Human Milk Virome Analysis: Changing Pattern Regarding Mode of Delivery, Birth Weight, and Lactational Stage
Abstract
1. Introduction
2. Material and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ratsika, A.; Codagnone, M.C.; O’Mahony, S.; Stanton, C.; Cryan, J.F. Priming for Life: Early Life Nutrition and the Microbiota-Gut-Brain Axis. Nutrients 2021, 13, 423. [Google Scholar] [CrossRef] [PubMed]
- Boudry, G.; Charton, E.; Le Huerou-Luron, I.; Ferret-Bernard, S.; Le Gall, S.; Even, S.; Blat, S. The Relationship between Breast Milk Components and the Infant Gut Microbiota. Front. Nutr. 2021, 8, 629740. [Google Scholar] [CrossRef] [PubMed]
- Moubareck, C.A. Human Milk Microbiota and Oligosaccharides: A Glimpse into Benefits, Diversity, and Correlations. Nutrients 2021, 13, 1123. [Google Scholar] [CrossRef] [PubMed]
- Carr, L.E.; Virmani, M.D.; Rosa, F.; Munblit, D.; Matazel, K.S.; Elolimy, A.A.; Yeruva, L. Role of Human Milk Bioactives on Infants’ Gut and Immune Health. Front. Immunol. 2021, 12, 604080. [Google Scholar] [CrossRef] [PubMed]
- Mohandas, S.; Pannaraj, P.S. Beyond the Bacterial Microbiome: Virome of Human Milk and Effects on the Developing Infant. Nestle Nutr. Inst. Workshop Ser. 2020, 94, 86–93. [Google Scholar]
- Stewart, C.J.; Ajami, N.J.; O’Brien, J.L.; Hutchinson, D.S.; Smith, D.P.; Wong, M.C.; Ross, M.C.; Lloyd, R.E.; Doddapaneni, H.; Metcalf, G.A.; et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 2018, 562, 583–588. [Google Scholar] [CrossRef]
- Ho, N.T.; Li, F.; Lee-Sarwar, K.A.; Tun, H.M.; Brown, B.P.; Pannaraj, P.S.; Bender, J.M.; Azad, M.B.; Thompson, A.L.; Weiss, S.T.; et al. Meta-analysis of effects of exclusive breastfeeding on infant gut microbiota across populations. Nat. Commun. 2018, 9, 4169. [Google Scholar] [CrossRef]
- Fernández, L.; Pannaraj, P.S.; Rautava, S.; Rodríguez, J.M. The Microbiota of the Human Mammary Ecosystem. Front. Cell Infect. Microbiol. 2020, 10, 586667. [Google Scholar] [CrossRef]
- Vemuri, R.; Shankar, E.M.; Chieppa, M.; Eri, R.; Kavanagh, K. Beyond Just Bacteria: Functional Biomes in the Gut Ecosystem Including Virome, Mycobiome, Archaeome and Helminths. Microorganisms 2020, 8, 483. [Google Scholar] [CrossRef] [PubMed]
- Amenyogbe, N.; Kollmann, T.R.; Ben-Othman, R. Early-life host-microbiome Interphase: The key frontier for immune development. Front. Pediatr. 2017, 5, 111. [Google Scholar] [CrossRef]
- Moossavi, S.; Sepehri, S.; Robertson, B.; Bode, L.; Goruk, S.; Field, C.J.; Lix, L.M.; de Souza, R.J.; Becker, A.B.; Mandhane, P.J.; et al. Composition and Variation of the Human Milk Microbiota Are Influenced by Maternal and Early-Life Factors. Cell Host Microbe 2019, 25, 324–335. [Google Scholar] [CrossRef] [PubMed]
