Multidimensional Approach to Assess Nutrition and Lifestyle in Breastfeeding Women during the First Month of Lactation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population of Study
2.2. Measurement of Maternal Dietary Patterns
2.3. Measurement of Maternal Anthropometric Parameters
2.4. Statistical Analysis
3. Results
3.1. Maternal Dietary Pattern during the First Month of Lactation
3.2. Factor Analysis for Maternal Dietary Pattern
3.3. Maternal Anthropometric Parameters and Relationship with Maternal Dietary Pattern
4. Discussion
4.1. Breastfeeding Women’s Diet Show Nutritional Differences for Dietary Recommendation Values
4.2. Anthropometric Parameters
5. Conclusions
- During the first month of lactation, the mothers did not satisfy the nutritional requirements of the guidelines. The important deviations in some micronutrients suggest that the women would benefit more from individualized supplementation, based on their nutritional status.
- Adherence to the HFP was moderate, and increased physical activity and dairy product consumption could be beneficial for maternal health.
- BMI may not be a good indicator of obesity in breastfeeding women during early postpartum. Larger cohort studies would help to determine the normal body composition values in this population.
- The novel multidimensional approach used in this study enables us to evaluate possible deficiencies in specific dietary components and health habits, which could enable personalized interventions in those areas that require attention.
- Studies in larger cohorts would be important to provide specific recommendations adapted to the healthy food pattern of different populations.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aung, Z.K.; Grattan, D.; Ladyman, S. Pregnancy-induced adaptation of central sensitivity to leptin and insulin. Mol. Cell. Endocrinol. 2020, 516, 110933. [Google Scholar] [CrossRef]
- Segura, S.A.; Ansótegui, J.A.; Díaz-Gómez, N.M. En representación del Comité de Lactancia Materna de la Asociación Española de Pediatría. The importance of maternal nutrition during breastfeeding: Do breastfeeding mothers need nutritional supplements? An. Pediatr. 2016, 84, 347.e1–347.e7. [Google Scholar] [CrossRef]
- Ahmed, T.; Hossain, M.; Sanin, K.I. Global Burden of Maternal and Child Undernutrition and Micronutrient Deficiencies. Ann. Nutr. Metab. 2012, 61, 8–17. [Google Scholar] [CrossRef]
- Valentine, C.J.; Wagner, C.L. Nutritional Management of the Breastfeeding Dyad. Pediatr. Clin. N. Am. 2013, 60, 261–274. [Google Scholar] [CrossRef] [PubMed]
- Salam, R.A.; Das, J.K.; Bhutta, Z.A. Multiple Micronutrient Supplementation during Pregnancy and Lactation in Low-to-Middle-Income Developing Country Settings: Impact on Pregnancy Outcomes. Ann. Nutr. Metab. 2014, 65, 4–12. [Google Scholar] [CrossRef]
- Aumeistere, L.; Ciproviča, I.; Zavadska, D.; Volkovs, V. Fish intake reflects on DHA level in breast milk among lactating women in Latvia. Int. Breastfeed. J. 2018, 13, 33. [Google Scholar] [CrossRef] [PubMed]
- Valentine, C.J.; Dingess, K.A.; Kleiman, J.; Morrow, A.L.; Rogers, L.K. A Randomized Trial of Maternal Docosahexaenoic Acid Supplementation to Reduce Inflammation in Extremely Preterm Infants. J. Pediatr. Gastroenterol. Nutr. 2019, 69, 388–392. [Google Scholar] [CrossRef] [PubMed]
- Early Nutrition. Long-Term Effects of Early Nutrition on Later Health. Available online: http://www.project-earlynutrition.eu/eneu/ (accessed on 9 April 2021).
