Diet Significantly Influences the Immunopathology and Severity of Kidney Injury in Male C57Bl/6J Mice in a Model Dependent Manner
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Mouse Models of Acute Kidney Injury (AKI)
2.3. Animal Euthanasia, Histological Analysis, and Serum Measures of Kidney Function
2.4. Nephrotoxicity PCR Array
2.5. RT-PCR for Genes Associated with Nephrotoxicity, Inflammation, and Tissue Remodeling
2.6. Statistical Analysis
3. Results
3.1. Poor Diet Exacerbates Tissue Injury in FAN
3.2. Diet Significantly Influences the Renal mRNA Expression of Nephrotoxic and Leukocyte-Specific Genes in FAN
3.3. Diet Significantly Influences Leukocyte-Specific Gene Expression in uIRI
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
Appendix A
Estimated Daily Intake $ | ||||
---|---|---|---|---|
Nutrient | Chow * | Western * | Americanized ** | Human *** |
Simple sugar (grams/kg) | 0 | 240 | 92.5 | 120.0 |
Fiber (grams/kg) | 202 | 0 | −37 | −47 |
Calcium (grams/kg) | 100 | 36 | 18 | −2.0 |
Phosphorus (grams/kg) | 33 | 80 | 117 | 94 |
Potassium (grams/kg) | 67 | 0 | −23 | −16 |
Sodium (grams/kg) | 100 | 0 | 220 | 167 |
Vitamin A (RAE) (IU/kg) | 277 | 557 | −6 | 1 |
Vitamin D (cholecalciferol) (IU/kg) | 0 | 47 | −58 | −51 |
Vitamin E (RRR-a-tocopherol) (IU/kg) | −35 | −29 | −59 | −25 |
Appendix B
Gene (Abbreviation) | Sequence or BioRad Unique Assay ID |
---|---|
B-cell translocation gene 2 (Btg2) | qMmuCID0006843 |
Cyclin-dependent kinase 1a (Cdkn1a) | Forward—CAGACATTCAGAGCCACAG |
Reverse—GAGACAACGGCACACTTT | |
Secreted phosphoprotein 1 (Osteopontin) (Spp1) | qMmuCID0008550 |
TNF receptor superfamily member 12A (Tnfrsf12a) | Forward—CAATCATGGCTTCGGCTTGG |
Reverse—GGAGGTGCCTGGTGCTT | |
Clusterin (Clu) | qMmuCID0025019 |
Fibrinogen beta chain (Fgb) | qMmuCID0027043 |
C-C motif chemokine receptor 2 (Ccr2) | qMmuCID0016006 |
Cluster of Differentiation 3e (Cd3e) | qMmuCID0027036 |
Cluster of differentiation 19 (Cd19) | qMmuCID0017517 |
Lymphocyte antigen 6 complex, locus G (Ly6g) | qMmuCID0020071 |
Interleukin-6 (Il6) | qMmuCID0005613 |
Glyceraldehyde-3-phosphate dehydrogenase (Gapdh) | Forward—AACTTTGGCATTGTGGAAGG |
Reverse—GCAGGGATGATGTTCTGG |
Appendix C
Appendix D
Appendix E
Vehicle | FAN | |||
---|---|---|---|---|
Gene | Chow | Chow | WD | AD |
A2m | 0.002176 | 0.00086 | 0.000647 | 0.000477 |
Aass | 0.886382 | 0.64171 | 0.75576 | 0.892547 |
Abcb1a | 0.004697 | 0.00501 | 0.006241 | 0.006113 |
Abcc2 | 0.280486 | 0.27168 | 0.2375 | 0.288371 |
Aldh1a1 | 0.056956 | 0.12587 | 0.133601 | 0.177513 |
Angptl4 | 0.102664 | 0.31208 | 0.393927 | 0.350139 |
Anxa5 | 0.300617 | 0.54715 | 0.527046 | 0.553249 |
Atf3 | 0.003511 | 0.02816 | 0.020992 | 0.020992 |
Bhmt | 0.004322 | 0.00110 | 0.002349 | 0.002131 |
Bmp1 | 0.018149 | 0.05292 | 0.044378 | 0.035305 |
Bmp4 | 0.110798 | 0.09807 | 0.107024 | 0.128158 |
Btg2 | 0.022344 | 0.11744 | 0.104821 | 0.172659 |
Calb1 | 0.298541 | 0.07856 | 0.064974 | 0.088144 |
Cat | 1.967004 | 0.85857 | 0.983502 | 0.936921 |
Ccl3 | 0.002606 | 0.00274 | 0.002176 | 0.001539 |
Ccnd1 | 0.357496 | 0.46329 | 0.407819 | 0.478304 |
Ccng1 | 0.462011 | 0.25000 | 0.44013 | 0.416388 |
Ccs | 0.270931 | 0.08304 | 0.089374 | 0.10125 |
Cd24a | 0.4222 | 1.15669 | 0.862144 | 0.862144 |
Cd44 | 0.008525 | 0.05995 | 0.046263 | 0.043767 |
Cdkn1a | 0.013946 | 0.26981 | 0.428094 | 0.413512 |
Clu | 0.270931 | 0.00083 | 6.390815 | 4.710891 |
Cp | 0.038902 | 0.28917 | 0.205328 | 0.220065 |
Cst3 | 0.898755 | 0.70711 | 0.782412 | 0.844401 |