- Pannaraj, P.S.; Li, F.; Cerini, C.; Bender, J.M.; Yang, S.; Rollie, A.; Adisetiyo, H.; Zabih, S.; Lincez, P.J.; Bittinger, K.; et al. Association Between Breast Milk Bacterial Communities and Establishment and Development of the Infant Gut Microbiome. JAMA Pediatr. 2017, 171, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhya, I.; Segal, J.P.; Carding, S.R.; Hart, A.L.; Hold, G.L. The gut virome: The ‘missing link’ between gut bacteria and host immunity? Therap. Adv. Gastroenterol. 2019, 12, 1756284819836620. [Google Scholar] [CrossRef]
- Lim, E.S.; Zhou, Y.; Zhao, G.; Bauer, I.K.; Droit, L.; Ndao, I.M.; Warner, B.B.; Tarr, P.I.; Wang, D.; Holtz, L.R. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat. Med. 2015, 21, 1228–1234. [Google Scholar] [CrossRef]
- Liang, G.; Zhao, C.; Zhang, H.; Mattei, L.; Sherrill-Mix, S.; Bittinger, K.; Kessler, L.R.; Wu, G.D.; Baldassano, R.N.; DeRusso, P.; et al. The stepwise assembly of the neonatal virome is modulated by breastfeeding. Nature 2020, 581, 470–474. [Google Scholar] [CrossRef]
- Pannaraj, P.S.; Ly, M.; Cerini, C.; Saavedra, M.; Aldrovandi, G.M.; Saboory, A.A.; Johnson, K.M.; Pride, D.T. Shared and Distinct Features of Human Milk and Infant Stool Viromes. Front. Microbiol. 2018, 9, 1162. [Google Scholar] [CrossRef] [PubMed]
- Duranti, S.; Lugli, G.A.; Mancabelli, L.; Armanini, F.; Turroni, F.; James, K.; Ferretti, P.; Gorfer, V.; Ferrario, C.; Milani, C.; et al. Maternal inheritance of bifidobacterial communities and bifidophages in infants through vertical transmission. Microbiome 2017, 5, 66. [Google Scholar] [CrossRef] [PubMed]
- Quinn, J.A.; Munoz, F.M.; Gonik, B.; Frau, L.; Cutland, C.; Mallett-Moore, T.; Kissou, A.; Wittke, F.; Das, M.; Nunes, T.; et al. Preterm birth: Case definition & guidelines for data collection, analysis, and presentation of immunisation safety data. Vaccine 2016, 34, 6047–6056. [Google Scholar]
- Villar, J.; Cheikh Ismail, L.; Victora, C.G.; Ohuma, E.O.; Bertino, E.; Altman, D.G.; Lambert, A.; Papageorghiou, A.T.; Carvalho, M.; Jaffer, Y.A.; et al. International standards for newborn weight, length, and head circumference by gestational age and sex: The Newborn Cross-Sectional Study of the INTERGROWTH-21st Project. Lancet 2014, 384, 857–868. [Google Scholar] [CrossRef]
- Schmieder, R.; Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 2011, 2, 863–864. [Google Scholar] [CrossRef]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liang, Y.; Lynch, K.H.; Dennis, J.J.; Wishart, D.S. PHAST: A fast phage search tool. Nucleic Acids Res. 2011, 39, W347–W352. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria; Available online: http://www.R-project.org/ (accessed on 7 May 2018).
