Fractalkine, sICAM-1 and Kynurenine Pathway in Restrictive Anorexia Nervosa–Exploratory Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Genetic Analyses
2.3. Chromatographic Analyses of TRP Metabolites
2.4. Fractalkine and sICAM-1 Assay
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rikani, A.A.; Choudhry, Z.; Choudhry, A.M.; Ikram, H.; Asghar, M.W.; Kajal, D.; Waheed, A.; Mobassarah, N.J. A critique of the literature on etiology of eating disorders. Ann. Neurosci. 2013, 20, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Hudson, J.I.; Hiripi, E.; Pope, H.G., Jr.; Kessler, R.C. The prevalence and correlates of eating disorders in the National Comorbidity Survey Replication. Biol. Psychiatry 2007, 61, 348–358. [Google Scholar] [CrossRef] [PubMed]
- Smink, F.R.E.; Van Hoeken, D.; Hoek, H.W. Epidemiology of Eating Disorders: Incidence, Prevalence and Mortality Rates. Curr. Psychiatry Rep. 2012, 14, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Skowron, K.; Kurnik-Łucka, M.; Dadański, E.; Bętkowska-Korpała, B.; Gil, K. Backstage of Eating Disorder-About the Bio-logical Mechanisms behind the Symptoms of Anorexia Nervosa. Nutrients 2020, 12, 2604. [Google Scholar] [CrossRef] [PubMed]
- Gorwood, P.; Blanchet-Collet, C.; Chartrel, N.; Duclos, J.; Dechelotte, P.; Hanachi, M.; Fetissov, S.; Godart, N.; Melchior, J.C.; Ramoz, N.; et al. New Insights in Anorexia Nervosa. Front Neurosci. 2016, 10, 256. [Google Scholar] [CrossRef]
- Gibson, D.; Mehler, P.S. Anorexia Nervosa and the Immune System—A Narrative Review. J. Clin. Med. 2019, 8, 1915. [Google Scholar] [CrossRef]
- Nova, E.; Samartín, S.; Gómez, S.; Morandé, G.; Marcos, A. The adaptive response of the immune system to the particular malnutrition of eating disorders. Eur. J. Clin. Nutr. 2002, 56, S34–S37. [Google Scholar] [CrossRef]
- Corcos, M.; Guilbaud, O.; Paterniti, S.; Moussa, M.; Chambry, J.; Chaouat, G.; Consoli, S.; Jeammet, P. Involvement of cytokines in eating disorders: A critical review of the human literature. Psychoneuroendocrinology 2003, 28, 229–249. [Google Scholar] [CrossRef]
- Solmi, M.; Veronese, N.; Manzato, E.; Sergi, G.; Favaro, A.; Santonastaso, P.; Correll, C. Oxidative stress and antioxidant levels in patients with anorexia nervosa: A systematic review and exploratory meta-analysis. Int. J. Eat. Disord. 2015, 48, 826–841. [Google Scholar] [CrossRef]
- Dalton, B.; Bartholdy, S.; Robinson, L.; Solmi, M.; Ibrahim, M.A.; Breen, G.; Schmidt, U.; Himmerich, H. A meta-analysis of cytokine concentrations in eating disorders. J. Psychiatr. Res. 2018, 103, 252–264. [Google Scholar] [CrossRef]
- Nilsson, I.A.K.; Millischer, V.; Göteson, A.; Hübel, C.; Thornton, L.M.; Bulik, C.M.; Schalling, M.; Landén, M. Aberrant inflammatory profile in acute but not recovered anorexia nervosa. Brain Behav. Immun. 2020, 88, 718–724. [Google Scholar] [CrossRef] [PubMed]
- Ślusarczyk, J.; Trojan, E.; Chwastek, J.; Głombik, K.; Basta-Kaim, A. A Potential Contribution of Chemokine Network Dys-function to the Depressive Disorders. Curr. Neuropharmacol. 2016, 14, 705–720. [Google Scholar] [CrossRef] [PubMed]