- De Waard, M.; Brands, B.; Kouwenhoven, S.M.P.; Lerma, J.C.; Crespo-Escobar, P.; Koletzko, B.; Zalewski, B.M.; Van Goudoever, J.B. Optimal nutrition in lactating women and its effect on later health of offspring: A systematic review of current evidence and recommendations (EarlyNutrition project). Crit. Rev. Food Sci. Nutr. 2016, 57, 4003–4016. [Google Scholar] [CrossRef]
- Hermoso, M.; Vollhardt, C.; Bergmann, K.; Koletzko, B. Critical Micronutrients in Pregnancy, Lactation, and Infancy: Considerations on Vitamin D, Folic Acid, and Iron, and Priorities for Future Research. Ann. Nutr. Metab. 2011, 59, 5–9. [Google Scholar] [CrossRef] [Green Version]
- Koletzko, B.; Godfrey, K.M.; Poston, L.; Szajewska, H.; Van Goudoever, J.B.; De Waard, M.; Brands, B.; Grivell, R.M.; Deussen, A.R.; Dodd, J.M.; et al. Nutrition During Pregnancy, Lactation and Early Childhood and its Implications for Maternal and Long-Term Child Health: The Early Nutrition Project Recommendations. Ann. Nutr. Metab. 2019, 74, 93–106. [Google Scholar] [CrossRef]
- Kominiarek, M.A.; Rajan, P. Nutrition Recommendations in Pregnancy and Lactation. Med. Clin. N. Am. 2016, 100, 1199–1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bach-Faig, A.; Berry, E.M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, F.X.; Battino, M.; Belahsen, R.; Miranda, G.; et al. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr. 2011, 14, 2274–2284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sotos-Prieto, M.; Moreno-Franco, B.; Ordovás, J.M.; León, M.; Casasnovas, J.A.; Peñalvo, J.L. Design and development of an instrument to measure overall lifestyle habits for epidemiological research: The Mediterranean Lifestyle (MEDLIFE) index. Public Health Nutr. 2014, 18, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Ros, E.; Martínez-González, M.A.; Estruch, R.; Salas-Salvadó, J.; Fitó, M.; Martínez, J.A.; Corella, D. Mediterranean Diet and Cardiovascular Health: Teachings of the PREDIMED Study. Adv. Nutr. 2014, 5, 330S–336S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-González, M.A.; Gea, A.; Ruiz-Canela, M. The Mediterranean Diet and Cardiovascular Health. Circ. Res. 2019, 124, 779–798. [Google Scholar] [CrossRef] [PubMed]
- Netting, M.J.; Middleton, P.F.; Makrides, M. Does maternal diet during pregnancy and lactation affect outcomes in offspring? A systematic review of food-based approaches. Nutrients 2014, 30, 1225–1241. [Google Scholar] [CrossRef] [Green Version]
- Jardí, C.; Aparicio, E.; Bedmar, C.; Aranda, N.; Abajo, S.; March, G.; Basora, J.; Arija, V. The ECLIPSES Study Group Food Consumption during Pregnancy and Post-Partum. ECLIPSES Study. Nutrients 2019, 11, 2447. [Google Scholar] [CrossRef] [Green Version]
- Gila-Díaz, A.; Arribas, S.M.; De Pablo, Á.L.L.; López-Giménez, M.R.; Phuthong, S.; Ramiro-Cortijo, D. Development and Validation of a Questionnaire to Assess Adherence to the Healthy Food Pyramid in Spanish Adults. Nutrients 2020, 12, 1656. [Google Scholar] [CrossRef] [PubMed]
- Whitton, C.; Ho, J.C.Y.; Tay, Z.; Rebello, S.A.; Lu, Y.; Ong, C.N.; Van Dam, R.M. Relative Validity and Reproducibility of a Food Frequency Questionnaire for Assessing Dietary Intakes in a Multi-Ethnic Asian Population Using 24-h Dietary Recalls and Biomarkers. Nutrients 2017, 9, 1059. [Google Scholar] [CrossRef] [Green Version]
- Jacques, S.; Lemieux, S.; Lamarche, B.; Laramée, C.; Corneau, L.; Lapointe, A.; Tessier-Grenier, M.; Robitaille, J. Development of a Web-Based 24-h Dietary Recall for a French-Canadian Population. Nutrients 2016, 8, 724. [Google Scholar] [CrossRef]
- Savard, C.; Lemieux, S.; Lafrenière, J.; Laramée, C.; Robitaille, J.; Morisset, A.-S. Validation of a self-administered web-based 24-hour dietary recall among pregnant women. BMC Pregnancy Childbirth 2018, 18, 112. [Google Scholar] [CrossRef] [Green Version]
- Gómez Candela, C.; Loria Kohen, V.; Lourengo Nogueira, T. Guia Visual de Alimentos y Raciones, 1st ed.; Editores Médicos S.A. (EDIMSA): Madrid, Spain, 2008; p. 180. [Google Scholar]
- Natalben. Natalben Lactancia. Complemento Alimenticio para Cubrir los Requerimientos Nutricionales de la Madre. Available online: https://www.natalben.com/natalben-lactancia (accessed on 15 January 2021).