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef]
- McArdle, B.H.; Anderson, M.J. Fitting multivariate models to community data: A comment based on distance-based redundancy analysis. Ecology 2001, 82, 290–297. [Google Scholar] [CrossRef]
- Comitini, F.; Fanos, V. The dark matter of microbiome: The mother-infant pair virome. Minerva Pediatr. 2020. Available online: https://pubmed.ncbi.nlm.nih.gov/33107274/ (accessed on 27 October 2020). [CrossRef]
- Blohm, G.M.; Lednicky, J.A.; Márquez, M.; White, S.K.; Loeb, J.C.; Pacheco, C.A.; Nolan, D.J.; Paisie, T.; Salemi, M.; Rodríguez-Morales, A.J.; et al. Evidence for Mother-to-Child Transmission of Zika Virus Through Breast Milk. Clin. Infect Dis. 2018, 66, 1120–1121. [Google Scholar] [CrossRef] [PubMed]
- Le Doare, K.; Holder, B.; Bassett, A.; Pannaraj, P.S. Mother’s Milk: A Purposeful Contribution to the Development of the Infant Microbiota and Immunity. Front. Immunol. 2018, 9, 361. [Google Scholar] [CrossRef] [PubMed]
- Maqsood, R.; Reus, J.B.; Wu, L.I.; Holland, L.A.; Nduati, R.; Mbori-Ngacha, D.; Maleche-Obimbo, E.; Begnel, E.R.; Gantt, S.; Ojee, E.; et al. Breast Milk Virome and Bacterial Microbiome Resilience in Kenyan Women Living with HIV. mSystems 2021, 6, e01079-20. [Google Scholar] [CrossRef]
- Moossavi, S.; Azad, M.B. Origins of human milk microbiota: New evidence and arising questions. Gut Microbes 2020, 12, 1667722. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, P.; Curtis, N. Breast milk microbiota: A review of the factors that influence composition. J. Infect. 2020, 81, 17–47. [Google Scholar] [CrossRef] [PubMed]
- Dinleyici, M.; Pérez-Brocal, V.; Arslanoglu, S.; Aydemir, O.; Ozumut, S.S.; Tekin, N.; Vandenplas, Y.; Moya, A.; Dinleyici, E.C. Human milk mycobiota composition: Relationship with gestational age, delivery mode, and birth weight. Benef. Microbes 2020, 11, 151–162. [Google Scholar] [CrossRef]
- Pärnänen, K.; Karkman, A.; Hultman, J.; Lyra, C.; Bengtsson-Palme, J.; Larsson, D.G.J.; Rautava, S.; Isolauri, E.; Salminen, S.; Kumar, H.; et al. Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements. Nat. Commun. 2018, 9, 3891. [Google Scholar] [CrossRef]
- Lim, E.S.; Wang, D.; Holtz, L.R. The bacterial microbiome and virome milestones of infant development. Trends Microbiol. 2016, 24, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Ojo-Okunola, A.; Nicol, M.; du Toit, E. Human Breast Milk Bacteriome in Health and Disease. Nutrients 2018, 10, 1643. [Google Scholar] [CrossRef] [PubMed]
- Rautava, S. Early microbial contact, the breast milk microbiome and child health. J. Dev. Orig. Health Dis. 2016, 7, 5–14. [Google Scholar] [CrossRef]
- Bergmann, H.; Rodríguez, J.M.; Salminen, S.; Szajewska, H. Probiotics in human milk and probiotic supplementation in infant nutrition: A workshop report. Br. J. Nutr. 2014, 112, 1119–1128. [Google Scholar] [CrossRef]