- Trojan, E.; Ślusarczyk, J.; Chamera, K.; Kotarska, K.; Głombik, K.; Kubera, M.; Basta-Kaim, A. The Modulatory Properties of Chronic Antidepressant Drugs Treatment on the Brain Chemokine – Chemokine Receptor Network: A Molecular Study in an Animal Model of Depression. Front. Pharmacol. 2017, 8, 779. [Google Scholar] [CrossRef]
- Milenkovic, V.M.; Stanton, E.H.; Nothdurfter, C.; Rupprecht, R.; Wetzel, C.H. The Role of Chemokines in the Pathophysi-ology of Major Depressive Disorder. Int. J. Mol. Sci. 2019, 20, 2283. [Google Scholar] [CrossRef]
- Chen, Y.; Guillemin, G.J. Kynurenine pathway metabolites in humans: Disease and healthy States. Int. J. Tryptophan Res. 2009, 2, 1–19. [Google Scholar] [CrossRef]
- Miranda, D.O.; Anatriello, E.; Azevedo, L.R.; Santos, J.C.; Cordeiro, J.F.C.; Peria, F.M.; Flória-Santos, M.; Pereira-Da-Silva, G. Fractalkine (C-X3-C motif chemokine ligand 1) as a potential biomarker for depression and anxiety in colorectal cancer pa-tients. Biomed Rep. 2017, 7, 188–192. [Google Scholar]
- Pap, R.; Montskó, G.; Jánosa, G.; Sipos, K.; Kovács, G.L.; Pandur, E. Fractalkine Regulates HEC-1A/JEG-3 Interaction by Influencing the Expression of Implantation-Related Genes in an In Vitro Co-Culture Model. Int. J. Mol. Sci. 2020, 21, 3175. [Google Scholar] [CrossRef]
- Müller, N. The Role of Intercellular Adhesion Molecule-1 in the Pathogenesis of Psychiatric Disorders. Front. Pharmacol. 2019, 10, 1251. [Google Scholar] [CrossRef]
- Zhong, X.; Drgonova, J.; Li, C.-Y.; Uhl, G.R. Human cell adhesion molecules: Annotated functional subtypes and overrepresentation of addiction-associated genes. Ann. N. Y. Acad. Sci. 2015, 1349, 83–95. [Google Scholar] [CrossRef]
- Witkowska, A.M.; Borawska, M.H. Soluble intercellular adhesion molecule-1 (sICAM-1): An overview. Eur. Cytokine Netw. 2004, 15, 91–98. [Google Scholar]
- Myint, A.-M. Kynurenines: From the perspective of major psychiatric disorders. FEBS J. 2012, 279, 1375–1385. [Google Scholar] [CrossRef] [PubMed]
- Urbanska, E.M.; Chmiel-Perzyńska, I.; Perzyński, A.; Derkacz, M.; Owe-Larsson, B. Endogenous Kynurenic Acid and Neurotoxicity. In Handbook of Neurotoxicity; Springer Nature: New York, NY, USA, 2014; pp. 421–453. [Google Scholar]
- Savitz, J. The kynurenine pathway: A finger in every pie. Mol. Psychiatry 2020, 25, 131–147. [Google Scholar] [CrossRef] [PubMed]
- Wirthgen, E.; Hoeflich, A.; Rebl, A.; Günther, J. Kynurenic Acid: The Janus-Faced Role of an Immunomodulatory Tryptophan Metabolite and Its Link to Pathological Conditions. Front. Immunol. 2018, 8, 1957. [Google Scholar] [CrossRef] [PubMed]
- Carpenedo, R.; Pittaluga, A.; Cozzi, A.; Attucci, S.; Galli, A.; Raiteri, M.; Moroni, F. Presynaptic kynurenate-sensitive re-ceptors inhibit glutamate release. Eur. J. Neurosci. 2001, 13, 2141–2147. [Google Scholar] [CrossRef]
- Rassoulpour, A.; Wu, H.Q.; Ferré, S.; Schwarcz, R. Nanomolar concentrations of kynurenic acid reduce extracellular dopa-mine levels in the striatum. J. Neurochem. 2005, 93, 762–765. [Google Scholar] [CrossRef]
