Association of Dietary Total Antioxidant Capacity with Bone Mass and Osteoporosis Risk in Korean Women: Analysis of the Korea National Health and Nutrition Examination Survey 2008–2011
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Variables
2.3. Development of the TAC Database and Estimation of Dietary TAC
2.4. Statistical Analyses
3. Results
3.1. Study Design and Baseline Characteristics of Participants
3.2. Associations between Dietary TAC and Bone Health
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klibanski, A.; Adams-Campbell, L.; Bassford, T.; Blair, S.N.; Boden, S.D.; Dickersin, K.; Gifford, D.R.; Glasse, L.; Goldring, S.R.; Hruska, K. Osteoporosis prevention, diagnosis, and therapy. JAMA 2001, 285, 785–795. [Google Scholar]
- Park, E.J.; Joo, I.W.; Jang, M.J.; Kim, Y.T.; Oh, K.; Oh, H.J. Prevalence of osteoporosis in the Korean population based on Korea National Health and Nutrition Examination Survey (KNHANES), 2008–2011. Yonsei Med. J. 2014, 55, 1049–1057. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, J.H.; Cho, D.S. Gender difference in osteoporosis prevalence, awareness and treatment: Based on the Korea national health and nutrition examination survey 2008~2011. J. Korean Acad. Nurs. 2015, 45, 293–305. [Google Scholar] [CrossRef] [Green Version]
- Hu, D.; Cheng, L.; Jiang, W. Fruit and vegetable consumption and the risk of postmenopausal osteoporosis: A meta-analysis of observational studies. Food Funct. 2018, 9, 2607–2616. [Google Scholar] [CrossRef]
- Domazetovic, V.; Marcucci, G.; Iantomasi, T.; Brandi, M.L.; Vincenzini, M.T. Oxidative stress in bone remodeling: Role of antioxidants. Clin. Cases Miner. Bone Metab. 2017, 14, 209–216. [Google Scholar] [CrossRef]
- Regu, G.M.; Kim, H.; Kim, Y.J.; Paek, J.E.; Lee, G.; Chang, N.; Kwon, O. Association between Dietary Carotenoid Intake and Bone Mineral Density in Korean Adults Aged 30–75 Years Using Data from the Fourth and Fifth Korean National Health and Nutrition Examination Surveys (2008–2011). Nutrients 2017, 9, 1025. [Google Scholar] [CrossRef] [Green Version]
- Malmir, H.; Shab-Bidar, S.; Djafarian, K. Vitamin C intake in relation to bone mineral density and risk of hip fracture and osteoporosis: A systematic review and meta-analysis of observational studies. Br. J. Nutr. 2018, 119, 847–858. [Google Scholar] [CrossRef]
- Kim, D.E.; Cho, S.H.; Park, H.M.; Chang, Y.K. Relationship between bone mineral density and dietary intake of beta-carotene, vitamin C, zinc and vegetables in postmenopausal Korean women: A cross-sectional study. J. Int. Med. Res. 2016, 44, 1103–1114. [Google Scholar] [CrossRef] [Green Version]
- Odai, T.; Terauchi, M.; Hirose, A.; Kato, K.; Miyasaka, N. Bone Mineral Density in Premenopausal Women Is Associated with the Dietary Intake of alpha-Tocopherol: A Cross-Sectional Study. Nutrients 2019, 11, 2474. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.Q.; He, L.P.; Liu, Y.H.; Liu, J.; Su, Y.X.; Chen, Y.M. Association between dietary intake of flavonoid and bone mineral density in middle aged and elderly Chinese women and men. Osteoporos. Int. 2014, 25, 2417–2425. [Google Scholar] [CrossRef] [PubMed]
- Hardcastle, A.C.; Aucott, L.; Reid, D.M.; Macdonald, H.M. Associations between dietary flavonoid intakes and bone health in a Scottish population. J. Bone Miner. Res. 2011, 26, 941–947. [Google Scholar] [CrossRef]