- EFSA. European Food Safety Authority: Dietary Reference Values for the UE. Available online: https://efsa.gitlab.io/multimedia/drvs/index.htm (accessed on 15 January 2021).
- Moreiras Tuni, O.; Carbajal, A.; Cabrera Forneiro, L.; Cuadrado Vives, C. Tablas de Composición de Alimentos: Guía de Prácticas, 19th ed.; Ediciones Piramide: Madrid, Spain, 2010; Volume 1, p. 496. [Google Scholar]
- Mena, P.; Milad, M. Variaciones en la composición nutricional de la leche materna. Algunos aspectos de importancia clínica. Rev. Chil. Pediatr. 1998, 69, 116–121. [Google Scholar] [CrossRef]
- Ruiz, E.; Ávila, J.M.; Valero, T.; Del Pozo, S.; Rodriguez, P.; Aranceta-Bartrina, J.; Gil, Á.; González-Gross, M.; Ortega, R.M.; Serra-Majem, L.; et al. Energy Intake, Profile, and Dietary Sources in the Spanish Population: Findings of the ANIBES Study. Nutrients 2015, 7, 4739–4762. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, E.; Ávila, J.M.; Valero, T.; Del Pozo, S.; Rodriguez, P.; Aranceta-Bartrina, J.; Gil, Á.; González-Gross, M.; Ortega, R.M.; Serra-Majem, L.; et al. Macronutrient Distribution and Dietary Sources in the Spanish Population: Findings from the ANIBES Study. Nutrients 2016, 8, 177. [Google Scholar] [CrossRef] [PubMed]
- Ros, E.; Lopez-Miranda, J.; Pico, C.; Rubio, M.A. The Spanish Federation of Societies of Nutrition, Food and Dietetics (FESNAD). In Consenso Sobre las Grasas y Aceites en la Alimentacion de la Poblacion Española Adulta, 1st ed.; Hernandez, A.G., Salas-Salvado, J., Eds.; FESNAD: Madrid, Spain, 2015. [Google Scholar]
- Simopoulos, A.P. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Zhu, X.; Qin, Y.; Li, Y.; Zhang, M.; Liu, W.; Huang, H.; Xu, Y. Association between total water intake and dietary intake of pregnant and breastfeeding women in China: A cross-sectional survey. BMC Pregnancy Childbirth 2019, 19, 172. [Google Scholar] [CrossRef] [PubMed]
- Dusdieker, L.B.; Booth, B.M.; Stumbo, P.J.; Eichenberger, J.M. Effect of supplemental fluids on human milk production. J. Pediatr. 1985, 106, 207–211. [Google Scholar] [CrossRef]
- Ndikom, C.M.; Fawole, B.; Ilesanmi, R.E. Extra fluids for breastfeeding mothers for increasing milk production. Cochrane Database Syst. Rev. 2014, CD008758. [Google Scholar] [CrossRef]
- Ballard, O.; Morrow, A.L. Human Milk Composition: Nutrients and bioactive factors. Pediatr. Clin. N. Am. 2013, 60, 49–74. [Google Scholar] [CrossRef] [Green Version]
- Underwood, B.A. Maternal vitamin A status and its importance in infancy and early childhood. Am. J. Clin. Nutr. 1994, 59, 517S–524S. [Google Scholar] [CrossRef] [Green Version]