- Beggiato, S.; Tanganelli, S.; Fuxe, K.; Antonelli, T.; Schwarcz, R.; Ferraro, L. Endogenous kynurenic acid regulates extracel-lular GABA levels in the rat prefrontal cortex. Neuropharmacology 2014, 82, 11–18. [Google Scholar] [CrossRef]
- Johansson, A.-S.; Owe-Larsson, B.; Asp, L.; Kocki, T.; Adler, M.; Hetta, J.; Gardner, R.; Lundkvist, G.B.; Urbanska, E.M.; Karlsson, H. Activation of kynurenine pathway in ex vivo fibroblasts from patients with bipolar disorder or schizophrenia: Cytokine challenge increases production of 3-hydroxykynurenine. J. Psychiatr. Res. 2013, 47, 1815–1823. [Google Scholar] [CrossRef]
- Myint, A.-M.; Kim, Y.-K. Network beyond IDO in psychiatric disorders: Revisiting neurodegeneration hypothesis. Prog. Neuro-Psychopharmacology Biol. Psychiatry 2014, 48, 304–313. [Google Scholar] [CrossRef]
- Strasser, B.; Sperner-Unterweger, B.; Fuchs, D.; Gostner, J.M. Mechanisms of Inflammation-Associated Depression: Immune Influences on Tryptophan and Phenylalanine Metabolisms. Curr. Top. Behav. Neurosci. 2016, 31, 95–115. [Google Scholar] [CrossRef]
- Myint, A.-M.; Kim, Y.K.; Verkerk, R.; Scharpé, S.; Steinbusch, H.; Leonard, B. Kynurenine pathway in major depression: Evidence of impaired neuroprotection. J. Affect. Disord. 2007, 98, 143–151. [Google Scholar] [CrossRef]
- Szymona, K.; Zdzisińska, B.; Karakuła-Juchnowicz, H.; Kocki, T.; Kandefer-Szerszeń, M.; Flis, M.; Rosa, W.; Urbańska, E.M. Correlations of Kynurenic Acid, 3-Hydroxykynurenine, sIL-2R, IFN-α, and IL-4 with Clinical Symptoms During Acute Re-lapse of Schizophrenia. Neurotox Res. 2017, 32, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Serafini, G.; Adavastro, G.; Canepa, G.; Capobianco, L.; Conigliaro, C.; Pittaluga, F.; Murri, M.B.; Valchera, A.; De Berardis, D.; Pompili, M.; et al. Abnormalities in Kynurenine Pathway Metabolism in Treat-ment-Resistant Depression and Suicidality: A Systematic Review. CNS Neurol. Disord. Drug Targets 2017, 16, 440–453. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.K.; Miller, B.J. Meta-analysis of Cerebrospinal Fluid Cytokine and Tryptophan Catabolite Alterations in Psychiatric Patients: Comparisons Between Schizophrenia, Bipolar Disorder, and Depression. Schizophr. Bull. 2018, 44, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Haleem, D.J. Improving therapeutics in anorexia nervosa with tryptophan. Life Sci. 2017, 178, 87–93. [Google Scholar] [CrossRef]
- Gauthier, C.; Hassler, C.; Mattar, L.; Launay, J.M.; Callebert, J.; Steiger, H.; Melchior, J.C.; Falissard, B.; Berthoz, S.; Mour-ier-Soleillant, V.; et al. Symptoms of depression and anxiety in anorexia nervosa: Links with plasma tryptophan and serotonin metabolism. Psy-Choneuroendocrinology 2014, 39, 170–178. [Google Scholar] [CrossRef]
- Goodwin, G.M.; Shapiro, C.M.; Bennie, J.; Dick, H.; Carroll, S.; Fink, G. The neuroendocrine responses and psychological effects of infusion of L-tryptophan in anorexia nervosa. Psychol. Med. 1989, 19, 857–864. [Google Scholar] [CrossRef]