- Kim, Y.A.; Kim, K.M.; Lim, S.; Choi, S.H.; Moon, J.H.; Kim, J.H.; Kim, S.W.; Jang, H.C.; Shin, C.S. Favorable effect of dietary vitamin C on bone mineral density in postmenopausal women (KNHANES IV, 2009): Discrepancies regarding skeletal sites, age, and vitamin D status. Osteoporos. Int. 2015, 26, 2329–2337. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, K.; Shi, H.; Tang, Z. A cross-sectional study to evaluate the associations between hypertension and osteoporosis in Chinese postmenopausal women. Int. J. Clin. Exp. Med. 2015, 8, 21194. [Google Scholar]
- Kim, M.H.; Lee, H.J. Osteoporosis, vitamin C intake, and physical activity in Korean adults aged 50 years and over. J. Phys. Ther. Sci. 2016, 28, 725–730. [Google Scholar] [CrossRef] [Green Version]
- Park, H.M.; Heo, J.; Park, Y. Calcium from plant sources is beneficial to lowering the risk of osteoporosis in postmenopausal Korean women. Nutr. Res. 2011, 31, 27–32. [Google Scholar] [CrossRef]
- Sugiura, M.; Nakamura, M.; Ogawa, K.; Ikoma, Y.; Yano, M. High Vitamin C Intake with High Serum beta-Cryptoxanthin Associated with Lower Risk for Osteoporosis in Post-Menopausal Japanese Female Subjects: Mikkabi Cohort Study. J. Nutr. Sci. Vitaminol. 2016, 62, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Wattanapenpaiboon, N.; Lukito, W.; Wahlqvist, M.L.; Strauss, B.J. Dietary carotenoid intake as a predictor of bone mineral density. Asia Pac. J. Clin. Nutr. 2003, 12, 12. [Google Scholar]
- Floegel, A.; Kim, D.O.; Chung, S.J.; Song, W.O.; Fernandez, M.L.; Bruno, R.S.; Koo, S.I.; Chun, O.K. Development and validation of an algorithm to establish a total antioxidant capacity database of the US diet. Int. J. Food Sci. Nutr. 2010, 61, 600–623. [Google Scholar] [CrossRef]
- Zujko, M.E.; Waskiewicz, A.; Witkowska, A.M.; Szczesniewska, D.; Zdrojewski, T.; Kozakiewicz, K.; Drygas, W. Dietary Total Antioxidant Capacity and Dietary Polyphenol Intake and Prevalence of Metabolic Syndrome in Polish Adults: A Nationwide Study. Oxid. Med. Cell. Longev. 2018, 2018, 7487816. [Google Scholar] [CrossRef]
- Mozaffari, H.; Daneshzad, E.; Surkan, P.J.; Azadbakht, L. Dietary Total Antioxidant Capacity and Cardiovascular Disease Risk Factors: A Systematic Review of Observational Studies. J. Am. Coll. Nutr. 2018, 37, 533–545. [Google Scholar] [CrossRef]
- Abbasalizad Farhangi, M.; Vajdi, M. Dietary Total Antioxidant Capacity (TAC) Significantly Reduces the Risk of Site-Specific Cancers: An Updated Systematic Review and Meta-Analysis. Nutr. Cancer 2020, 1–19. [Google Scholar] [CrossRef]
- Kweon, S.; Kim, Y.; Jang, M.J.; Kim, Y.; Kim, K.; Choi, S.; Chun, C.; Khang, Y.H.; Oh, K. Data resource profile: The Korea National Health and Nutrition Examination Survey (KNHANES). Int. J. Epidemiol. 2014, 43, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Rural Development Administration. Food Composition Table, 7th ed.; Rural Development Administration: Jeonju Deokjin, Korea, 2006. Available online: http://www.rda.go.kr/main/mainPage.do (accessed on 6 May 2020).
- Lee, J.; Jang, S. A Study on Reference Values and Prevalence of Osteoporosis in Korea: The Korea National Health and Nutrition Examination Survey 2008–2011. J. Korean Off. Stat. 2013, 18, 42–65. [Google Scholar]
- Park, S.-H.; Kim, S.-N.; Lee, S.H.; Choe, J.-S.; Choi, Y. Development of 9th Revision Korean Food Composition Table and Its Major Changes. Korean J. Community Nutr. 2018, 23. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Jang, H.; Choi, J. Flavonoid Data Base 1.0. Nongsaro. Volume 1. 2016. Available online: http://koreanfood.rda.go.kr/kfi/fct/fctCompSrch/list (accessed on 14 May 2020).
- Bhagwat, S.; Haytowitz, D.; Wu, X. USDA Database for the Flavonoid Content of Selected Foods, Release 3.3, March 2018 ed.; USDA: Beltsville, MD, USA, 2018; Volume 3.3. Available online: http://www.ars.usda.gov/nutrientdata/flav (accessed on 14 May 2020).
