Comparison of Conventional and Microwave Assisted Heating on Carbohydrate Content, Antioxidant Capacity and Postprandial Glycemic Response in Oat Meals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Functional Characteristic Measurement
2.2.1. Granulometric Analysis
2.2.2. Water Holding Capacity
2.2.3. Water Solubility Index
2.3. Oatmeal Preparation
2.4. Chemical Content Analysis
2.5. Antioxidant Capacity Analysis
2.6. Glycemic Index Measurement
2.7. Statistical Analysis
3. Results
3.1. Characteristic of Nutritional Components
3.2. The Product Functional Characteristic
3.3. The Carbohydrate Release
3.4. Antioxidant Capacity
3.5. Glycemic Index
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Global Industry Analyst Inc. Whole Grain and High Fiber Foods—A Global Strategic Business Report; Global Industry Analyst Inc.: San Jose, CA, USA, 2017. [Google Scholar]
- McRae, M.P. Health Benefits of Dietary Whole Grains, An Umbrella Review of Meta-analyses. J. Chiropr. Med. 2017, 16, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Sang, S.; Chu, Y.F. Whole grain oats, more than just a fiber, Role of unique phytochemicals. Mol. Nutr. Food Res. 2017, 61, 1–12. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Scientific Opinion on the substantiation of a health claim related to oat β-glucan and lowering blood cholesterol and reduced risk of (coronary) heart disease pursuant to Article 14 of Regulation (EC). EFSA J. 2010, 8, 1885. [Google Scholar]
- European Food Safety Authority (EFSA). Scientific Opinion on the substantiation of health claims related to β-glucans from oats and barley and maintenance of normal blood LDL-cholesterol concentrations. EFSA J. 2011, 9, 2207. [Google Scholar]
- EFSA Panel on Dietetic Products N and A (NDA). Scientific Opinion on the substantiation of health claims related to oat and barley grain fibre and increase in faecal bulk (ID 819, 822) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2011, 9, 2249. [Google Scholar] [Green Version]
- Wilczak, J.; Błaszczyk, K.; Kamola, D.; Gajewska, M.; Harasym, J.P.; Jałosińska, M.; Gudej, S.; Suchecka, D.; Oczkowski, M.; Gromadzka-Ostrowska, J. The effect of low or high molecular weight oat β-glucans on the inflammatory and oxidative stress status in the colon of rats with LPS-induced enteritis. Food Funct. 2015, 6, 590–603. [Google Scholar] [CrossRef] [PubMed]
- Błaszczyk, K.; Wilczak, J.; Harasym, J.; Gudej, S.; Suchecka, D.; Królikowski, T.; Lange, E.; Gromadzka-Ostrowska, J. Impact of low and high molecular weight oat β-glucan on oxidative stress and antioxidant defense in spleen of rats with LPS induced enteritis. Food Hydrocoll. 2015, 51, 272–280. [Google Scholar] [CrossRef]
- Suchecka, D.; Harasym, J.; Wilczak, J.; Gromadzka-Ostrowska, J. Hepato- and gastro- protective activity of purified oat 1–3, 1–4-β-d-glucans of different molecular weight. Int. J. Biol. Macromol. 2016, 91, 1177–1185. [Google Scholar] [CrossRef] [PubMed]
- Ames, N.; Storsley, J.; Tosh, S. Effects of processing on physicochemical properties and efficacy of β-glucan from oat and barley. Cereal Foods World 2015, 60, 4–8. [Google Scholar] [CrossRef]
- Fardet, A. New hypotheses for the health-protective mechanisms of whole-grain cereals: What is beyond fibre? Nutr. Res. Rev. 2010, 23, 65–134. [Google Scholar] [CrossRef] [PubMed]
- Dimberg, L.H.; Theander, O.; Lingnert, H. Avenanthramides—A group of phenolic antioxidants in oats. Cereal Chem. 1992, 70, 637–641. [Google Scholar]
- Shah, A.; Gani, A.; Masoodi, F.A.; Wani, S.M.; Ashwar, B.A. Structural, rheological and nutraceutical potential of β-glucan from barley and oat. Bioact. Carbohydr. Diet. Fibre 2017, 10, 10–16. [Google Scholar] [CrossRef]