- Marangoni, F.; Cetin, I.; Verduci, E.; Canzone, G.; Giovannini, M.; Scollo, P.; Corsello, G.; Poli, A. Maternal Diet and Nutrient Requirements in Pregnancy and Breastfeeding. An Italian Consensus Document. Nutrients 2016, 8, 629. [Google Scholar] [CrossRef] [PubMed]
- Huertas, J.R.; Rodriguez Lara, A.; Gonzalez Acevedo, O.; Mesa-Garcia, M.D. Milk and dairy products as vehicle for calcium and vitamin D: role of calcium enriched milks. Nutr. Hosp. 2019, 36, 962–973. [Google Scholar] [CrossRef] [PubMed]
- Gellert, S.; Ströhle, A.; Hahn, A. Breastfeeding woman are at higher risk of vitamin D deficiency than non-breastfeeding women—insights from the German VitaMinFemin study. Int. Breastfeed. J. 2016, 12, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Streym, S.V.; Højskov, C.S.; Møller, U.K.; Heickendorff, L.; Vestergaard, P.; Mosekilde, L.; Rejnmark, L. Vitamin D content in human breast milk: A 9-mo follow-up study. Am. J. Clin. Nutr. 2015, 103, 107–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilz, S.; Zittermann, A.; Obeid, R.; Hahn, A.; Pludowski, P.; Trummer, C.; Lerchbaum, E.; Pérez-López, F.R.; Karras, S.N.; März, W. The Role of Vitamin D in Fertility and during Pregnancy and Lactation: A Review of Clinical Data. Int. J. Environ. Res. Public Health 2018, 15, 2241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connor, D.L.; Green, T.; Picciano, M.F. Maternal Folate Status and Lactation. J. Mammary Gland. Biol. Neoplasia 1997, 2, 279–289. [Google Scholar] [CrossRef]
- Stamm, R.A.; Houghton, L.A. Nutrient Intake Values for Folate during Pregnancy and Lactation Vary Widely around the World. Nutrients 2013, 5, 3920–3947. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.; Ribeiro, K.; Melo, L.R.M.; Bezerra, D.F.; Queiroz, J.L.C.; Lima, M.S.R.; Pires, J.F.; Bezerra, D.S.; Osorio, M.M.; Dimenstein, R. Vitamin E in Human Milk and Its Relation to the Nutritional Requirement of the Term Newborn. Rev. Paul. Pediatr. 2017, 35, 158–164. [Google Scholar] [CrossRef] [Green Version]
- Cormick, G.; Belizán, J.M. Calcium Intake and Health. Nutrients 2019, 11, 1606. [Google Scholar] [CrossRef] [Green Version]
- Kalkwarf, H.J.; Harrast, S.D. Effects of calcium supplementation and lactation on iron status. Am. J. Clin. Nutr. 1998, 67, 1244–1249. [Google Scholar] [CrossRef]
- Jarjou, L.M.A.; Laskey, M.A.; Sawo, Y.; Goldberg, G.R.; Cole, T.J.; Prentice, A. Effect of calcium supplementation in pregnancy on maternal bone outcomes in women with a low calcium intake. Am. J. Clin. Nutr. 2010, 92, 450–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, M.S.; Martyn, L.; Weaver, C.M. Potassium Intake, Bioavailability, Hypertension, and Glucose Control. Nutrients 2016, 8, 444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neil, C.E.; Keast, D.R.; Fulgoni, V.L.; Nicklas, T.A. Food Sources of Energy and Nutrients among Adults in the US: NHANES 2003–2006. Nutrients 2012, 4, 2097–2120. [Google Scholar] [CrossRef] [Green Version]