- Bhagwat, S.; Haytowitz, D.; Holden, J. USDA Database for the Isoflavone Content of Selected Foods, Release 2.1. 2008. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/methods-and-application-of-food-composition-laboratory/mafcl-site-pages/isoflavone/ (accessed on 14 May 2020).
- Bhagwat, S.; Haytowitz, D.; Holden, J. USDA Database for the Proanthocyanidin Content of Selected Foods, Release 2.1. 2018. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/methods-and-application-of-food-composition-laboratory/mafcl-site-pages/proanthocyanidin/ (accessed on 14 May 2020).
- Ryu, S.N.; Han, S.J.; Park, S.Z.; Kim, H.Y. Antioxidative activity and varietal difference of cyanidin 3-glucoside and peonidin 3-glucoside contents in pigmented rice. Korean J. Crop. Sci. 2000, 45, 257–260. [Google Scholar]
- Schauss, A.G.; Wu, X.; Prior, R.L.; Ou, B.; Patel, D.; Huang, D.; Kababick, J.P. Phytochemical and nutrient composition of the freeze-dried Amazonian palm berry, Euterpe oleraceae Mart.(Acai). J. Agric. Food Chem. 2006, 54, 8598–8603. [Google Scholar] [CrossRef]
- Sakakibara, H.; Honda, Y.; Nakagawa, S.; Ashida, H.; Kanazawa, K. Simultaneous determination of all polyphenols in vegetables, fruits, and teas. J. Agric. Food Chem. 2003, 51, 571–581. [Google Scholar] [CrossRef]
- Wen, P.; Hu, T.-G.; Linhardt, R.J.; Liao, S.-T.; Wu, H.; Zou, Y.-X. Mulberry: A review of bioactive compounds and advanced processing technology. Trends Food Sci. Technol. 2019, 83, 138–158. [Google Scholar] [CrossRef]
- Jun, S.; Chun, O.K.; Joung, H. Estimation of dietary total antioxidant capacity of Korean adults. Eur. J. Nutr. 2018, 57, 1615–1625. [Google Scholar] [CrossRef]
- Saylor, J.; Friedmann, E.; Lee, H.J. Navigating complex sample analysis using national survey data. Nurs. Res. 2012, 61, 231–237. [Google Scholar] [CrossRef]
- Greenland, S.; Pearce, N. Statistical foundations for model-based adjustments. Annu. Rev. Public Health 2015, 36, 89–108. [Google Scholar] [CrossRef]
- Li, J.J.; Huang, Z.W.; Wang, R.Q.; Ma, X.M.; Zhang, Z.Q.; Liu, Z.; Chen, Y.M.; Su, Y.X. Fruit and vegetable intake and bone mass in Chinese adolescents, young and postmenopausal women. Public Health Nutr. 2013, 16, 78–86. [Google Scholar] [CrossRef] [Green Version]
- Zeng, L.F.; Luo, M.H.; Liang, G.H.; Yang, W.Y.; Xiao, X.; Wei, X.; Yu, J.; Guo, D.; Chen, H.Y.; Pan, J.K.; et al. Can Dietary Intake of Vitamin C-Oriented Foods Reduce the Risk of Osteoporosis, Fracture, and BMD Loss? Systematic Review With Meta-Analyses of Recent Studies. Front. Endocrinol. 2019, 10, 844. [Google Scholar] [CrossRef] [Green Version]
- Rozman, C.; Feliu, E.; Berga, L.; Reverter, J.; Climent, C.; Ferran, M. Age-related variations of fat tissue fraction in normal human bone marrow depend both on size and number of adipocytes: A stereological study. Exp. Hematol. 1989, 17, 34–37. [Google Scholar]
- Li, J.; Chen, X.; Lu, L.; Yu, X. The relationship between bone marrow adipose tissue and bone metabolism in postmenopausal osteoporosis. Cytokine Growth Factor Rev. 2020, 52, 88–98. [Google Scholar] [CrossRef]