- Demitrack, M.A.; Heyes, M.P.; Altemus, M.; Pigott, T.A.; Gold, P.W. Cerebrospinal fluid levels of kynurenine pathway metabolites in patients with eating disorders: Relation to clinical and biochemical variable. Biol. Psychiatry 1995, 37, 512–520. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2011, 25, 402–408. [Google Scholar] [CrossRef]
- Dudzińska, E.; Szymona, K.; Kloc, R.; Gil-Kulik, P.; Kocki, T.; Świstowska, M.; Bogucki, J.; Kocki, J.; Urbanska, E.M. Increased expression of kynurenine aminotransferases mRNA in lymphocytes of patients with inflammatory bowel disease. Ther. Adv. Gastroenterol. 2019, 12, 1756284819881304. [Google Scholar] [CrossRef]
- Haleem, D.J. Serotonin neurotransmission in anorexia nervosa. Behav. Pharmacol. 2012, 23, 478–495. [Google Scholar] [CrossRef]
- Kaye, W.H.; Barbarich, N.C.; Putnam, K.; Gendall, K.A.; Fernstrom, J.; Fernstrom, M.; McConaha, C.W.; Kishore, A. Anxi-olytic effects of acute tryptophan depletion in anorexia nervosa. Int. J. Eat. Disord. 2003, 3, 257–267. [Google Scholar]
- Guidetti, P.; Okuno, E.; Schwarcz, R. Characterization of rat brain kynurenine aminotransferases I and II. J. Neurosci. Res. 1997, 50, 457–465. [Google Scholar] [PubMed]
- Frintrop, L.; Trinh, S.; Liesbrock, J.; Leunissen, C.; Kempermann, J.; Etdöger, S.; Kas, M.J.; Tolba, R.; Heussen, N.; Neulen, J.; et al. The reduction of astrocytes and brain volume loss in anorexia nervosa—the impact of starvation and refeeding in a rodent model. Transl. Psychiatry 2019, 9, 1–11. [Google Scholar] [CrossRef]
- Achamrah, N.; Nobis, S.; Breton, J.; Jésus, P.; Belmonte, L.; Maurer, B.; Legrand, R.; Bôle-Feysot, C.; do Rego, J.L.; Goichon, A.; et al. Maintaining physical activity during refeeding im-proves body composition, intestinal hyperpermeability and behavior in anorectic mice. Sci Rep. 2016, 6, 21887. [Google Scholar] [CrossRef] [PubMed]
- Agudelo, L.Z.; Femenía, T.; Orhan, F.; Porsmyr-Palmertz, M.; Goiny, M.; Martinez-Redondo, V.; Correia, J.C.; Izadi, M.; Bhat, M.; Schuppe-Koistinen, I.; et al. Skeletal Muscle PGC-1α1 Modulates Kynurenine Metabolism and Mediates Resilience to Stress-Induced Depression. Cell 2014, 159, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Tang, H.; Gong, C.; Liu, J.; Chen, J. Assessment of serum CX3CL1/fractalkine level in Han Chinese girls with anorexia nervosa and its correlation with nutritional status: A preliminary cross-sectional study. J. Investig. Med. 2016, 65, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Pabon, M.M.; Bachstetter, A.D.; Hudson, C.E.; Gemma, C.; Bickford, P.C. CX3CL1 reduces neurotoxicity and microglial activation in a rat model of Parkinson’s disease. J. Neuroinflamm. 2011, 8, 9. [Google Scholar] [CrossRef]
- Rogers, R.S.; Dharsee, M.; Ackloo, S.; Sivak, J.M.; Flanagan, J.G. Proteomics Analyses of Human Optic Nerve Head Astrocytes Following Biomechanical Strain. Mol. Cell. Proteom. 2012, 11, M111-012302. [Google Scholar] [CrossRef]
- Sheridan, G.K.; Murphy, K.J. Neuron–glia crosstalk in health and disease: Fractalkine and CX 3 CR1 take centre stage. Open Biol. 2013, 3, 130181. [Google Scholar] [CrossRef]