Ctss | 0.045626 | 0.06515 | 0.110798 | 0.089374 |
Cxcl10 | 0.012396 | 0.02194 | 0.013754 | 0.015051 |
Cxcl3 | 0.00078 | 0.00155 | 0.001103 | 0.000848 |
Cyp2c54 | 0.001961 | 0.00164 | 0.001174 | 0.000981 |
Cyp2d22 | 0.023617 | 0.04039 | 0.034578 | 0.030522 |
Cyr61 | 0.047564 | 0.14459 | 0.110798 | 0.151354 |
Egf | 1.145518 | 0.01269 | 0.011486 | 0.014438 |
Fgb | 0.002754 | 0.48971 | 0.77164 | 0.495171 |
Fmo2 | 0.416388 | 0.10224 | 0.097801 | 0.133601 |
Fn1 | 0.019998 | 0.04389 | 0.0334 | 0.034339 |
G6pc | 0.793334 | 0.01820 | 0.040554 | 0.047564 |
G6pdx | 0.058965 | 0.10013 | 0.11793 | 0.126394 |
Gadd45a | 0.103378 | 0.15283 | 0.171467 | 0.164482 |
Gamt | 0.038634 | 0.00568 | 0.003462 | 0.003711 |
Gatm | 0.990343 | 0.02896 | 0.036046 | 0.030734 |
Gc | 0.022189 | 0.02683 | 0.032487 | 0.033169 |
Ghr | 1.575708 | 0.50000 | 0.648869 | 0.592957 |
Glul | 1.439931 | 0.82359 | 0.874179 | 0.75576 |
Gpnmb | 0.002552 | 0.00626 | 0.005396 | 0.005743 |
Gpx8 | 0.052048 | 0.08479 | 0.074635 | 0.070609 |
Gstk1 | 0.19291 | 0.04039 | 0.050977 | 0.053142 |
Gstp1 | 0.592957 | 1.21419 | 0.997231 | 1.169588 |
Havcr1 | 0.132678 | 5.06303 | 5.759725 | 5.411393 |
Hmox1 | 0.052411 | 0.17924 | 0.166778 | 0.181243 |
Hmox2 | 0.12905 | 0.10882 | 0.113913 | 0.129947 |
Hsp90aa1 | 1.244874 | 0.80664 | 0.990343 | 0.990343 |
Idh1 | 1.121943 | 0.33448 | 0.710054 | 0.626767 |
Igfbp1 | 0.003121 | 0.00189 | 0.004965 | 0.005509 |
Igfbp3 | 0.804408 | 0.76313 | 0.495171 | 0.475 |
Ipmk | 0.070121 | 0.06887 | 0.059788 | 0.073608 |
Klk1 | 4.910943 | 2.11404 | 1.597704 | 1.939924 |
Lcn2 | 0.022813 | 2.75108 | 2.743467 | 2.801113 |
Lgals3 | 0.17507 | 1.75321 | 1.352848 | 1.279872 |
Mcm6 | 0.048563 | 0.06887 | 0.08633 | 0.10125 |
Mgp | 0.091887 | 0.14968 | 0.136408 | 0.112344 |
Mt1 | 0.326691 | 8.57419 | 9.421782 | 6.435267 |
Nox4 | 0.465225 | 0.08597 | 0.159984 | 0.157782 |
Nphs2 | 0.048901 | 0.05995 | 0.03972 | 0.047564 |
Nqo1 | 0.079992 | 0.28717 | 0.338212 | 0.380508 |
Oat | 0.205328 | 0.14559 | 0.183773 | 0.162217 |
Odc1 | 3.773753 | 0.40613 | 0.597082 | 0.597082 |
Rgn | 0.008765 | 0.01209 | 0.013946 | 0.01647 |
Rtn4 | 0.251042 | 0.65520 | 0.671752 | 0.690637 |
Scd1 | 0.179991 | 0.08778 | 0.181243 | 0.150309 |
Slc22a1 | 0.475 | 0.15073 | 0.130851 | 0.17507 |
Slc22a5 | 0.302708 | 0.13490 | 0.119576 | 0.132678 |
Slc22a6 | 1.420107 | 0.26243 | 0.309069 | 0.38582 |
Socs3 | 0.003276 | 0.06887 | 0.047235 | 0.050625 |
Sod2 | 1.07624 | 0.48633 | 0.446273 | 0.478304 |
Sod3 | 0.850274 | 0.82932 | 0.75054 | 1.004168 |
Spp1 | 2.355446 | 59.71411 | 84.80045 | 54.79605 |
Sprr1a | 0.088144 | 0.36349 | 0.187635 | 0.171467 |
Timp1 | 0.003186 | 0.29937 | 0.2375 | 0.163346 |
Tmsb10 | 0.263523 | 1.56917 | 0.963262 | 0.911301 |
Tnfrsf12a | 0.044687 | 0.75786 | 0.735094 | 0.924023 |
Uchl1 | 0.001518 | 0.00221 | 0.002146 | 0.002207 |
Ugt1a1 | 0.003056 | 0.00319 | 0.005069 | 0.005509 |
Ugt1a6a | 0.049241 | 0.03955 | 0.024281 | 0.033633 |
Vcam1 | 0.006551 | 0.01618 | 0.01602 | 0.013659 |
Vim | 0.052775 | 0.19345 | 0.185052 | 0.17507 |
Actb | 2.899894 | 5.02805 | 5.084127 | 5.155099 |
B2m | 1.011152 | 0.90752 | 1.106497 | 0.880259 |
Gapdh | 3.044067 | 2.36199 | 3.06524 | 3.308093 |
Gapdh | 0.080548 | 0.06381 | 0.050625 | 0.054259 |
Appendix F
Chow | Western | Americanized | p | p | p | ||||
---|---|---|---|---|---|---|---|---|---|
Vehicle | FAN | Vehicle | FAN | Vehicle | FAN | (FAN) | (Diet) | (FAN X Diet) | |
Kidney | |||||||||
Nephrotoxicity | |||||||||