- Wright, J.A. A comparison of rat femoral, sternebral and lumbar vertebral bone marrow fat content by subjective assessment and image analysis of histological sections. J. Comp. Pathol. 1989, 100, 419–426. [Google Scholar] [CrossRef]
- Macdonald, H.M.; New, S.A.; Golden, M.H.; Campbell, M.K.; Reid, D.M. Nutritional associations with bone loss during the menopausal transition: Evidence of a beneficial effect of calcium, alcohol, and fruit and vegetable nutrients and of a detrimental effect of fatty acids. Am. J. Clin. Nutr. 2004, 79, 155–165. [Google Scholar] [CrossRef]
- Osterhoff, G.; Morgan, E.F.; Shefelbine, S.J.; Karim, L.; McNamara, L.M.; Augat, P. Bone mechanical properties and changes with osteoporosis. Injury 2016, 47, S11–S20. [Google Scholar] [CrossRef] [Green Version]
- Berriche, O.; Chiraz, A.; Othman, R.B.; Souheila, H.; Lahmer, I.; Wafa, C.; Sebai, I.; Sfar, H.; Mahjoub, F.; Jamoussi, H. Nutritional risk factors for postmenopausal osteoporosis. Alex. J. Med. 2019, 53, 187–192. [Google Scholar] [CrossRef]
- Jones, S.R.; Carley, S.; Harrison, M. An introduction to power and sample size estimation. Emerg. Med. J. 2003, 20, 453–458. [Google Scholar] [CrossRef]
- Schiessl, H.; Frost, H.M.; Jee, W.S.S. Estrogen and Bone-Muscle Strength and Mass Relationships. Bone 1998, 22, 1–6. [Google Scholar] [CrossRef]
- Nakano, M.; Nakamura, Y.; Suzuki, T.; Miyazaki, A.; Takahashi, J.; Saito, M.; Shiraki, M. Pentosidine and carboxymethyl-lysine associate differently with prevalent osteoporotic vertebral fracture and various bone markers. Sci. Rep. 2020, 10, 22090. [Google Scholar] [CrossRef]
- Behera, J.; Bala, J.; Nuru, M.; Tyagi, S.C.; Tyagi, N. Homocysteine as a pathological biomarker for bone disease. J. Cell. Physiol. 2017, 232, 2704–2709. [Google Scholar] [CrossRef] [Green Version]
- Iguacel, I.; Miguel-Berges, M.L.; Gómez-Bruton, A.; Moreno, L.A.; Julián, C. Veganism, vegetarianism, bone mineral density, and fracture risk: A systematic review and meta-analysis. Nutr. Rev. 2019, 77, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Melina, V.; Craig, W.; Levin, S. Position of the Academy of Nutrition and Dietetics: Vegetarian diets. J. Acad. Nutr. Diet. 2016, 116, 1970–1980. [Google Scholar] [CrossRef] [PubMed]
Variables | Postmenopausal Women | p-Value | Premenopausal Women | p-Value | ||
---|---|---|---|---|---|---|
Non-Osteoporosis (n = 2260) | Osteoporosis (n = 1299) | Non-Osteoporosis (n = 4606) | Osteoporosis (n = 65) | |||
Age (years) | 60.46 ± 0.19 | 69.27 ± 0.22 | <0.001 | 36.70 ± 0.13 | 37.69 ± 1.14 | 0.670 |
WC (cm) | 83.82 ± 0.19 | 80.77 ± 0.27 | <0.001 | 75.34 ± 0.14 | 68.80 ± 0.81 | <0.001 |
BMI (kg/m2) | 24.81 ± 0.07 | 23.28 ± 0.09 | <0.001 | 22.65 ± 0.05 | 19.98 ± 0.30 | <0.001 |
Smoking status, n (%) | 0.002 | 0.443 | ||||
Never | 2100 (93.7) | 1,149 (89.0) | 4122 (89.8) | 57 (87.7) | ||