- Zein, S.; Rachidi, S.; Shami, N.; Sharara, I.; Cheikh-Ali, K.; Gauchez, A.-S.; Moulis, J.-M.; Ayoubi, J.-M.; Salameh, P.; Hininger-Favier, I. Association between iron level, glucose impairment and increased DNA damage during pregnancy. J. Trace Elements Med. Biol. 2017, 43, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Parrettini, S.; Caroli, A.; Torlone, E. Nutrition and Metabolic Adaptations in Physiological and Complicated Pregnancy: Focus on Obesity and Gestational Diabetes. Front. Endocrinol. 2020, 11, 611929. [Google Scholar] [CrossRef] [PubMed]
- Wojcicki, J.M. Maternal Prepregnancy Body Mass Index and Initiation and Duration of Breastfeeding: A Review of the Literature. J. Women’s Health 2011, 20, 341–347. [Google Scholar] [CrossRef] [Green Version]
- Bzikowska-Jura, A.; Czerwonogrodzka-Senczyna, A.; Olędzka, G.; Szostak-Węgierek, D.; Weker, H.; Wesołowska, A. Maternal Nutrition and Body Composition During Breastfeeding: Association with Human Milk Composition. Nutrients 2018, 10, 1379. [Google Scholar] [CrossRef] [Green Version]
- Neville, C.E.; McKinley, M.C.; Holmes, V.A.; Spence, D.; Woodside, J.V. The relationship between breastfeeding and postpartum weight change—a systematic review and critical evaluation. Int. J. Obes. 2013, 38, 577–590. [Google Scholar] [CrossRef]
- Tahir, M.J.; Haapala, J.L.; Foster, L.P.; Duncan, K.M.; Teague, A.M.; Kharbanda, E.O.; McGovern, P.M.; Whitaker, K.M.; Rasmussen, K.M.; Fields, D.A.; et al. Association of Full Breastfeeding Duration with Postpartum Weight Retention in a Cohort of Predominantly Breastfeeding Women. Nutrients 2019, 11, 938. [Google Scholar] [CrossRef] [Green Version]
- Snyder, G.G.; Holzman, C.; Sun, T.; Bullen, B.; Bertolet, M.; Catov, J.M. Breastfeeding Greater Than 6 Months Is Associated with Smaller Maternal Waist Circumference Up to One Decade After Delivery. J. Women’s Health 2019, 28, 462–472. [Google Scholar] [CrossRef]
- Guzmán-Mercado, E.; Vásquez-Garibay, E.M.; Ramírez, C.A.S.; Muñoz-Esparza, N.C.; Larrosa-Haro, A.; Arreola, P.L.M. Full Breastfeeding Modifies Anthropometric and Body Composition Indicators in Nursing Mothers. Breastfeed. Med. 2021, 16, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Zulet Fraile, P.; Lizancos Castro, A.; Andia Melero, V.; Gonzalez Antiguedad, C.; Monereo Megias, S.; Calvo Revilla, S. Relationship of body composition measured by DEXA with lifestyle and satisfaction with body image in university students. Nutr. Hosp. 2019, 36, 919–925. [Google Scholar] [CrossRef] [PubMed]