Btg2 | 1.0 ± 0.3 | 8.6 ± 2.0 ab | 1.2 ± 0.2 | 13.7 ± 4.4 a | 1.0 ± 0.26 | 7.0 ± 3.2 b | <0.001 | 0.03 | 0.04 |
Cdkn1a | 1.0 ± 0.1 | 20.7 ± 4.6 c | 0.5 ± 0.05 | 18.8 ± 8.7 b | 1.1 ± 0.17 | 44.0 ± 18.8 a | <0.001 | 0.01 | 0.02 |
Spp1 | 1.0 ± 0.3 | 29.8 ± 8.2 b | 1.5 ± 0.5 | 88.6 ± 24.0 a | 2.7 ± 1.9 | 63.9 ± 17.7 b | <0.001 | 0.001 | 0.001 |
Tnfrsf12a | 1.0 ± 0.2 | 18.1 ± 6.9 a | 0.7 ± 0.1 | 11.4 ± 2.48.0 ab | 0.6 ± 0.12 | 9.4 ± 4.4 b | <0.001 | 0.07 | 0.1 |
Clu | 1.0 ± 0.1 | 42 ± 8.4 | 1.3 ± 0.2 | 55.2 ± 23.3 | 1.7 ± 0.58 | 73.4 ± 41.8 | <0.001 | NS | NS |
Fgb | 1.0 ± 0.2 | 53.7 ± 29.1 | 0.6 ± 0.2 | 70.9 ± 19.3 | 1.5 ± 2.06 | 191.3 ± 225.6 | <0.001 | NS | NS |
Leukocyte Markers | |||||||||
Ccr2 (Monocytes) | 1.0 ± 0.1 | 0.6 ± 0.1 | 1.5 ± 0.4 | 1.3 ± 0.7 | 1.5 ± 0.3 | 1.3 ± 1.1 | NS | 0.1 | NS |
Cd3e (T-cells) | 1.0 ± 0.1 | 0.1 ± 0.1 | 0.9 ± 0.4 | 0.3 ± 0.2 | 1.2 ± 1.0 | 0.2 ± 0.3 | <0.001 | NS | NS |
Cd19 (B-cells) | 1.0 ± 0.5 | 0.9 ± 0.3 | 1.9 ± 0.7 | 2.6 ± 1.1 | 1.7 ± 1.5 | 2.4 ± 1.4 | <0.001 | NS | NS |
Ly6g (Neutrophils) | 1.0 ± 1.9 | 36.6 ± 26.8 | 6.2 ± 6.1 | 34.8 ± 29.8 | 1.7 ± 3.4 | 61.3 ± 67.2 | 0.002 | NS | NS |
Spleen | |||||||||
Ccr2 | 1.0 ± 0.2 | 1.1 ± 0.3 | 0.7 ± 0.3 | 0.7 ± 0.3 | 0.07 ± 0.3 | 0.8 ± 0.5 | NS | NS | NS |
Cd3e | 1.0 ± 0.1 | 0.6 ± 0.2 a | 0.9 ± 0.3 | 0.4 ± 0.2 ab | 0.5 ± 0.05 | 0.4 ± 0.2 b | 0.001 | 0.01 | NS |
Cd19 | 1.0 ± 0.1 | 0.2 ± 0.07 a | 0.8 ± 0.3 | 0.02 ± 0.06 ab | 0.5 ± 0.07 | 0.1 ± 0.07 b | <0.001 | 0.009 | 0.09 |
Ly6g | 1.0 ± 0.1 | 2.9 ± 1.1 | 1.7 ± 0.3 | 5.9 ± 5.3 | 3.2 ± 2.5 | 2.0 ± 1.3 | NS | NS | NS |
Appendix G
Chow | Western | Americanized | p | p | p | ||||
---|---|---|---|---|---|---|---|---|---|
Control | uIRI | Control | uIRI | Control | uIRI | (Ischemia) | (Diet) | (Ischemia X Diet) | |
Kidney | |||||||||
Nephrotoxicity | |||||||||
Btg2 | 1.0 ± 0.2 | 3.7 ± 1.9 | 0.6 ± 0.2 | 2.5 ± 0.5 | 0.9 ± 0.3 | 2.7 ± 0.8 | <0.001 | NS | NS |
Cdkn1a | 1.0 ± 0.6 | 4.3 ± 2.9 | 0.6 ± 0.5 | 5.3 ± 2.1 | 0.7 ± 0.3 | 6.0 ± 1.0 | <0.001 | NS | NS |
Spp1 | 1.0 ± 0.4 | 12.9 ± 4.5 | 0.4 ± 0.3 | 11.6 ± 3.6 | 0.5 ± 0.2 | 15.2 ± 3.8 | <0.001 | NS | 0.06 |
Tnfrsf12a | 1.0 ± 0.4 | 2.9 ± 1.7 | 0.6 ± 0.2 | 2.7 ± 0.4 | 0.8 ± 0.3 | 3.7 ± 1.1 | <0.001 | NS | NS |
Clu | 1.0 ± 0.3 | 8.4 ± 5 | 0.7 ± 0.2 | 8.4 ± 2 | 0.8 ± 0.2 | 7.7 ± 2 | <0.001 | NS | NS |
Fgb | 1.0 ± 1.2 | 10.9 ± 10.6 | 0.5 ± 0.4 | 7.5 ± 6.6 | 0.6 ± 0.6 | 13.1 ± 5 | <0.001 | NS | NS |
Leukocyte Markers | |||||||||
Ccr2 (Monocytes) | 1.0 ± 0.3 | 7.3 ± 6.2 | 0.9 ± 0.2 | 4.5 ± 1.4 | 1.2 ± 0.5 | 4.4 ± 1.8 | <0.001 | NS | NS |
Cd3e (T-cells) | 1.0 ± 0.6 | 1.4 ± 0.5 | 1.1 ± 0.5 | 1.9 ± 0.9 | 1.6 ± 1.1 | 2.0 ± 0.2 | 0.1 | NS | NS |
Cd19 (B-cells) | 1.0 ± 0.9 | 2.6 ± 1.9 b | 1.0 ± 0.5 | 8.6 ± 4.5 ab | 1.5 ± 1.4 | 8.4 ± 1.4 a | <0.001 | 0.04 | 0.02 |
Ly6g (Neutrophils) | 1.0 ± 1.0 | 18.8 ± 14.5 | 0.5 ± 0.4 | 10.6 ± 5.7 | 0.3 ± 0.3 | 5.5 ± 3.2 | <0.001 | 0.06 | NS |
Spleen | |||||||||
Ccr2 | - | 1.0 ± 0.4 a | - | 0.6 ± 0.2 b | - | 0.6 ± 0.3 b | - | <0.004 | - |
Cd3e | - | 1.0 ± 0.2 | - | 1.1 ± 0.2 | - | 0.9 ± 0.3 | - | 0.06 | - |
Cd19 | - | 1.0 ± 0.2 a | - | 0.9 ± 0.2 ab | - | 0.6 ± 0.09 b | - | 0.008 | - |
Ly6g | - | 1.0 ± 0.9 a | - | 0.6 ± 0.2 ab | - | 0.2 ± 0.1 b | - | 0.03 | - |
References
- Raha, P.; Abbas, D.; Evangelos, E.; Warren, H.; Gao, H.; Caulfield, M.; Elliott, P.; Tzoulaki, I. Genetic Predisposition to High Blood Pressure and Lifestyle Factors. Circulation 2018, 137, 653–661. [Google Scholar]
