Trajectories of Eating Behaviour Changes during Adolescence
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Eating Behaviours
2.3. Data Analysis
2.3.1. Descriptive Analysis
2.3.2. Group Based Multi-Trajectory Modelling
3. Results
3.1. Description of the Study Sample
3.2. Average Eating Behaviour Trends
3.3. Eating Behaviour Trajectories
4. Discussion
4.1. Key Findings
4.2. Breakfast and Fast Food Trajectories
4.3. Vegetables and Fruits Trajectory
4.4. Sugary Beverages Trajectory
4.5. Public Health Significance
4.6. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brown, J.E. Nutrition through the Life Cycle; Cengage Learning: Belmont, CA, USA, 2016. [Google Scholar]
- Barr, S.I.; DiFrancesco, L.; Fulgoni, V.L. Breakfast consumption is positively associated with nutrient adequacy in Canadian children and adolescents. Br. J. Nutr. 2014, 112, 1373–1383. [Google Scholar] [CrossRef] [Green Version]
- Han, E.; Powell, L.M. Consumption patterns of sugar-sweetened beverages in the United States. J. Acad. Nutr. Diet. 2013, 113, 43–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niemeier, H.M.; Raynor, H.A.; Lloyd-Richardson, E.E.; Rogers, M.L.; Wing, R.R. Fast food consumption and breakfast skipping: Predictors of weight gain from adolescence to adulthood in a nationally representative sample. J. Adolesc. Health 2006, 39, 842–849. [Google Scholar] [CrossRef] [PubMed]
- Al Ani, M.F.; Al Subhi, L.K.; Bose, S. Consumption of fruits and vegetables among adolescents: A multi-national comparison of eleven countries in the Eastern Mediterranean Region. Br. J. Nutr. 2016, 115, 1092–1099. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Hsiao, Y.C. Dual trajectories of breakfast eating and fruit and vegetable intake over a 5-year follow-up period among economically disadvantaged children: Gender differences. Appetite 2018, 121, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Lazzeri, G.; Pammolli, A.; Azzolini, E.; Simi, R.; Meoni, V.; de Wet, D.R.; Giacchi, M.V. Association between fruits and vegetables intake and frequency of breakfast and snacks consumption: a cross-sectional study. Nutr. J. 2013, 12, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedersen, T.P.; Meilstrup, C.; Holstein, B.E.; Rasmussen, M. Fruit and vegetable intake is associated with frequency of breakfast, lunch and evening meal: Cross-sectional study of 11-, 13-, and 15-year-olds. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 9. [Google Scholar] [CrossRef] [Green Version]
- Tambalis, K.D.; Panagiotakos, D.B.; Psarra, G.; Sidossis, L.S. Association between fast-food consumption and lifestyle characteristics in Greek children and adolescents; results from the EYZHN (National Action for Children’s Health) programme. Public Health Nutr. 2018, 21, 3386–3394. [Google Scholar] [CrossRef] [Green Version]