- Suchecka, D.; Harasym, J.; Wilczak, J.; Gajewska, M.; Oczkowski, M.; Gudej, S.; Błaszczyk, K.; Kamola, D.; Filip, R.; Gromadzka-Ostrowska, J. Antioxidative and anti-inflammatory effects of high β-glucan concentration purified aqueous extract from oat in experimental model of LPS-induced chronic enteritis. J. Funct. Foods 2015, 14, 244–254. [Google Scholar] [CrossRef]
- Tiwari, U.; Cummins, E. Meta-analysis of the effect of β-glucan intake on blood cholesterol and glucose levels. Nutrition 2011, 27, 1008–1016. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Zhao, J.; Huang, Y.; Li, Y. The difference between oats and β-glucan extract intake in the management of HbA1c, fasting glucose and insulin sensitivity, a meta-analysis of randomized controlled trials. Food Funct. 2016, 7, 1413–1428. [Google Scholar] [CrossRef] [PubMed]
- Sopade, P. Cereal processing and glycaemic response. Int. J. Food Sci. Technol. 2017, 52, 22–37. [Google Scholar] [CrossRef]
- Mackie, A.R.; Bajka, B.H.; Rigby, N.M.; Wilde, P.J.; Alves-Pereira, F.; Mosleth, E.F.; Rieder, A.; Kirkhus, B.; Salt, L.J. Oatmeal particle size alters glycemic index but not as a function of gastric emptying rate. Am. J. Physiol. Gastrointest. Liver Physiol. 2017, 313, G239–G246. [Google Scholar] [CrossRef] [PubMed]
- Dar, B.N.; Sharma, S. Total Phenolic Content of Cereal Brans using Conventional and Microwave Assisted Extraction. Am. J. Food Technol. 2011, 6, 1045–1053. [Google Scholar] [CrossRef]
- Pérez-Quirce, S.; Ronda, F.; Melendre, C.; Lazaridou, A.; Biliaderis, C.G. Inactivation of Endogenous Rice Flour β-Glucanase by Microwave Radiation and Impact on Physico-chemical Properties of the Treated Flour. Food Bioprocess Technol. 2016, 9, 1562–1573. [Google Scholar] [CrossRef]
- Keying, Q.; Changzhong, R.; Zaigui, L. An investigation on pretreatments for inactivation of lipase in naked oat kernels using microwave heating. J. Food Eng. 2009, 95, 280–284. [Google Scholar] [CrossRef]
- Pérez-Quirce, S.; Ronda, F.; Lazaridou, A.; Biliaderis, C.G. Effect of Microwave Radiation Pretreatment of Rice Flour on Gluten-Free Breadmaking and Molecular Size of β-Glucans in the Fortified Breads. Food Bioprocess Technol. 2017, 10, 1412–1421. [Google Scholar] [CrossRef]
- Villanueva, M.; Harasym, J.; Muñoz Muñoz, J.M.; Ronda, F. Microwave absorption capacity of rice flour. Impact of the radiation on rice flour microstructure, thermal and viscometric properties. J. Food Eng. 2018, 224, 156–164. [Google Scholar] [CrossRef]
- Hossan, M.R.; Dutta, P. Hffects of temperature dependent properties in electromagnetic heating. Int. J. Heat Mass Transf. 2012, 55, 3412–3422. [Google Scholar] [CrossRef]
- Harasym, J.; Olędzki, R. The mutual correlation of glucose, starch and β-glucan release during microwave heating and antioxidant activity of oat water extracts. Food Bioprocess Technol. 2018. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef] [PubMed]
- Carbohydrates in Human Nutrition. Report of a Joint FAO/WHO Expert Consultation; FAO Food Nutrition Paper; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy; World Health Organization (WHO): Geneva, Switzerland, 1998. [Google Scholar]
- Hitayezu, R.; Baakdah, M.M.; Kinnin, J.; Henderson, K.; Tsopmo, A. Antioxidant activity, avenanthramide and phenolic acid contents of oat milling fractions. J. Cereal Sci. 2015, 63, 35–40. [Google Scholar] [CrossRef]
- Chu, Y.F.; Wise, M.L.; Gulvady, A.A.; Chang, T.; Kendra, D.F.; Jan-Willem Van Klinken, B.; Shi, Y.; O’Shea, M. In vitro antioxidant capacity and anti-inflammatory activity of seven common oats. Food Chem. 2013, 139, 426–431. [Google Scholar] [CrossRef] [PubMed]
- Rzedzicki, Z.; Wirkijowska, A. Charakterystyka składu chemicznego przetworów jęczmiennych ze szczególnym uwzględnieniem składu frakcyjnego błonnika pokarmowego. ŻNTJ 2008, 1, 52–64. [Google Scholar]
- Rzedzicki, Z. Charakterystyka składu chemicznego wybranych przetworów owsianych. IHAR Bull. 2006, 239, 269–280. [Google Scholar]