- Stanaway, J.D.; Afshin, A.; Gakidou, E.; GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1923–1994. [Google Scholar]
- McDonough, A.A.; Youn, J.H. Potassium Homeostasis: The Knowns, the Unknowns, and the Health Benefits. Physiology 2017, 32, 100–111. [Google Scholar] [CrossRef] [PubMed]
- McDonough, A.A.; Veiras, L.C.; Guevara, C.A.; Ralph, D.L. Cardiovascular benefits associated with higher dietary K+ vs. lower dietary Na+: Evidence from population and mechanistic studies. Am. J. Physiol. Metab. 2017, 312, E348–E356. [Google Scholar] [CrossRef] [Green Version]
- USDA Agricultural Research Services. Usual Nutrient Intake from Food and Beverages, by Gender and Age, What We Eat in America, NHANES 2013–2016; USDA Agricultural Research Services: Washington, DC, USA, 2019. [Google Scholar]
- Hampton, A.L.; Aslam, M.N.; Naik, M.K.; Bergin, I.L.; Allen, R.M.; A Craig, R.; Kunkel, S.L.; Veerapaneni, I.; Paruchuri, T.; A Patterson, K.; et al. Ulcerative Dermatitis in C57BL/6NCrl Mice on a Low-Fat or High-Fat Diet with or without a Mineralized Red-Algae Supplement. J. Am. Assoc. Lab. Anim. Sci. 2015, 54, 487–496. [Google Scholar] [PubMed]
- Takasugi, S.; Shioyama, M.; Kitade, M.; Nagata, M.; Yamaji, T. Involvement of estrogen in phosphorus-induced nephrocalcinosis through fibroblast growth factor 23. Sci. Rep. 2020, 10, 4864. [Google Scholar] [CrossRef] [Green Version]
- Deji, N.; Kume, S.; Araki, S.-I.; Soumura, M.; Sugimoto, T.; Isshiki, K.; Chin-Kanasaki, M.; Sakaguchi, M.; Koya, D.; Haneda, M.; et al. Structural and functional changes in the kidneys of high-fat diet-induced obese mice. Am. J. Physiol. Physiol. 2009, 296, F118–F126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Celestino, M.; Valdez, V.B.; Brun, P.; Castagliuolo, I.; Mucignat-Caretta, C. Differential effects of sodium chloride and monosodium glutamate on kidney of adult and aging mice. Sci. Rep. 2021, 11, 481. [Google Scholar] [CrossRef]
- Terker, A.S.; Zhang, C.; McCormick, J.A.; Lazelle, R.A.; Zhang, C.; Meermeier, N.P.; Siler, D.A.; Park, H.J.; Fu, Y.; Cohen, D.M.; et al. Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. Cell Metab. 2015, 21, 39–50. [Google Scholar] [CrossRef] [Green Version]
- Bach, K.E.; Kelly, J.T.; Palmer, S.C.; Khalesi, S.; Strippoli, G.F.M.; Campbell, K.L. Healthy Dietary Patterns and Incidence of CKD. Clin. J. Am. Soc. Nephrol. 2019, 14, 1441–1449. [Google Scholar] [CrossRef] [Green Version]
- National, R.C. Guide for the Care and Use of Laboratory Animals; The National Academies Press: Washington, DC, USA, 1996. [Google Scholar]
- Wanders, A.J.; Zock, P.L.; Brouwer, I.A. Trans Fat Intake and Its Dietary Sources in General Populations Worldwide: A Systematic Review. Nutrients 2017, 9, 840. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Cobb, L.K.; Vesper, H.W.; Asma, S. Global surveillance of trans-fatty acids. Prev. Chronic Dis. 2019, 16, E147. [Google Scholar] [CrossRef] [Green Version]
- Koppe, S.W.; Elias, M.; Moseley, R.H.; Green, R.M. Trans fat feeding results in higher serum alanine aminotransferase and increased insulin resistance compared with a standard murine high-fat diet. Am. J. Physiol. Gastrointest. Liver 2009, 297, 378. [Google Scholar] [CrossRef] [Green Version]
- Ge, Y.; Liu, W.; Tao, H.; Zhang, Y.; Liu, L.; Liu, Z.; Qiu, B.; Xu, T. Effect of industrial trans-fatty acids-enriched diet on gut microbiota of C57BL/6 mice. Eur. J. Nutr. 2019, 58, 2625–2638. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.-W.; Yuan, Y.; Chen, J.-H.; Lin, W.-Q. Kidney disease models: Tools to identify mechanisms and potential therapeutic targets. Zool. Res. 2018, 39, 72–86. [Google Scholar] [PubMed]