- Powell, L.M.; Nguyen, B.T. Fast-food and full-service restaurant consumption among children and adolescents: Effect on energy, beverage, and nutrient intake. JAMA Pediatr. 2013, 167, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Ranjit, N.; Evans, M.H.; Byrd-Williams, C.; Evans, A.E.; Hoelscher, D.M. Dietary and activity correlates of sugar-sweetened beverage consumption among adolescents. Pediatrics 2010, 126, e754–e761. [Google Scholar] [CrossRef] [Green Version]
- Nagin, D.S. Group-Based Modeling of Development; Harvard University Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Cao, Y.; Xu, X.; Shi, Z. Trajectories of Dietary Patterns, Sleep Duration, and Body Mass Index in China: A Population-Based Longitudinal Study from China Nutrition and Health Survey, 1991–2009. Nutrients 2020, 12, 2245. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Wang, F.; Shen, Y.; Zhu, X.; Zhang, X.; Sun, X. Trajectories of Mediterranean Diet Adherence and Risk of Hypertension in China: Results from the CHNS Study, 1997–2011. Nutrients 2018, 10, 2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belanger, M.; Caissie, I.; Beauchamp, J.; O’Loughlin, J.; Sabiston, C.; Mancuso, M. Monitoring activities of teenagers to comprehend their habits: Study protocol for a mixed-methods cohort study. BMC Public Health 2013, 13, 649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neil, C.E.; Byrd-Bredbenner, C.; Hayes, D.; Jana, L.; Klinger, S.E.; Stephenson-Martin, S. The role of breakfast in health: Definition and criteria for a quality breakfast. J. Acad. Nutr. Diet. 2014, 114, S8–S26. [Google Scholar] [CrossRef] [PubMed]
- Eaton, D.K.; Olsen, E.O.; Brener, N.D.; Scanlon, K.S.; Kim, S.A.; Demissie, Z.; Yaroch, A.L. A comparison of fruit and vegetable intake estimates from three survey question sets to estimates from 24-hour dietary recall interviews. J. Acad. Nutr. Diet. 2013, 113, 1165–1174. [Google Scholar] [CrossRef] [Green Version]
- O’Malley Olsen, E.; Eaton, D.K.; Park, S.; Brener, N.D.; Blanck, H.M. Comparing methods for assessing beverage intake among high school students. Am. J. Health Behav. 2014, 38, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Brener, N.D.; Kann, L.; Shanklin, S.; Kinchen, S.; Eaton, D.K.; Hawkins, J.; Flint, K.H. Methodology of the Youth Risk Behavior Surveillance System–2013. MMWR Recomm. Rep. 2013, 62, 1–20. [Google Scholar] [PubMed]
- Machado, J.A.; Silva, J.S. Quantiles via moments. J. Econ. 2019, 213, 145–173. [Google Scholar] [CrossRef]
- StataCorp LP. Stata Multilevel Mixed-Effects Reference Manual; StataCorp LP: College Station, TX, USA, 2013. [Google Scholar]
- Nagin, D.S.; Jones, B.L.; Passos, V.L.; Tremblay, R.E. Group-based multi-trajectory modeling. Stat. Methods Med. Res. 2018, 27, 2015–2023. [Google Scholar] [CrossRef] [PubMed]
- Van der Nest, G.; Lima Passos, V.; Candel, M.J.J.M.; van Breukelen, G.J.P. An overview of mixture modelling for latent evolutions in longitudinal data: Modelling approaches, fit statistics and software. Adv. Life Course Res. 2020, 43, 100323. [Google Scholar] [CrossRef]