Former | 56 (2.5) | 61 (4.7) | 184 (4.0) | 1 (1.5) | ||
Current | 86 (3.8) | 81 (6.3) | 285 (6.2) | 7 (10.8) | ||
Alcohol consumption, n (%) | 627 (28.0) | 246 (19.1) | <0.001 | 2330 (50.8) | 26 (41.3) | 0.162 |
Regular exercise, n (%) | 557 (24.9) | 219 (17.0) | <0.001 | 1034 (22.6) | 13 (20.0) | 0.367 |
25(OH)D (ng/mL) | 18.66 ± 0.15 | 18.42 ± 0.20 | 0.116 | 16.05 ± 0.08 | 14.11 ± 0.73 | 0.047 |
Dietary intake | ||||||
Energy intake (kcal/day) | 1587.56 ± 11.43 | 1449.32 ± 13.78 | <0.001 | 1694.50 ± 8.77 | 1686.48 ± 67.41 | 0.517 |
Protein (g/day) | 53.81 ± 0.551 | 45.87 ± 0.663 | <0.001 | 61.93 ± 0.411 | 62.19 ± 3.126 | 0.915 |
Calcium (mg/day) | 435.70 ± 6.43 | 357.66 ± 12.24 | <0.001 | 457.82 ± 4.15 | 474.80 ± 32.74 | 0.491 |
Phosphorus (mg/day) | 974.54 ± 8.54 | 851.73 ± 10.22 | <0.001 | 1025.90 ± 5.96 | 1067.54 ± 47.65 | 0.472 |
Potassium (mg/day) | 2695.38 ± 29.90 | 2245.41 ± 35.53 | <0.001 | 2728.75 ± 18.57 | 2826.00 ± 162.31 | 0.468 |
Sodium (mg/day) | 3913.31 ± 53.89 | 3513.67 ± 70.59 | <0.001 | 4344.46 ± 42.51 | 4773.58 ± 384.46 | 0.302 |
BMC (g) | ||||||
Lumbar spine | 48.87 ± 0.233 | 34.73 ± 0.239 | <0.001 | 55.92 ± 0.155 | 41.27 ± 0.729 | <0.001 |
Total femur | 28.22 ± 0.092 | 22.76 ± 0.104 | <0.001 | 29.21 ± 0.064 | 21.95 ± 0.387 | <0.001 |
Femoral neck | 3.34 ± 0.010 | 2.59 ± 0.011 | <0.001 | 3.61 ± 0.008 | 2.70 ± 0.041 | <0.001 |
BMD (g/cm2) | ||||||
Lumbar spine | 0.87 ± 0.002 | 0.67 ± 0.003 | <0.001 | 0.95 ± 0.002 | 0.74 ± 0.010 | <0.001 |
Total femur | 0.83 ± 0.002 | 0.67 ± 0.002 | <0.001 | 0.88 ± 0.002 | 0.70 ± 0.009 | <0.001 |
Femoral neck | 0.68 ± 0.002 | 0.53 ± 0.002 | <0.001 | 0.74 ± 0.001 | 0.56 ± 0.007 | <0.001 |
Variables | Quartiles of Dietary TAC (mg VCE/day) | p-Value | |||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | ||
Postmenopausal women, n (osteoporosis %) | 890 (47.0) | 890 (37.5) | 890 (33.4) | 889 (28.1) | |
Cut off (mg VCE/day) | <150.96 | 150.96 ≤ to < 267.65 | 267.65 ≤ to < 456.89 | ≥456.89 | |
Median dietary TAC (mg VCE/day) | 93.48 | 208.26 | 347.32 | 643.52 | |
Unadjusted OR (95% CI) | 1 | 0.673 (0.525–0.863) | 0.618 (0.486–0.787) | 0.398 (0.315–0.504) | <0.001 |
Adjusted OR (95% CI) | 1 | 0.952 (0.715–0.268) | 1.066 (0.805–1.410) | 0.732 (0.540–0.992) | 0.045 |
Premenopausal women, n (osteoporosis %) | 1167 (1.7) | 1168 (1.0) | 1168 (1.4) | 1168 (1.5) | |
Cut off (mg VCE/day) | <169.28 | 169.28 ≤ to < 286.79 | 286.79 ≤ to < 474.48 | ≥474.48 | |
Median dietary TAC (mg VCE/day) | 109.36 | 226.41 | 361.06 | 666.44 | |
Unadjusted OR (95% CI) | 1 | 0.515 (0.216–1.228) | 0.708 (0.337–1.487) | 1.056 (0.489–2.283) | 0.590 |
Adjusted OR (95% CI) | 1 | 0.554 (0.232–1.318) | 0.825 (0.395–1.723) | 1.220 (0.555–2.681) | 0.394 |
Variables | Postmenopausal Women | Premenopausal Women | ||
---|---|---|---|---|
r1 | p-Value | r1 | p-Value | |
BMC (g) | ||||
Lumbar spine | 0.146 | <0.001 | 0.043 | 0.005 |
Total femur | 0.153 | <0.001 | 0.034 | 0.037 |
Femoral neck | 0.179 | <0.001 | 0.008 | 0.646 |