- LeMay-Nedjelski, L.; Copeland, J.; Wang, P.W.; Butcher, J.; Unger, S.; Stintzi, A.; O’Connor, D.L. Methods and Strategies to Examine the Human Breastmilk Microbiome. Methods Mol. Biol. 2018, 1849, 63–86. [Google Scholar] [PubMed]
- Walsh, C.; Lane, J.A.; van Sinderen, D.; Hickey, R.M. Human milk oligosaccharides: Shaping the infant gut microbiota and supporting health. J. Funct. Foods 2020, 72, 104074. [Google Scholar] [CrossRef] [PubMed]
- García-López, R.; Pérez-Brocal, V.; Moya, A. Beyond cells—The virome in the human holobiont. Microb. Cell 2019, 6, 373–396. [Google Scholar] [CrossRef]
Maternal Age (Years) * | Delivery Mode (SV/CS) | Gestational Age (Weeks) * | Birth Weight (Gram) * | Gender (Boys/Girls) | Transient HM Sampling Time (Days) * | Mature HM Sampling Time (Days) * | |
---|---|---|---|---|---|---|---|
Total | 30 | 9/35 | 38 | 2840 | 18/26 | 8 | 51.5 |
(n = 44) | (18–44) | (32–41) | (1200–4600) | (7–14) | (45–70) | ||
NS-T | 33 | 8/0 | 38.5 | 3225 | 1/7 | 12 | 53.5 |
(n = 8) | (20–41) | (37–40) | (2880–3600) | (8–14) | (47–70) | ||
CS-T | 35 | 0/9 | 38 | 3080 | 5/8 | 8 | 55 |
(n = 9) | (25–44) | (37–41) | (2730–3600) | (7–13) | (45–70) | ||
PT | 30 | 0/13 | 35 | 2255 | 3/6 | 8 | 50 |
(n = 13) | (18–43) | (32–37) | (1200–2700) | (7–14) | (45–62) | ||
SGA | 34 | 1/6 | 37 | 2225 | 3/4 | 8 | 49 |
(n = 7) | (22–38) | (34–41) | (1670–2500) | (7–12) | (45–63) | ||
LGA | 30 | 0/7 | 39 | 4120 | 6/1 | 8 | 51 |
(n = 7) | (23–39) | (37–41) | (3505–4600) | (7–13) | (45–63) |
Transient Human Milk (7–15 Days) | Mature Human Milk (45–90 Days) | ||||||
---|---|---|---|---|---|---|---|
Group | Species | n | % | Group | Species | n | % |
NS-T (n = 432) | Picornavirinae | 240 | 55.5 | NS-T (n = 482) | Siphoviridae_n__uc | 170 | 35.2 |
Cp1virus__uc | 57 | 13.2 | Siphoviridae_n_n__uc | 69 | 14.3 | ||
Staphylococcus phage Andhra | 27 | 6.25 | Enterococcus phage EFC-1 | 30 | 6.2 | ||
Staphylococcus phage St 134 | 23 | 5.32 | Picovirinae__uc | 29 | 6.0 | ||
Halomonas phage phiHAP-1 | 14 | 3.24 | Human betaherpesvirus 5 | 25 | 5.2 | ||
Streptococcus virus Cp1 | 13 | 3.0 | Clostridium phage vB_CpeS-CP51 | 17 | 3.5 | ||
Vibrio phage VP882 | 9 | 2.0 | Brochothrix phage NF5 | 16 | 3.3 | ||
Human betaherpesvirus 5 | 9 | 2.0 | Sextaecvirus__uc | 14 | 2.9 | ||
CS-T (n = 397) | Sep1virus__uc | 144 | 36.2 | CS-T (n = 243) | Human betaherpesvirus 5 | 73 | 30.0 |
Picovirinae__uc | 51 | 12.8 | Sep1virus__uc | 67 | 27.5 | ||
Siphoviridae_n_n__uc32 | 32 | 8.1 | Siphoviridae_n_n__uc | 19 | 7.8 | ||
Streptococcus phage IPP62 | 25 | 6.3 | Myoviridae__uc | 8 | 3.2 | ||
Staphylococcus virus SEP1 | 20 | 5.0 | Staphylococcus virus SEP1 | 8 | 3.2 | ||
Siphoviridae_n__uc | 19 | 4.8 | Podoviridae__uc | 7 | 2.9 | ||
Myoviridae__uc | 13 | 3.2 | Staphylococcus virus IPLAC1C | 5 | 2.0 | ||
Staphylococcus virus IPLAC1C | 11 | 2.7 | Picovirinae__uc | 5 | 2.0 | ||