- Jones, B.L.; Nagin, D.S. A note on a Stata plugin for estimating group-based trajectory models. Soc. Methods Res. 2013, 42, 608–613. [Google Scholar] [CrossRef]
- Elmer, J.; Jones, B.L.; Nagin, D.S. Using the Beta distribution in group-based trajectory models. BMC Med. Res. Methodol. 2018, 18, 152. [Google Scholar] [CrossRef]
- Arganini, C.; Saba, A.; Comitato, R.; Virgili, F.; Turrini, A. Gender differences in food choice and dietary intake in modern western societies. Public Health Soc. Behav. Health 2012, 4, 83–102. [Google Scholar]
- Godin, K.M.; Patte, K.A.; Leatherdale, S.T. Examining predictors of breakfast skipping and breakfast program use among secondary school students in the COMPASS Study. J. Sch. Health 2018, 88, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Aljuraiban, G.S.; Chan, Q.; Oude Griep, L.M.; Brown, I.J.; Daviglus, M.L.; Stamler, J.; Van Horn, L.; Elliott, P.; Frost, G.S. The impact of eating frequency and time of intake on nutrient quality and Body Mass Index: The INTERMAP Study, a Population-Based Study. J. Acad. Nutr. Diet. 2015, 115, 528–536.e1. [Google Scholar] [CrossRef] [Green Version]
- Cayres, S.U.; Júnior, I.F.; Barbosa, M.F.; Christofaro, D.G.; Fernandes, R.A. Breakfast frequency, adiposity, and cardiovascular risk factors as markers in adolescents. Cardiol. Young 2016, 26, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Gwin, J.A.; Leidy, H.J. A Review of the Evidence Surrounding the Effects of Breakfast Consumption on Mechanisms of Weight Management. Adv. Nutr. 2018, 9, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Nederkoorn, C.; Guerrieri, R.; Havermans, R.C.; Roefs, A.; Jansen, A. The interactive effect of hunger and impulsivity on food intake and purchase in a virtual supermarket. Int. J. Obes. 2009, 33, 905–912. [Google Scholar] [CrossRef] [Green Version]
- Hall, K.D.; Ayuketah, A.; Brychta, R.; Cai, H.; Cassimatis, T.; Chen, K.Y.; Chung, S.T.; Costa, E.; Courville, A.; Darcey, V.; et al. Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metab. 2019, 30, 226. [Google Scholar] [CrossRef] [Green Version]
- Forkert, E.C.O.; Moraes, A.C.F.; Carvalho, H.B.; Manios, Y.; Widhalm, K.; González-Gross, M.; Gutierrez, A.; Kafatos, A.; Censi, L.; De Henauw, S.; et al. Skipping breakfast is associated with adiposity markers especially when sleep time is adequate in adolescents. Sci. Rep. 2019, 9, 6380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Statistics Canada. Health Fact Sheets: Fruit and Vegetable Consumption. 2017. Available online: https://www150.statcan.gc.ca/n1/pub/82-625-x/2019001/article/00004-eng.htm (accessed on 30 March 2021).
- Garriguet, D.; Bushnik, T.; Colley, R. Parent-Child Association in Physical Activity and Sedentary Behaviour. Health. Rep. 2017, 28, 3–11. [Google Scholar] [PubMed]