- Yiu, S.H.; Weisz, J.; Wood, P.J. Comparison of the effects of microwave and conventional cooking on starch and β-glucan in rolled oats. Cereal Chem. 1991, 68, 372–375. [Google Scholar]
- Girardet, N.; Webster, F.H. Oat Milling, Specifications, Storage, and Processing. In Oats, Chemistry and Technology, 2nd ed.; American Association of Cereal Chemists: St. Paul, MN, USA, 2011. [Google Scholar]
- Granfeldt, Y.; Eliasson, A.-C.; Björck, I. An examination of the possibility of lowering the glycemic index of oat and barley flakes by minimal processing. J. Nutr. 2000, 130, 2207–2214. [Google Scholar] [CrossRef] [PubMed]
- Zieliński, H.; Kozłowska, H. Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions. J. Agric. Food Chem. 2000, 48, 2008–2016. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, D.G.; Inglett, G.E.; Chen, D.; Biswas, A.; Eller, F.J.; Evangelista, R.L. Phenolic content and antioxidant capacity of supercritical carbon dioxide-treated and air-classified oat bran concentrate microwave-irradiated in water or ethanol at varying temperatures. Food Chem. 2008, 108, 23–30. [Google Scholar] [CrossRef]
- Mackie, A.R.; Rafiee, H.; Malcolm, P.; Salt, L.; van Aken, G. Specific food structures supress appetite through reduced gastric emptying rate. Am. J. Physiol. Gut Liver Physiol. 2013, 304, G1038–G1043. [Google Scholar] [CrossRef] [PubMed]
- Suchecka, D.; Gromadzka-Ostrowska, J.; Żyła, E.; Harasym, J.P.; Oczkowski, M. Selected physiological activities and health promoting properties of cereal β-glucans. A review. J. Anim. Feed Sci. 2017, 26, 183–191. [Google Scholar] [CrossRef]
Nutrient * | F | B | ||
---|---|---|---|---|
protein | 13.88 ± 0.71 a | TCH/TDF 2.77 | 16.77 ± 2.32 a | TCH/TDF 2.01 |
fat | 9 ± 0.98 a | 7.14 ± 1.57 a | ||
TCH | 48.48 ± 1.74 b | ST/GL 46.19 | 42.68 ± 1.13 a | ST/GL 64.67 |
starch | 47.03 ± 1.69 b | 41.39 ± 1.09 a | ||
glucose | 1 ± 0.04 b | ST/BG 9.98 | 0.6 ± 0.02 a | ST/BG 6.64 |
TDF | 17.6 ± 1.21 a | 21.3 ± 1.2 b | ||
β-glucan | 4.73 ± 0.38 a | GL/BG 0.22 | 6.1 ± 0.48 b | GL/BG 0.1 |
ash | 1.64 ± 0.08 a | 2.08 ± 0.21 b | ||
energy load # | 312.48 ± 7.94 b | 287.75 ± 3.17 a |
ST | GL | BG | ||
---|---|---|---|---|
ST | F | - | −0.77 * | −0.37ns |
B | - | −0.06ns | −0.32ns | |
GL | F | −0.89 ** | - | 0.82 ** |
B | - | - | −0.57ns | |
BG | F | 0.74 * | 0.91 ** | - |
B | - | - | - |
Solids | TPC-L | DPPH | ABTS | ||
---|---|---|---|---|---|
solids | F | - | 0.64ns | −0.76 * | −0.35ns |
B | - | −0.49ns | −0.46ns | −0.17ns | |
TPC-L | F | - | - | 0.90 ** | 0.78 * |
B | - | - | 0.85ns | 0.88 ** | |
DPPH | F | 0.73 * | 0.73 * | - | −0.60ns |
B | - | 0.80 * | - | 0.62ns | |
ABTS | F | - | - | - | - |
B | - | 0.92 ** | - | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harasym, J.; Olędzki, R. Comparison of Conventional and Microwave Assisted Heating on Carbohydrate Content, Antioxidant Capacity and Postprandial Glycemic Response in Oat Meals. Nutrients 2018, 10, 207. https://doi.org/10.3390/nu10020207
Harasym J, Olędzki R. Comparison of Conventional and Microwave Assisted Heating on Carbohydrate Content, Antioxidant Capacity and Postprandial Glycemic Response in Oat Meals. Nutrients. 2018; 10(2):207. https://doi.org/10.3390/nu10020207
Chicago/Turabian StyleHarasym, Joanna, and Remigiusz Olędzki. 2018. "Comparison of Conventional and Microwave Assisted Heating on Carbohydrate Content, Antioxidant Capacity and Postprandial Glycemic Response in Oat Meals" Nutrients 10, no. 2: 207. https://doi.org/10.3390/nu10020207
APA StyleHarasym, J., & Olędzki, R. (2018). Comparison of Conventional and Microwave Assisted Heating on Carbohydrate Content, Antioxidant Capacity and Postprandial Glycemic Response in Oat Meals. Nutrients, 10(2), 207. https://doi.org/10.3390/nu10020207