- Adab, P.; Pallan, M.; Whincup, P.H. Is BMI the best measure of obesity? BMJ 2018, 360, k1274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, X.; Jousilahti, P.; Stehouwer, C.D.A.; Soderberg, S.; Onat, A.; Laatikainen, T.; Yudkin, J.S.; Dankner, R.; Morris, R.; Tuomilehto, J.; et al. Comparison of various surrogate obesity indicators as predictors of cardiovascular mortality in four European populations. Eur. J. Clin. Nutr. 2013, 67, 1298–1302. [Google Scholar] [CrossRef] [Green Version]
DRV | Day 7 (n = 30) | p-Value 1 | Day 28 (n = 22) | p-Value 1 | p-Value 2 | |
---|---|---|---|---|---|---|
Energy (kcal) | 2800 | ↓2101 (1754; 2437) | <0.001 | ↓1870 (1694; 2248) | <0.001 | 0.51 a |
Water (mL) | 2700 | ↓1653 (1317; 2382) | <0.001 | ↓1894 (1261; 2868) | 0.010 | 0.32 a |
Macronutrients | ||||||
Protein (g) | 66 | ↑93.4 ± 26.7 | <0.001 | ↑93.1 ± 22.0 | <0.001 | 0.59 b |
Fat (g) | - | 92.9 ± 28.6 | - | 91.5 ± 28.7 | - | 0.26 b |
Saturated fatty acids (g) | ALAP | ↑31.9 ± 11.0 | - | ↑29.9 ± 10.3 | - | 0.18 b |
Monounsaturated fatty acids (g) | - | 39.9 ± 12.5 | - | 39.2 ± 14.4 | - | 0.26 b |
Polyunsaturated fatty acids (g) | - | 12.6 (8.9; 15.1) | - | 12.7 (11.2; 15.8) | - | 0.74 a |
Cholesterol (mg) | - | 385.0 ± 142.0 | - | 375.0 ± 139.0 | - | 0.35 b |
Carbohydrates (g) | 210 | 198.0 (158.0; 268.0) | 0.88 | 180.0 (149.0; 209.0) | 0.06 | 0.84 a |
Dietary fiber (g) | - | 19.9 (13.2; 27.4) | - | 18.8 (15.3; 27.8) | - | 0.67 a |
Vitamins | ||||||
Vitamin A (Retinol; μg) | 1300 | ↓1046 (756; 1340) | 0.022 | 1381 (718; 1947) | 0.61 | 0.23 a |
Vitamin B1 (Thiamin; mg) | 1.4 | ↑1.8 (1.3; 2.2) | 0.001 | ↑2.3 (1.4; 2.5) | 0.004 | 0.68 a |
Vitamin B2 (Riboflavin; mg) | 1.7 | ↑2.2 (1.7; 2.6) | 0.001 | ↑3.0 (2.0; 3.4) | 0.001 | 0.21 a |
Vitamin B3 (Niacin; mg) | 17 | ↑43.8 ± 14.7 | <0.001 | ↑46.3 ± 11.5 | <0.001 | 0.61 b |
Vitamin B5 (Pantothenic acid; mg) | 7.0 | 5.9 (5.4; 10.2) | 0.74 | ↑10.2 (5.4; 12.3) | 0.015 | 0.61 a |
Vitamin B6 (Pyridoxine; mg) | 1.7 | ↑2.9 ± 1.2 | <0.001 | ↑3.2 ± 1.3 | <0.001 | 0.83 b |
Vitamin B7 (Biotin; μg) | 45 | 38.3 (26.4; 75.4) | 0.80 | ↑64.7 (29.4; 82.2) | 0.022 | 0.99 a |
Vitamin B9 (Folic acid; μg) | 500 | ↓306 (248; 433) | 0.001 | 498 (372; 602) | 0.73 | 0.12 a |
Vitamin B12 (Cobalamin; μg) | 5 | ↑6.8 ± 3.2 | 0.003 | ↑7.0 ± 2.6 | 0.001 | 0.55 b |
Vitamin C (Ascorbic acid; mg) | 155 | 142.0 (74.7; 194.0) | 0.45 | 155.0 (129.0; 273.0) | 0.29 | 0.47 a |
Vitamin D (μg) | 15 | ↓3.4 (1.4; 6.5) | <0.001 | ↓4.8 (2.6; 8.0) | <0.001 | 0.61 a |
Vitamin E (α-Tocopherol; mg) | 11 | 10.4 (7.0; 17.3) | 0.63 | ↑17.9 (9.3; 20.1) | 0.007 | 0.32 a |
Vitamin K (μg) | 90 | 106.0 (64.4; 161.0) | 0.06 | 94.4 (68.3; 181) | 0.10 | 0.67 a |
Minerals | ||||||