- WHO. Growing Up Unequal: Gender and Socioeconomic Differences in Young People’s Health and Well-Being; World Health Organization: Geneva, Switzerland, 2016; ISBN 9289051361. [Google Scholar]
- Polsky, J.Y.; Garriguet, D. Change in vegetable and fruit consumption in Canada between 2004 and 2015. Health Rep. 2020, 31, 3–12. [Google Scholar] [CrossRef]
- Jones, A.C.; Kirkpatrick, S.I.; Hammond, D. Beverage consumption and energy intake among Canadians: Analyses of 2004 and 2015 national dietary intake data. Nutr. J. 2019, 18, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langlois, K.; Garriguet, D.; Gonzalez, A.; Sinclair, S.; Colapinto, C.K. Change in total sugars consumption among Canadian children and adults. Health Rep. 2019, 30, 10–19. [Google Scholar] [PubMed]
- WHO. Guideline: Sugars Intake for Adults and Children; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Singh, G.M.; Micha, R.; Khatibzadeh, S.; Lim, S.; Ezzati, M.; Mozaffarian, D. Estimated Global, Regional, and National Disease Burdens Related to Sugar-Sweetened Beverage Consumption in 2010. Circulation 2015, 132, 639–666. [Google Scholar] [CrossRef] [Green Version]
- Todd, A.S.; Street, S.J.; Ziviani, J.; Byrne, N.M.; Hills, A.P. Overweight and obese adolescent girls: the importance of promoting sensible eating and activity behaviors from the start of the adolescent period. Int. J. Environ. Res. Public Health 2015, 12, 2306–2329. [Google Scholar] [CrossRef] [Green Version]
- Patte, K.A.; Leatherdale, S.T. A cross-sectional analysis examining the association between dieting behaviours and alcohol use among secondary school students in the COMPASS study. J. Public Health 2017, 39, 321–329. [Google Scholar] [CrossRef] [Green Version]
- Tannenbaum, C.; Greaves, L.; Graham, I.D. Why sex and gender matter in implementation research. BMC Med. Res. Methodol. 2016, 16, 145. [Google Scholar] [CrossRef] [Green Version]
- González-Gil, E.M.; Martínez-Olivan, B.; Widhalm, K.; Lambrinou, C.P.; de Henauw, S.; Gottrand, F.; Kafatos, A.; Beghin, L.; Molnar, D.; Kersting, M. Healthy eating determinants and dietary patterns in European adolescents: the HELENA study. Child Adolesc. Obes. 2019, 2, 18–39. [Google Scholar] [CrossRef] [Green Version]
- Movassagh, E.Z.; Baxter-Jones, A.D.G.; Kontulainen, S.; Whiting, S.J.; Vatanparast, H. Tracking Dietary Patterns over 20 Years from Childhood through Adolescence into Young Adulthood: The Saskatchewan Pediatric Bone Mineral Accrual Study. Nutrients 2017, 9, 990. [Google Scholar] [CrossRef]
- Bandini, L.G.; Schoeller, D.A.; Cyr, H.N.; Dietz, W.H. Validity of reported energy intake in obese and nonobese adolescents. Am. J. Clin. Nutr. 1990, 52, 421–425. [Google Scholar] [CrossRef] [PubMed]
Eating Behaviours | 11 Years (n = 309) | 12 Years (n = 587) | 13 Years (n = 579) | 14 Years (n = 497) | 15 Years (n = 445) | 16 Years (n = 419) | 17 Years (n = 347) | 18 Years (n = 47) | P Trend | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Median | IQR 1 | Median | IQR 1 | Median | IQR 1 | Median | IQR 1 | Median | IQR 1 | Median | IQR 1 | Median | IQR 1 | Median | IQR 1 | Linear | Quadratic | |