- Rossetti, A.C.; Papp, M.; Gruca, P.; Paladini, M.S.; Racagni, G.; Riva, M.; Molteni, R. Stress-induced anhedonia is associated with the activation of the inflammatory system in the rat brain: Restorative effect of pharmacological intervention. Pharmacol. Res. 2016, 103, 1–12. [Google Scholar] [CrossRef]
- Winkler, Z.; Kuti, D.; Ferenczi, S.; Gulyás, K.; Polyák, Á.; Kovács, K.J. Impaired microglia fractalkine signaling affects stress reaction and coping style in mice. Behav. Brain Res. 2017, 334, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Romero-Sanchiz, P.; Nogueira-Arjona, R.; Araos, P.; Serrano, A.; Barrios, V.; Argente, J.; Garcia-Marchena, N.; Lopez-Tellez, A.; Rodriguez-Moreno, S.; Mayoral, F.; et al. Variation in chemokines plasma concentrations in pri-mary care depressed patients associated with Internet-based cognitive-behavioral therapy. Sci. Rep. 2020, 10, 1078. [Google Scholar] [CrossRef] [PubMed]
- Corona, A.W.; Huang, Y.; O’Connor, J.C.; Dantzer, R.; Kelley, K.W.; Popovich, P.G.; Godbout, J.P. Fractalkine receptor (CX3CR1) deficiency sensitizes mice to the behavioral changes induced by lipopolysaccharide. J. Neuroinflammation 2010, 7, 93. [Google Scholar] [CrossRef] [PubMed]
- Víctor, V.M.; Rovira-Llopis, S.; Saiz-Alarcón, V.; Sangüesa, M.C.; Rojo-Bofill, L.; Bañuls, C.; De Pablo, C.; Álvarez, Á.; Rojo, L.; Rocha, M.; et al. Involvement of leucocyte/endothelial cell interactions in anorexia nervosa. Eur. J. Clin. Investig. 2015, 45, 670–678. [Google Scholar] [CrossRef]
- Dalton, B.; Campbell, I.C.; Chung, R.; Breen, G.; Schmidt, U.; Himmerich, H. Inflammatory Markers in Anorexia Nervosa: An Exploratory Study. Nutrients 2018, 10, 1573. [Google Scholar] [CrossRef]
- Omodei, D.; Pucino, V.; Labruna, G.; Procaccini, C.; Galgani, M.; Perna, F.; Pirozzi, D.; De Caprio, C.; Marone, G.; Fontana, L.; et al. Immune-metabolic profiling of anorexic patients reveals an an-ti-oxidant and anti-inflammatory phenotype. Metabolism 2015, 64, 396–405. [Google Scholar] [CrossRef]
| Variable | Control | Anorexia Nervosa | p-Value |
|---|---|---|---|
| Mean ± SD | Mean ± SD | ||
| Age (years) | 19.15 ± 2.57 | 18.97 ± 2.54 | 0.781 |
| Body mass (kg) | 52.10 ± 1.89 | 39.18 ± 1.3 | <0.001 |
| BMI (kg/m2) | 20.07 ± 0.93 | 15.17 ± 0.92 | <0.001 |
| Disease duration (months) | - | 9.5 ± 4.6 |
| Variable | Control | Anorexia Nervosa | p-Value |
|---|---|---|---|
| Fractalkine (ng/mL) | 0.059 ± 0.003 | 0.066 ± 0.006 | <0.001 |
| sICAM-1 (ng/mL) | 182.710 ± 23.76 | 178.44 ± 40.94 | 0.776 |
| TRP (µmol/L) | 42.85 ± 10.35 | 41.11 ± 13.58 | 0.456 |
| KYN (µmol/L) | 2.21 ± 0.91 | 2.26 ± 0.60 | 0.591 |
| KYNA (nmol/L) | 38.09 ± 8.81 | 42.22 ± 15.17 | 0.704 |
| 3-OH-KYN (nmol/L) | 12.63 ± 13.59 | 20.07 ± 23.49 | 0.225 |
| Ratio | |||
| TRP/KYN | 26.52 ± 30.79 | 18.79 ± 5.44 | 0.454 |
| KYN/KYNA | 0.058 ± 0.02 | 0.056 ± 0.02 | 0.391 |
| KYN/3-OH-KYN | 2.82 ± 1.56 | 3.35 ± 3.61 | 0.583 |
| KYNA/3-OH-KYN | 46.61 ± 23.57 | 61.05 ± 72.35 | 0.675 |