BMD (g/cm2) | ||||
Lumbar spine | 0.144 | <0.001 | 0.023 | 0.154 |
Total femur | 0.170 | <0.001 | 0.014 | 0.395 |
Femoral neck | 0.177 | <0.001 | 0.012 | 0.480 |
Variables | Quartiles of Dietary TAC (mg VCE/day) | p-Value a | p-Value b | |||
---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | |||
Postmenopausal women, n | 890 | 890 | 890 | 889 | ||
Dietary TAC (mg VCE/day) | 90.10 ± 1.32 | 207.92 ± 1.14 | 352.61 ± 1.81 | 726.45 ± 8.54 | ||
BMC (g) | ||||||
Lumbar spine | 40.86 ± 0.409 | 43.50 ± 0.421 | 44.07 ± 0.411 | 45.94 ± 0.409 | <0.001 | 0.049 |
Total femur | 25.11 ± 0.166 | 26.01 ± 0.163 | 26.61 ± 0.158 | 27.19 ± 0.166 | <0.001 | 0.030 |
Femoral neck | 2.89 ± 0.019 | 3.05 ± 0.019 | 3.11 ± 0.019 | 3.21 ± 0.019 | <0.001 | 0.016 |
BMD (g/cm2) | ||||||
Lumbar spine | 0.77 ± 0.005 | 0.80 ± 0.005 | 0.81 ± 0.005 | 0.82 ± 0.005 | <0.001 | 0.017 |
Total femur | 0.74 ± 0.004 | 0.77 ± 0.004 | 0.78 ± 0.004 | 0.80 ± 0.004 | <0.001 | 0.080 |
Femoral neck | 0.59 ± 0.004 | 0.62 ± 0.004 | 0.63 ± 0.004 | 0.65 ± 0.004 | <0.001 | 0.025 |
Premenopausal women, n | 1167 | 1168 | 1168 | 1168 | ||
Dietary TAC (mg VCE/day) | 105.70 ± 1.16 | 226.70 ± 1.00 | 369.13 ± 1.60 | 762.04 ± 8.00 | ||
BMC (g) | ||||||
Lumbar spine | 58.42 ± 0.283 | 59.10 ± 0.283 | 59.49 ± 0.282 | 60.03 ± 0.297 | 0.001 | 0.002 |
Total femur | 29.21 ± 0.137 | 29.44 ± 0.139 | 29.85 ± 0.142 | 29.92 ± 0.141 | 0.006 | 0.015 |
Femoral neck | 3.72 ± 0.017 | 3.71 ± 0.016 | 3.76 ± 0.016 | 3.76 ± 0.017 | 0.527 | 0.850 |
BMD (g/cm2) | ||||||
Lumbar spine | 0.98 ± 0.003 | 0.99 ± 0.003 | 0.99 ± 0.003 | 0.99 ± 0.004 | 0.029 | 0.050 |
Total femur | 0.90 ± 0.003 | 0.90 ± 0.003 | 0.91 ± 0.003 | 0.91 ± 0.003 | 0.093 | 0.231 |
Femoral neck | 0.76 ± 0.003 | 0.76 ± 0.003 | 0.77 ± 0.003 | 0.77 ± 0.003 | 0.849 | 0.856 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Han, A.; Park, Y. Association of Dietary Total Antioxidant Capacity with Bone Mass and Osteoporosis Risk in Korean Women: Analysis of the Korea National Health and Nutrition Examination Survey 2008–2011. Nutrients 2021, 13, 1149. https://doi.org/10.3390/nu13041149
Kim D, Han A, Park Y. Association of Dietary Total Antioxidant Capacity with Bone Mass and Osteoporosis Risk in Korean Women: Analysis of the Korea National Health and Nutrition Examination Survey 2008–2011. Nutrients. 2021; 13(4):1149. https://doi.org/10.3390/nu13041149
Chicago/Turabian StyleKim, Donghyun, Anna Han, and Yongsoon Park. 2021. "Association of Dietary Total Antioxidant Capacity with Bone Mass and Osteoporosis Risk in Korean Women: Analysis of the Korea National Health and Nutrition Examination Survey 2008–2011" Nutrients 13, no. 4: 1149. https://doi.org/10.3390/nu13041149
APA StyleKim, D., Han, A., & Park, Y. (2021). Association of Dietary Total Antioxidant Capacity with Bone Mass and Osteoporosis Risk in Korean Women: Analysis of the Korea National Health and Nutrition Examination Survey 2008–2011. Nutrients, 13(4), 1149. https://doi.org/10.3390/nu13041149