- Doi, K.; Okamoto, K.; Negishi, K.; Suzuki, Y.; Nakao, A.; Fujita, T.; Toda, A.; Yokomizo, T.; Kita, Y.; Kihara, Y.; et al. Attenuation of Folic Acid-Induced Renal Inflammatory Injury in Platelet-Activating Factor Receptor-Deficient Mice. Am. J. Pathol. 2006, 168, 1413–1424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fink, M.; Henry, M.; Tange, J.D. Experimental folic acid nephropathy. Pathology 1987, 19, 143–149. [Google Scholar] [CrossRef]
- Baserga, R.; Thatcher, D.; Marzi, D. Cell proliferation in mouse kidney after a single injection of folic acid. Lab. Investig. 1968, 19, 92–96. [Google Scholar]
- Threlfall, G. Cell proliferation in the rat kidney induced by folic acid. Cell Prolif. 1968, 1, 383–392. [Google Scholar] [CrossRef]
- Faubel, S.; Ljubanovic, D.; Reznikov, L.; Somerset, H.; Dinarello, C.A.; Edelstein, C.L. Caspase-1–deficient mice are protected against cisplatin-induced apoptosis and acute tubular necrosis. Kidney Int. 2004, 66, 2202–2213. [Google Scholar] [CrossRef] [Green Version]
- Kõressaar, T.; Lepamets, M.; Kaplinski, L.; Raime, K.; Andreson, R.; Remm, M. Primer3_masker: Integrating masking of template sequence with primer design software. Bioinformatics 2018, 34, 1937–1938. [Google Scholar] [CrossRef] [PubMed]
- Koressaar, T.; Remm, M. Enhancements and modifications of primer design program Primer3. Bioinformatics 2007, 23, 1289–1291. [Google Scholar] [CrossRef] [Green Version]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—New capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef] [Green Version]
- Gigliotti, J.C.; Huang, L.; Ye, H.; Bajwa, A.; Chattrabhuti, K.; Lee, S.; Klibanov, A.L.; Kalantari, K.; Rosin, D.L.; Okusa, M.D. Ultrasound Prevents Renal Ischemia-Reperfusion Injury by Stimulating the Splenic Cholinergic Anti-Inflammatory Pathway. J. Am. Soc. Nephrol. 2013, 24, 1451–1460. [Google Scholar] [CrossRef] [Green Version]
- Gigliotti, J.C.; Huang, L.; Bajwa, A.; Ye, H.; Mace, E.H.; Hossack, J.A.; Kalantari, K.; Inoue, T.; Rosin, D.L.; Okusa, M.D. Ultrasound Modulates the Splenic Neuroimmune Axis in Attenuating AKI. J. Am. Soc. Nephrol. 2015, 26, 2470–2481. [Google Scholar] [CrossRef] [PubMed]
- Gigliotti, J.C.; Okusa, M.D. The spleen: The forgotten organ in acute kidney injury of critical illness. Nephron Clin. Pract. 2014, 127, 153–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, R.S.; Passos, C.S.; Novaes, A.S.; Maquigussa, E.; Glória, M.A.; Visoná, I.; Ykuta, O.; Oyama, L.M.; Boim, M.A. Precocious obesity predisposes the development of more severe cisplatin-induced acute kidney injury in young adult mice. PLoS ONE 2017, 12, e0174721. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Patschan, D.; Epstein, T.; Goligorsky, M.S.; Winaver, J. Delayed recovery of renal regional blood flow in diabetic mice subjected to acute ischemic kidney injury. Am. J. Physiol. Physiol. 2007, 293, F1512–F1517. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Zhang, B.; Ramesh, G.; Betterly, D.; Tadagavadi, R.K.; Wang, W.; Reeves, W.B. TNF-α mediates increased susceptibility to ischemic AKI in diabetes. Am. J. Physiol. Physiol. 2013, 304, F515–F521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, N.-J.; Kang, J.M.; Park, S.H.; Kwon, H.-K.; Song, S.-J.; Moon, H.; Kim, S.-M.; Seo, J.