Overall (n = 744) | ||||||||||||||||||
Vegetable and fruit (daily) | 4.0 | 2.3–6.7 | 4.4 | 2.3–7.3 | 4.3 | 2.0–7.0 | 4.0 | 2.0–6.6 | 4.1 | 2.0–6.7 | 3.9 | 2.0–6.4 | 3.6 | 1.6–5.7 | 4.0 | 1.7–5.6 | 0.058 | 0.68 |
Sugary beverage (daily) | 2.0 | 1.0–4.3 | 1.7 | 0.9–4.0 | 1.9 | 0.9–4.0 | 1.3 | 0.6–4.0 | 1.3 | 0.3–3.6 | 1.3 | 0.3–3.3 | 1.09 | 0.3–2.1 | 0.6 | 0.0–2.0 | <0.0001 | <0.0001 |
Breakfast (Daily) | 7.0 | 5.0–7.0 | 7.0 | 5.0–7.0 | 7.0 | 4.0–7.0 | 7.0 | 4.0–7.0 | 7.0 | 4.0–7.0 | 7.0 | 4.0–7.0 | 6.0 | 4.0–7.0 | 6.0 | 3.0–7.0 | <0.0001 | 0.56 |
Fast food (Daily) | 1.0 | 0.0–1.0 | 1.0 | 0.0–1.0 | 1.0 | 0.0–1.0 | 1.0 | 0.0–2.0 | 1.0 | 0.0–2.0 | 1.0 | 0.0–2.0 | 1.0 | 0.0–2.0 | 1.0 | 0.0–2.0 | <0.0001 | 0.96 |
Girls (n = 415) | ||||||||||||||||||
Vegetable and fruit (daily) | 4.7 | 2.3–6.7 | 4.3 | 2.3–7.0 | 4.1 | 2.1–6.5 | 4.1 | 2.1–6.3 | 4.1 | 2.7–6.6 | 4.0 | 2.3–6.4 | 3.9 | 1.7–5.7 | 4.0 | 1.9–6.0 | <0.0001 | 0.49 |
Sugary beverage (daily) | 1.7 | 1.0–4.0 | 1.3 | 0.7–3.6 | 1.3 | 0.7–3.0 | 1.0 | 0.3–2.1 | 1.0 | 0.3–2.6 | 1.0 | 0.3–1.9 | 0.7 | 0.3–1.3 | 0.4 | 0.0–1.0 | <0.0001 | 0.034 |
Breakfast (Daily) | 7.0 | 5–7 | 7.0 | 4.0–7.0 | 6.0 | 3.0–7.0 | 7.0 | 4.0–7.0 | 7.0 | 4.0–7.0 | 7.0 | 4.0–7.0 | 6.0 | 4.0–7.0 | 5.5 | 3.0–7.0 | 0.042 | 0.39 |
Fast food (Daily) | 1.0 | 0.0–1.0 | 1.0 | 0.0–1.0 | 0.0 | 0.0–1.0 | 1.0 | 0.0–2.0 | 1.0 | 0.0–2.0 | 1.0 | 0.0–2.0 | 1.0 | 0.0–2.0 | 1.0 | 0.0–1.0 | 0.12 | 0.72 |
Boys (n = 329) | ||||||||||||||||||
Vegetable and fruit (daily) | 3.9 | 2.1–6.7 | 4.7 | 2.1–7.7 | 4.4 | 1.9–7.3 | 4.0 | 2.0–7.0 | 4.0 | 1.6–7.0 | 3.3 | 1.4–6.6 | 3.0 | 1.4–5.4 | 3.0 | 1.3–6.0 | 0.41 | 0.83 |
Sugary beverage (daily) | 2.1 | 1.0–4.9 | 2.3 | 1.0–4.7 | 3.0 | 1.0–6.0 | 2.5 | 1.0–5.4 | 2.1 | 0.7–4.3 | 2.1 | 1.0–4.9 | 1.6 | 0.3–3.3 | 1.0 | 0.3–2.4 | <0.0001 | <0.0001 |
Breakfast (Daily) | 7.0 | 6.0–7.0 | 7.0 | 6.0–7.0 | 7.0 | 5.0–7.0 | 7.0 | 4.0–7.0 | 7.0 | 4.0–7.0 | 7.0 | 4.0–7.0 | 6.0 | 4.0–7.0 | 5.5 | 2.5–7.0 | <0.0001 | 0.47 |
Fast food (Daily) | 1.0 | 0–1.0 | 0.0 | 0.0–1.0 | 1.0 | 0.0–1.0 | 1.0 | 0.0–2.0 | 1.0 | 0.0–3.0 | 1.0 | 0.0–3.0 | 2.0 | 0.0–3.0 | 1.5 | 0.0–3.0 | 0.39 | 0.94 |
Group | % | Term | Vegetables and Fruits | Sugary Beverages | Breakfast | Fast Food | ||||
---|---|---|---|---|---|---|---|---|---|---|
Estimate ± s.e. 1 | p Value | Estimate ± s.e. | p Value | Estimate ± s.e. | p Value | Estimate ± s.e. | p Value | |||
Girls (n = 415) | ||||||||||
1 | 39.9 | Intercept | −2.00 ± 0.20 | <0.0001 | −1.50 ± 0.25 | <0.0001 | 1.01 ± 0.61 | 0.063 | −2.16 ± 0.32 | <0.0001 |
Linear | 0.02 ± 0.01 | 0.27 | −0.10 ± 0.02 | <0.0001 | −0.09 ± 0.04 | 0.026 | 0.03 ± 0.02 | 0.15 | ||
2 | 38.0 | Intercept | 0.09 ± 0.24 | 0.71 | −0.53 ± 0.27 | 0.050 | 2.26 ± 0.68 | 0.0009 | −3.02 ± 0.31 | <0.0001 |
