.928 |
Single | 25 (15.1) | 28 (15.7) | 17 (17) | 11 (12.9) | ||
Divorce | 6 (6.4) | 11 (3.2) | 5 (5) | 6 (7.1) | ||
Widow | 3 (3.2) | 5 (2.7) | 3 (3) | 2 (2.4) | ||
Education Level | ||||||
Below the high school | 7 (4.7) | 9 (4.9) | 0.205 | 5 (5) | 4 (4.7) | 0.546 |
High school | 46 (30.7) | 70 (37.8) | 37 (37) | 33 (38.8) | ||
Diploma | 26 (17.3) | 37 (20.0) | 16 (16) | 21 (24.7) | ||
Bachelor | 59 (39.3) | 57 (30.8) | 36 (36) | 21 (24.7) | ||
Master degree | 9 (6) | 8 (4.3) | 3 (3) | 5 (5.9) | ||
Doctorate degree | 3 (2) | 4 (2.2) | 3 (3) | 1 (1.2) | ||
Work Status | ||||||
Employee | 96 (64) | 84 (45.4) | 0.596 | 46 (46) | 38 (44.7) | 0.003 |
Not employed or retired | 54 (36) | 101 (54.6) | 54 (54) | 47 (55.3) | ||
Food Problem | ||||||
Yes (anorexia, dysphagia, and tasteless and odorless food) | 7 (4.7) | 20 (10.8) | 0.258 | 14 (14) | 6 (7.05) | 0.139 |
No | 143 (95.3) | 165 (89.2) | 86 (86) | 79 (92.9) | ||
Family History | ||||||
Yes | - | 37 (20.0) | 0.001 | 24 (24) | 13 (15.3) | 0.001 |
No | 150 (100) | 148 (80.0) | 76 (76) | 72 (84.7) | ||
Cigarette Smoking | ||||||
Smoker | 57 (38) | 62 (33.5) | 0.074 | 25 (25) | 37 (43.5) | 0.001 |
Non-smoker | 91 (60.7) | 99 (63.8) | 60 (60) | 39 (45.9) | ||
Former-smoker | 2 (1.3) | 24 (2.7) | 15 (15) | 9 (10.6) | ||
Duration of Suffering from IBD | ||||||
Duration Less than 30 days | - | 75 (40.5) | - | 29 (29) | 46 (54.1) | 0.001 |
Duration from 30–60 days | - | 61 (33.0) | 39 (39) | 22 (25.9) | ||
Duration from 60–90 days | - | 49 (26.5) | 32 (32) | 17 (20) | ||
Mean ± SD | ||||||
Age (years) | 41.4 ± 12.5 | 39.8 ± 12.6 | 0.446 | 39.8 ± 11.9 | 41.2 ± 12.8 | 0.580 |
Height (Cm) | 166.4 ± 0.1 a | 164.8 ± 8.3 | 0.128 | 162.5 ± 0.1 b | 168.4 ± 0.1 a | 0.001 |
Current Weight (Kg) (Measured) | 74.8 ± 13.1 a | 71.0 ± 13.0 | 0.007 | 66.9 ± 11.9 b | 75.6 ± 12.8 a | 0.001 |
Previous weight (Kg) (Self-reported) | 74.3 ± 12.7 a | 72.7 ± 13.4 | 0.460 | 68.6 ± 12.5 b | 77.5 ± 13.1 a | 0.001 |
Current BMI (kg/m2) | 27.1 ± 4.4 a | 27.0 ± 4.7 | 0.050 | 25.5 ± 4.9 b | 26.8 ± 4.9 a | 0.021 |
Waist Circumference (cm) | 89.04 ± 9.0 a | 88.4 ± 9.5 | 0.019 | 83.9 ± 9.3 b | 89.9 ± 13.0 a | 0.001 |
Physical activity (Met/week) | 2479.4 ± 296.8 a | 19018 ± 673.8 | 0.011 | 1971.4 ± 887.6 b | 1818.8 ± 887.2 b | 0.033 |
Variables | Q1 | Q2 | Q3 | Q4 |
---|---|---|---|---|
Crude OR and CI # | ||||
High-Vegetable | 1 | 0.648 (0.339–1.24) | 0.136 (0.068–0.271) | 0.126 (0.064–0.248) |
Controls/Cases | 21/68 | 20/60 | 51/32 | 59/27 |
High-Protein | 1 | 1.130(0.572–2.235) | 2.196 (1.046–4.610) | 4.391 (2.67–8.506) |
Controls/Cases | 43/40 | 57/27 | 25/46 | 25/52 |
Adjusted OR and CI Model 1 * | ||||
High-Vegetable | 1 | 0.669 (0.241–1.2853) | 0.142 (0.071–0.285) | 0.128 (0.064–0.255) |
Controls/Cases | 21/68 | 20/60 | 51/32 | 59/27 |
High-Protein | 1 | 1.091(0.549–2.165) | 2.216 (1.146–4.210) | 4.215 (2.166–8.204) |
Controls/Cases | 43/40 | 57/27 | 25/46 | 25/52 |
Adjusted OR and CI Model 2 ** | ||||
High-Vegetable | 1 | 0.664 (0.336–1.2853) | 0.127 (0.060–0.261) | 0.114 (0.055–0.237) |
Controls/Cases | 21/68 | 20/60 | 51/32 | 59/27 |
High-Protein | 1 | 1.003(0.483–2.085) | 2.196 (1.101–4.357) | 5.452 (2.646–11.232) |
Controls/Cases | 43/40 | 57/27 | 25/46 | 25/52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tayyem, R.F.; Qalqili, T.R.; Ajeen, R.; Rayyan, Y.M. Dietary Patterns and the Risk of Inflammatory Bowel Disease: Findings from a Case-Control Study. Nutrients 2021, 13, 1889. https://doi.org/10.3390/nu13061889
Tayyem RF, Qalqili TR, Ajeen R, Rayyan YM. Dietary Patterns and the Risk of Inflammatory Bowel Disease: Findings from a Case-Control Study. Nutrients. 2021; 13(6):1889. https://doi.org/10.3390/nu13061889
Chicago/Turabian StyleTayyem, Reema F., Tamara R. Qalqili, Rawan Ajeen, and Yaser M. Rayyan. 2021. "Dietary Patterns and the Risk of Inflammatory Bowel Disease: Findings from a Case-Control Study" Nutrients 13, no. 6: 1889. https://doi.org/10.3390/nu13061889
APA StyleTayyem, R. F., Qalqili, T. R., Ajeen, R., & Rayyan, Y. M. (2021). Dietary Patterns and the Risk of Inflammatory Bowel Disease: Findings from a Case-Control Study. Nutrients, 13(6), 1889. https://doi.org/10.3390/nu13061889