-W.; Lee, Y.H.; Kim, Y.G.; et al. Diabetes Aggravates Post-ischaemic Renal Fibrosis through Persistent Activation of TGF-β1 and Shh Signalling. Sci. Rep. 2017, 7, 16782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, J.; Li, X.; Zhang, D.; Chen, J.; Su, Y.; Smith, S.B.; Dong, Z. Hyperglycemia, p53, and mitochondrial pathway of apoptosis are involved in the susceptibility of diabetic models to ischemic acute kidney injury. Kidney Int. 2015, 87, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Nechemia-Arbely, Y.; Barkan, D.; Pizov, G.; Shriki, A.; Rose-John, S.; Galun, E.; Axelrod, J.H. IL-6/IL-6R Axis Plays a Critical Role in Acute Kidney Injury. J. Am. Soc. Nephrol. 2008, 19, 1106–1115. [Google Scholar] [CrossRef]
- Finsterbusch, M.; Hall, P.; Li, A.; Devi, S.; Westhorpe, C.L.V.; Kitching, A.R.; Hickey, M.J. Patrolling monocytes promote intravascular neutrophil activation and glomerular injury in the acutely inflamed glomerulus. Proc. Natl. Acad. Sci. USA 2016, 113, E5172–E5181. [Google Scholar] [CrossRef] [Green Version]
- Swirski, F.K.; Nahrendorf, M.; Etzrodt, M.; Wildgruber, M.; Cortez-Retamozo, V.; Panizzi, P.; Figueiredo, J.-L.; Kohler, R.H.; Chudnovskiy, A.; Waterman, P.; et al. Identification of Splenic Reservoir Monocytes and Their Deployment to Inflammatory Sites. Science 2009, 325, 612–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, P.M.; Safirstein, R.L.; Megyesi, J. The cell cycle and acute kidney injury. Kidney Int. 2009, 76, 604–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiedler, F.; Mallo, G.V.; Bödeker, H.; Keim, V.; Dagorn, J.C.; Iovanna, J.L. Overexpression of the PC3/TIS21/BTG2 mRNA is part of the stress response induced by acute pancreatitis in rats. Biochem. Biophys. Res. Commun. 1998, 249, 562–565. [Google Scholar] [CrossRef]
- Yuniati, L.; Scheijen, B.; van der Meer, L.T.; van Leeuwen, F.N. Tumor suppressors BTG1 and BTG2: Beyond growth control. J. Cell. Physiol. 2019, 234, 5379–5389. [Google Scholar] [CrossRef] [Green Version]
- Kirita, Y.; Wu, H.; Uchimura, K.; Wilson, P.C.; Humphreys, B.D. Cell profiling of mouse acute kidney injury reveals conserved cellular responses to injury. Proc. Natl. Acad. Sci. USA 2020, 117, 15874–15883. [Google Scholar] [CrossRef] [PubMed]
- Moonen, L.; D’Haese, P.C.; Vervaet, B.A. Epithelial Cell Cycle Behaviour in the Injured Kidney. Int. J. Mol. Sci. 2018, 19, 2038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Kumar, S.; Dolzhenko, E.; Alvarado, G.F.; Guo, J.; Lu, C.; Chen, Y.; Li, M.; Dessing, M.C.; Parvez, R.K.; et al. Molecular characterization of the transition from acute to chronic kidney injury following ischemia/reperfusion. JCI Insight 2017, 2, 94716. [Google Scholar] [CrossRef] [Green Version]
- Zaidan, M.; Burtin, M.; Zhang, J.D.; Blanc, T.; Barre, P.; Garbay, S.; Nguyen, C.; Vasseur, F.; Yammine, L.; Germano, S.; et al. Signaling pathways predisposing to chronic kidney disease progression. JCI Insight 2020, 5. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaki, H.; Katsumata, S.; Uehara, M.; Miwa, M.; Suzuki, K. Onset of nephrocalcinosis depends on dietary phosphorus concentration in male rats fed a magnesium-deficient diet. Magnes. Res. 2006, 19, 255–260. [Google Scholar] [PubMed]
- Gigliotti, J.C.; Benedito, V.A.; Livengood, R.; Oldaker, C.; Nanda, N.; Tou, J.C. Feeding Different Omega-3 Polyunsaturated Fatty Acid Sources Influences Renal Fatty Acid Composition, Inflammation, and Occurrence of Nephrocalcinosis in Female Sprague-Dawley Rats. Food Nutr. Sci. 2013, 4, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Kleinman, J.G.; Wesson, J.A.; Hughes, J. Osteopontin and Calcium Stone Formation. Nephron 2004, 98, p43–p47. [Google Scholar] [CrossRef]