| logRQ CCBL1 (KAT1) | −0.176 ± 0.362 | 0.006 ± 0.288 | 0.127 |
| logRQ AADAT (KAT2) | −0.037 ± 0.39 | −0.002 ± 0.42 | 0.551 |
| logRQ KAT3 | −0.295 ± 0.303 | 0.057 ± 0.168 | <0.001 |
| Control | Anorexia Nervosa | |||||||
|---|---|---|---|---|---|---|---|---|
| Fractalkine | sICAM-1 | Fractalkine | sICAM-1 | |||||
| R | p-Value | R | p-Value | R | p-Value | R | p-Value | |
| TRP | −0.219 | 0.357 | 0.412 | 0.071 | 0.679 | <0.01 | 0.007 | 0.977 |
| KYN | 0.001 | 0.993 | 0.063 | 0.791 | 0.245 | 0.359 | 0.327 | 0.185 |
| KYNA | −0.063 | 0.785 | 0.321 | 0.166 | 0.381 | 0.144 | −0.089 | 0.723 |
| 3-OH-KYN | −0.036 | 0.904 | 0.350 | 0.167 | 0.167 | 0.463 | −0.464 | <0.05 |
| Ratio | ||||||||
| TRP/KYN | −0.162 | 0.482 | 0.204 | 0.387 | 0.324 | 0.238 | −0.144 | 0.579 |
| KYN/KYNA | 0.149 | 0.518 | −0.174 | 0.462 | −0.194 | 0.488 | 0.414 | 0.098 |
| KYN/3-OH-KYN | −0.157 | 0.532 | −0.203 | 0.433 | 0.195 | 0.468 | 0.498 | 0.05 |
| KYNA/3-OH-KYN | 0.054 | 0.829 | −0.04 | 0.852 | 0.217 | 0.418 | 0.457 | <0.05 |
| Control | Anorexia Nervosa | |||
|---|---|---|---|---|
| R | p-Value | R | p-Value | |
| Fractalkine | 0.214 | 0.338 | −0.586 | <0.05 |
| sICAM-1 | −0.084 | 0.716 | 0.034 | 0.889 |
| TRP | −0.117 | 0.602 | −0.518 | <0.05 |
| KYN | −0.020 | 0.926 | −0.401 | 0.088 |
| KYNA | −0.128 | 0.567 | −0.379 | 0.108 |
| 3-OH-KYN | 0.001 | 0.993 | −0.202 | 0.391 |
| AADAT | CCBL1 | KAT3 | ||||
|---|---|---|---|---|---|---|
| R | p-Value | R | p-Value | R | p-Value | |
| Control | ||||||
| BMI | 0.289 | 0.243 | 0.280 | 0.195 | 0.459 | 0.027 |
| Fractalkine | 0.350 | 0.168 | 0.124 | 0.579 | −0.05 | 0.809 |
| sICAM-1 | −0.144 | 0.579 | −0.168 | 0.482 | −0.163 | 0.478 |
| Anorexia Nervosa | ||||||
| BMI | −0.177 | 0.527 | −0.245 | 0.325 | −0.120 | 0.632 |
| Fractalkine | 0.451 | 0.140 | 0.182 | 0.514 | −0.026 | 0.924 |
| sICAM-1 | −0.345 | 0.226 | −0.431 | 0.083 | −0.451 | 0.069 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dudzińska, E.; Szymona, K.; Kloc, R.; Kocki, T.; Gil-Kulik, P.; Bogucki, J.; Kocki, J.; Paduch, R.; Urbańska, E.M. Fractalkine, sICAM-1 and Kynurenine Pathway in Restrictive Anorexia Nervosa–Exploratory Study. Nutrients 2021, 13, 339. https://doi.org/10.3390/nu13020339
Dudzińska E, Szymona K, Kloc R, Kocki T, Gil-Kulik P, Bogucki J, Kocki J, Paduch R, Urbańska EM. Fractalkine, sICAM-1 and Kynurenine Pathway in Restrictive Anorexia Nervosa–Exploratory Study. Nutrients. 2021; 13(2):339. https://doi.org/10.3390/nu13020339
Chicago/Turabian StyleDudzińska, Ewa, Kinga Szymona, Renata Kloc, Tomasz Kocki, Paulina Gil-Kulik, Jacek Bogucki, Janusz Kocki, Roman Paduch, and Ewa M. Urbańska. 2021. "Fractalkine, sICAM-1 and Kynurenine Pathway in Restrictive Anorexia Nervosa–Exploratory Study" Nutrients 13, no. 2: 339. https://doi.org/10.3390/nu13020339
APA StyleDudzińska, E., Szymona, K., Kloc, R., Kocki, T., Gil-Kulik, P., Bogucki, J., Kocki, J., Paduch, R., & Urbańska, E. M. (2021). Fractalkine, sICAM-1 and Kynurenine Pathway in Restrictive Anorexia Nervosa–Exploratory Study. Nutrients, 13(2), 339. https://doi.org/10.3390/nu13020339