Calcium (mg) | 950 | 986 (748; 1155) | 0.89 | 1094 (762; 1226) | 0.24 | 0.54 a |
Iron (mg) | 16 | ↑18.1 (13.2; 29.4) | 0.038 | ↑27.6 (18.8; 92.2) | <0.001 | 0.14 a |
Iodine (mg) | 200 | 103 (75; 284) | 0.11 | 268 (109; 300) | 0.30 | 0.42 a |
Sodium (mg) | 2000 | 2123 (1543; 2461) | 0.78 | 1852 (1724; 2262) | 0.80 | 0.18 a |
Potassium (mg) | 4000 | ↓3051 ± 788 | <0.001 | ↓3271 ± 1047 | 0.004 | 0.49 b |
Day 7 (n = 28) | Day 28 (n = 28) | p-Value | |
---|---|---|---|
Body weight (kg) | 69.8 (63.3; 79.5) | 68.9 (63.1; 78.4) | 0.006 a |
Height (cm) | 162.0 (160.0; 164.0) | 162.0 (160.0; 164.0) | 0.42 a |
Body mass index (kg/m2) | 26.5 (24.2; 30.3) | 25.7 (24.2; 29.5) | 0.007 a |
Waist circumference (cm) | 94.0 (85.0; 103.0) | 92.0 (85.8; 100.0) | 0.019 a |
Hip circumference (cm) | 105.0 (102.0; 113.0) | 106.0 (102.0; 113.0) | 0.93 a |
Waist-to-hip ratio | 0.90 ± 0.06 | 0.88 ± 0.07 | 0.029 b |
Fat mass (%) | 39.2 ± 7.2 | 39.8 ± 7.3 | 0.030 b |
Muscle mass (%) | 26.1 (25.0; 27.4) | 25.4 (24.3; 26.8) | 0.001 a |
Basal metabolic rate (kcal/day) | 1400 (1322; 1504) | 1374 (1305; 1457) | 0.014 b |
Dimension 1 | Dimension 6 | |||
---|---|---|---|---|
Estimated β ± SE | p-value | Estimated β ± SE | p-value | |
Body weight | - | - | −3.7 ± 1.7 | 0.047 |
Body mass index | - | - | −1.1 ± 0.6 | 0.09 |
Waist circumference | −0.3 ± 0.3 | 0.37 | −2.9 ± 1.4 | 0.05 |
Fat mass | - | - | −1.3 ± 0.7 | 0.11 |
Muscle mass | 0.06 ± 0.05 | 0.35 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gila-Díaz, A.; Díaz-Rullo Alcántara, N.; Herranz Carrillo, G.; Singh, P.; Arribas, S.M.; Ramiro-Cortijo, D. Multidimensional Approach to Assess Nutrition and Lifestyle in Breastfeeding Women during the First Month of Lactation. Nutrients 2021, 13, 1766. https://doi.org/10.3390/nu13061766
Gila-Díaz A, Díaz-Rullo Alcántara N, Herranz Carrillo G, Singh P, Arribas SM, Ramiro-Cortijo D. Multidimensional Approach to Assess Nutrition and Lifestyle in Breastfeeding Women during the First Month of Lactation. Nutrients. 2021; 13(6):1766. https://doi.org/10.3390/nu13061766
Chicago/Turabian StyleGila-Díaz, Andrea, Nuria Díaz-Rullo Alcántara, Gloria Herranz Carrillo, Pratibha Singh, Silvia M. Arribas, and David Ramiro-Cortijo. 2021. "Multidimensional Approach to Assess Nutrition and Lifestyle in Breastfeeding Women during the First Month of Lactation" Nutrients 13, no. 6: 1766. https://doi.org/10.3390/nu13061766
APA StyleGila-Díaz, A., Díaz-Rullo Alcántara, N., Herranz Carrillo, G., Singh, P., Arribas, S. M., & Ramiro-Cortijo, D. (2021). Multidimensional Approach to Assess Nutrition and Lifestyle in Breastfeeding Women during the First Month of Lactation. Nutrients, 13(6), 1766. https://doi.org/10.3390/nu13061766