- Wesson, J.A.; Johnson, R.J.; Mazzali, M.; Beshensky, A.M.; Stietz, S.; Giachelli, C.; Liaw, L.; Alpers, C.E.; Couser, W.G.; Kleinman, J.G.; et al. Osteopontin Is a Critical Inhibitor of Calcium Oxalate Crystal Formation and Retention in Renal Tubules. J. Am. Soc. Nephrol. 2003, 14, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Hunter, G.K. Role of osteopontin in modulation of hydroxyapatite formation. Calcif. Tissue Int. 2013, 93, 348–354. [Google Scholar] [CrossRef]
- Mo, L.; Liaw, L.; Evan, A.P.; Sommer, A.J.; Lieske, J.C.; Wu, X.-R. Renal calcinosis and stone formation in mice lacking osteopontin, Tamm-Horsfall protein, or both. Am. J. Physiol. Physiol. 2007, 293, F1935–F1943. [Google Scholar] [CrossRef]
- Geary, C.P.; Cousins, F.B. An oestrogen-linked nephrocalcinosis in rats. Br. J. Exp. Pathol. 1969, 50, 507–515. [Google Scholar]
- Ritskes-Hoitinga, J.; Lemmensi, A.G.; Beynen, A.C. Nutrition and kidney calcification in rats. Lab. Anim. 1989, 23, 313–318. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Sakatsume, M.; Nishi, S.; Narita, I.; Arakawa, M.; Gejyo, F. Expression, roles, receptors, and regulation of osteopontin in the kidney. Kidney Int. 2001, 60, 1645–1657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lobo, P.I.; Schlegel, K.H.; Bajwa, A.; Huang, L.; Okusa, M.D. Natural IgM and TLR Agonists Switch Murine Splenic Pan-B to “Regulatory” Cells That Suppress Ischemia-Induced Innate Inflammation via Regulating NKT-1 Cells. Front. Immunol. 2017, 8, 974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cippà, P.E.; Liu, J.; Sun, B.; Kumar, S.; Naesens, M.; McMahon, A.P. A late B lymphocyte action in dysfunctional tissue repair following kidney injury and transplantation. Nat. Commun. 2019, 10, 1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renner, B.; Strassheim, D.; Amura, C.R.; Kulik, L.; Ljubanovic, D.; Glogowska, M.J.; Takahashi, K.; Carroll, M.C.; Holers, V.M.; Thurman, J.M. B cell subsets contribute to renal injury and renal protection after ischemia/reperfusion. J. Immunol. 2010, 185, 4393–4400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, H.R.; Gandolfo, M.T.; Ko, G.J.; Satpute, S.R.; Racusen, L.; Rabb, H. B Cells Limit Repair after Ischemic Acute Kidney Injury. J. Am. Soc. Nephrol. 2010, 21, 654–665. [Google Scholar] [CrossRef] [Green Version]
- Belavgeni, A.; Meyer, C.; Stumpf, J.; Hugo, C.; Linkermann, A. Ferroptosis and Necroptosis in the Kidney. Cell Chem. Biol. 2020, 27, 448–462. [Google Scholar] [CrossRef]
- Von Mässenhausen, A.; Tonnus, W.; Linkermann, A. Cell Death Pathways Drive Necroinflammation during Acute Kidney Injury. Nephron 2018, 140, 144–147. [Google Scholar] [CrossRef]
- Linkermann, A.; Chen, G.; Dong, G.; Kunzendorf, U.; Krautwald, S.; Dong, Z. Regulated Cell Death in AKI. J. Am. Soc. Nephrol. 2014, 25, 2689–2701. [Google Scholar] [CrossRef]
- Wei, Q.; Dong, Z. Mouse model of ischemic acute kidney injury: Technical notes and tricks. Am. J. Physiol. Ren. Physiol. 2012, 303, F1487–F1494. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Ham, A.; Kim, J.Y.; Brown, K.M.; D’Agati, V.D.; Lee, H.T. The volatile anesthetic isoflurane induces ecto-5′-nucleotidase (CD73) to protect against renal ischemia and reperfusion injury. Kidney Int. 2013, 84, 90–103. [Google Scholar] [CrossRef] [Green Version]