PT (n = 462) | Picovirinae__uc | 208 | 45.0 | PT (n = 404) | Human betaherpesvirus 5 | 85 | 21.0 |
Sep1virus__uc | 60 | 12.9 | Siphoviridae_n__uc | 57 | 14.1 | ||
Staphylococcus phage St 134 | 34 | 7.35 | Siphoviridae_n_n__uc | 41 | 10.1 | ||
Human betaherpesvirus 5 | 26 | 5.6 | Picovirinae__uc | 19 | 4.7 | ||
Siphoviridae_n__uc | 24 | 5.2 | Lactobacillus phage iLp1308 17 | 17 | 4.2 | ||
Podoviridae__uc | 13 | 2.8 | Staphylococcus virus Sextaec | 15 | 3.7 | ||
Siphoviridae_n_n__uc | 13 | 2.8 | Listeria phage B054 | 12 | 2.9 | ||
Pseudomonas phage phiAH14b | 10 | 2.1 | Herpesviridae__uc | 12 | 2.9 | ||
SGA (n = 176) | Roseolovirus__uc | 64 | 36.3 | SGA (n = 481) | Human betaherpesvirus 5 | 133 | 27.6 |
Acinetobacter virus 133 | 35 | 19.8 | Siphoviridae_n_n__uc | 98 | 20.3 | ||
Siphoviridae_n__uc | 18 | 10.2 | Roseolovirus__uc | 84 | 17.4 | ||
Siphoviridae_n_n__uc | 10 | 5.7 | Siphoviridae_n__uc | 76 | 15.8 | ||
Human betaherpesvirus 6A | 8 | 4.5 | Streptococcus phage YMC-2011 | 15 | 3.1 | ||
Human betaherpesvirus 5 | 5 | 2.8 | Streptococcus phage 7201 | 10 | 2.0 | ||
Serratia phage BF | 4 | 2.3 | Human betaherpesvirus 6A | 10 | 2.0 | ||
LGA (n = 60) | Siphoviridae_n_n__uc | 16 | 26.6 | LGA (n = 158) | Siphoviridae_n_n__uc | 71 | 44.9 |
Lactobacillus phage phi jlb1 | 7 | 11.6 | Siphoviridae_n__uc | 18 | 11.3 | ||
Human betaherpesvirus 5 | 7 | 11.6 | Sep1virus__uc | 10 | 6.3 | ||
Lactobacillus phage phiPYB5 | 5 | 8.3 | Human betaherpesvirus 5 | 8 | 5.0 | ||
Lactobacillus phage KC5a | 4 | 6.6 | Streptococcus phage YMC-2011 | 5 | 3.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinleyici, M.; Pérez-Brocal, V.; Arslanoglu, S.; Aydemir, O.; Sevuk Ozumut, S.; Tekin, N.; Vandenplas, Y.; Moya, A.; Dinleyici, E.C. Human Milk Virome Analysis: Changing Pattern Regarding Mode of Delivery, Birth Weight, and Lactational Stage. Nutrients 2021, 13, 1779. https://doi.org/10.3390/nu13061779
Dinleyici M, Pérez-Brocal V, Arslanoglu S, Aydemir O, Sevuk Ozumut S, Tekin N, Vandenplas Y, Moya A, Dinleyici EC. Human Milk Virome Analysis: Changing Pattern Regarding Mode of Delivery, Birth Weight, and Lactational Stage. Nutrients. 2021; 13(6):1779. https://doi.org/10.3390/nu13061779
Chicago/Turabian StyleDinleyici, Meltem, Vicente Pérez-Brocal, Sertac Arslanoglu, Ozge Aydemir, Sibel Sevuk Ozumut, Neslihan Tekin, Yvan Vandenplas, Andrés Moya, and Ener Cagri Dinleyici. 2021. "Human Milk Virome Analysis: Changing Pattern Regarding Mode of Delivery, Birth Weight, and Lactational Stage" Nutrients 13, no. 6: 1779. https://doi.org/10.3390/nu13061779
APA StyleDinleyici, M., Pérez-Brocal, V., Arslanoglu, S., Aydemir, O., Sevuk Ozumut, S., Tekin, N., Vandenplas, Y., Moya, A., & Dinleyici, E. C. (2021). Human Milk Virome Analysis: Changing Pattern Regarding Mode of Delivery, Birth Weight, and Lactational Stage. Nutrients, 13(6), 1779. https://doi.org/10.3390/nu13061779