Linear | −0.06 ± 0.02 | 0.0002 | −0.14 ± 0.02 | <0.0001 | −0.11 ± 0.05 | 0.017 | 0.05 ± 0.02 | 0.036 | ||
3 | 22.1 | Intercept | −3.42 ± 3.62 | 0.34 | −5.70 ± 3.29 | 0.083 | 6.36 ± 5.98 | 0.36 | −9.18 ± 3.67 | 0.012 |
Linear | 0.46 ± 0.52 | 0.37 | 0.72 ± 0.47 | 0.12 | −0.93 ± 0.85 | 0.35 | 1.13 ± 0.53 | 0.032 | ||
Quadratic | −0.02 ± 0.02 | 0.36 | −0.02 ± 0.02 | 0.099 | 0.03 ± 0.03 | 0.35 | −0.04 ± 0.02 | 0.047 | ||
Model goodness of fit | ||||||||||
BIC (N = 7192) | 5116.7 | |||||||||
BIC (N = 415) | 5172.3 | |||||||||
AIC | 5250.8 | |||||||||
Log-likelihood | 5289.8 | |||||||||
Boys (n = 329) | ||||||||||
1 | 23.9 | Intercept | −2.12 ± 0.09 | <0.0001 | −1.91 ± 0.41 | <0.0001 | 5.66 ± 1.19 | <0.0001 | 6.48 ± 3.78 | 0.086 |
Linear | – | – | −0.04 ± 0.03 | 0.11 | −0.38 ± 0.08 | <0.0001 | −1.27 ± 0.54 | 0.018 | ||
Quadratic | – | – | – | – | – | – | 0.04 ± 0.02 | 0.012 | ||
2 | 27.3 | Intercept | −0.49 ± 0.28 | 0.078 | −1.15 ± 0.37 | 0.0021 | 6.10 ± 1.54 | 0.0001 | 2.32 ± 3.25 | 0.47 |
Linear | −0.03 ± 0.02 | 0.072 | −0.08 ± 0.027 | 0.0016 | −0.29 ± 0.10 | 0.0037 | −0.73 ± 0.46 | 0.11 | ||
Quadratic | – | – | – | – | – | – | 0.03 ± 0.02 | 0.082 | ||
3 | 8.4 | Intercept | 1.94 ± 0.87 | 0.025 | 0.06 ± 0.64 | 0.92 | 1.66 ± 0.34 | <0.0001 | −2.37 ± 0.83 | 0.0043 |
Linear | −0.59 ± 0.05 | 0.025 | −0.11 ± 0.04 | 0.013 | – | – | 0.07 ± 0.05 | 0.19 | ||
Quadratic | – | – | – | – | – | – | – | – | ||
4 | 13.3 | Intercept | 1.62 ± 0.08 | 0.051 | 0.04 ± 0.77 | 0.61 | 5.71 ± 1.41 | 0.0001 | −2.91 ± 0.79 | 0.0003 |
Linear | −0.11 ± 0.06 | 0.046 | −0.06 ± 0.05 | 0.30 | −0.43 ± 0.10 | <0.0001 | 0.17 ± 0.05 | 0.0018 | ||
Quadratic | – | – | – | – | – | – | – | – | ||
5 | 27.1 | Intercept | −6.36 ± 3.22 | 0.048 | −10.56 ± 3.25 | 0.0012 | −3.21 ± 7.89 | 0.68 | −3.57 ± 0.60 | <0.0001 |
Linear | 0.82 ± 0.46 | 0.077 | 1.38 ± 0.46 | 0.0030 | 0.55 ± 1.13 | 0.62 | 0.20 ± 0.04 | <0.0001 | ||
Quadratic | −0.03 ± 0.01 | 0.060 | −0.050 ± 0.016 | 0.0020 | −0.02 ± 0.04 | 0.53 | – | – | ||
Model goodness of fit | ||||||||||
BIC 2 (N = 5301) | 2921.1 | |||||||||
BIC (N = 329) | 3007.9 | |||||||||
AIC 3 | 3125.5 | |||||||||
Log-likelihood | 3187.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doggui, R.; Ward, S.; Johnson, C.; Bélanger, M. Trajectories of Eating Behaviour Changes during Adolescence. Nutrients 2021, 13, 1313. https://doi.org/10.3390/nu13041313
Doggui R, Ward S, Johnson C, Bélanger M. Trajectories of Eating Behaviour Changes during Adolescence. Nutrients. 2021; 13(4):1313. https://doi.org/10.3390/nu13041313
Chicago/Turabian StyleDoggui, Radhouene, Stéphanie Ward, Claire Johnson, and Mathieu Bélanger. 2021. "Trajectories of Eating Behaviour Changes during Adolescence" Nutrients 13, no. 4: 1313. https://doi.org/10.3390/nu13041313
APA StyleDoggui, R., Ward, S., Johnson, C., & Bélanger, M. (2021). Trajectories of Eating Behaviour Changes during Adolescence. Nutrients, 13(4), 1313. https://doi.org/10.3390/nu13041313