Americanized Diet | |||||||
---|---|---|---|---|---|---|---|
Parameter | Unit | AIN-93 | Chow | Western | ADchow | ADsynthetic1 | ADsynthetic2 |
Energy | kcal/gram | 3.8 | 3.2 | 4.5 | 3.3 | 4.7 | 4.8 |
Protein | % Weight | 17.7 | 18.6 | 17.3 | 16 | 19.4 | 19.4 |
Carbohydrates | % Weight | 60.1 | 44.2 | 48.5 | 58.6 | 48.4 | 50.9 |
Sucrose + Fructose | Grams/kg | 100 | 0 | 340 | 0 | 330 | 330 |
Cellulose/NDF | Grams/kg | 50 | 151 | 50 | 75 | 20 | 0 |
Total Fat | % Weight | 7.2 | 6.2 | 21.2 | 3.5 | 21.7 | 21.7 |
Saturated fatty acids | % Total Fatty Acids | 15 | 0.6 | 64.5 | 15 | 41 | 41 |
ω6: ω3 PUFAs | Ratio | 7:1 | 2:1 | 6:1 | 6:1 | 44:1 | 44:1 |
trans-fatty acids | % Total Energy | 0 | 0 | 0 | 0 | 3 | 3 |
Cholesterol | Milligrams/kg | 0 | 0 | 2076 | 0 | 600 | 600 |
Minerals | |||||||
Calcium | Grams/kg | 5 | 10 | 6.8 | 9 | 5 | 5 |
Phosphorus | Grams/kg | 3 | 4 | 5.4 | 3.4 | 9.6 | 8.7 |
Potassium | Grams/kg | 3.6 | 6 | 3.6 | 6 | 2 | 0.4 |
Sodium | Grams/kg | 1 | 2 | 1 | 2 | 4.6 | 4 |
Vitamins | |||||||
Vitamin A (RAE) | IU/kg | 4000 | 15,080 | 26,292 | 9048 | 2250 | 0 |
Vitamin D (cholecalciferol) | IU/kg | 1500 | 1500 | 2203 | 1500 | 375 | 0 |
Vitamin E (RRR-a-tocopherol) | IU/kg | 171 | 111 | 121 | 171 | 42 | 0 |
Chow | WD | AD | ||||||
---|---|---|---|---|---|---|---|---|
Vehicle | FAN | Vehicle | FAN | Vehicle | FAN | p (FAN) | p (Diet) | |
Kidney Weights (mg) | 292.5 ± 19.5 | 423.3 ± 22.5 b | 317.5 ± 19.5 | 495.0 ± 22.5 b | 412.5 ± 19.5 | 540.0 ± 19.5 a | <0.001 | <0.001 |
Serum Creatinine (mg/dL) | 0.13 ± 0.1 | 2.4 ± 0.2 | 0.0 ± 0.1 | 2.7 ±0.2 | 0.0 ± 0.1 | 2.5 ± 0.1 | <0.001 | NS |
BUN (mg/dL) | 26.3 ± 10.6 | 227.7 ± 12.3 | 19.7 ± 10.6 | 215.0 ± 12.3 | 18.5 ± 10.6 | 227.9 ± 10.6 | <0.001 | NS |
ATN Score (0–4) | 0.5 ± 0.2 | 2.25 ± 0.2 b | 1.0 ± 0.2 | 3.3 ± 0.2 a | 1.0 ± 0.2 | 3.0 ± 0.2 a | <0.001 | 0.005 |
Circulating IL-6 (pg/mL) | 27.3 ± 13.3 | 784.3 ± 348.0 b | 24.0 ± 21.2 | 5043.0 ± 2692.4 a | 4.0 ± 5.3 | 724.5 ± 480.0 b | 0.005 | 0.004 |
Renal IL-6 mRNA (Relative) | 1.0 ±0.8 | 683.3 ±274.2 | 1.8 ± 0.7 | 808.9 ± 563.5 | 3.8 ± 2.9 | 657.5 ± 657.7 | <0.001 | 0.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brus, J.E.; Quan, D.L.; Wiley, K.J.; Browning, B.; Ter Haar, H.; Lutz, R.; Houghton, J.F.; Gigliotti, J.C. Diet Significantly Influences the Immunopathology and Severity of Kidney Injury in Male C57Bl/6J Mice in a Model Dependent Manner. Nutrients 2021, 13, 1521. https://doi.org/10.3390/nu13051521
Brus JE, Quan DL, Wiley KJ, Browning B, Ter Haar H, Lutz R, Houghton JF, Gigliotti JC. Diet Significantly Influences the Immunopathology and Severity of Kidney Injury in Male C57Bl/6J Mice in a Model Dependent Manner. Nutrients. 2021; 13(5):1521. https://doi.org/10.3390/nu13051521
Chicago/Turabian StyleBrus, John E., Daniel L. Quan, Kristin J. Wiley, Brittney Browning, Hannah Ter Haar, Riley Lutz, Jeffrey F. Houghton, and Joseph C. Gigliotti. 2021. "Diet Significantly Influences the Immunopathology and Severity of Kidney Injury in Male C57Bl/6J Mice in a Model Dependent Manner" Nutrients 13, no. 5: 1521. https://doi.org/10.3390/nu13051521
APA StyleBrus, J. E., Quan, D. L., Wiley, K. J., Browning, B., Ter Haar, H., Lutz, R., Houghton, J. F., & Gigliotti, J. C. (2021). Diet Significantly Influences the Immunopathology and Severity of Kidney Injury in Male C57Bl/6J Mice in a Model Dependent Manner. Nutrients, 13(5), 1521. https://doi.org/10.3390/nu13051521