The Association between Iron and Vitamin D Status in Female Elite Athletes
Abstract
:1. Introduction
2. Material and Methods
2.1. Subjects
2.2. Blood Analysis
2.2.1. Blood Morphology Indices
2.2.2. Vitamin D and Iron Status Indices in Serum
2.2.3. Acute Phase Reaction Markers
2.3. Anthropometric Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Azizi-Soleiman, F.; Vafa, M.; Abiri, B.; Safavi, M. Effects of iron on Vitamin D metabolism: A systematic review. Int. J. Prev. Med. 2016, 7, 126. [Google Scholar] [CrossRef] [PubMed]
- De Benoist, B.; McLean, E.; Egli, I.; Cogswell, M. (Eds.) Worldwide Prevalence of Anemia 1993–2005; Global Database Anemia 2008; World Health Organization: Geneva, Switzerland, 2008; pp. 1–40. [Google Scholar]
- Autier, P.; Boniol, M.; Pizot, C.; Mullie, P. Vitamin D status and ill health: A systematic review. Lancet Diabetes Endocrinol. 2014, 2, 76–89. [Google Scholar] [CrossRef]
- Pludowski, P.; Holick, M.F.; Pilz, S.; Wagner, C.L.; Hollis, B.W.; Grant, W.B.; Shoenfeld, Y.; Lerchbaum, E.; Llewellyn, D.J.; Kienreich, K.; et al. Vitamin D effects on musculoskeletal health, immunity, autoimmunity, cardiovascular disease, cancer, fertility, pregnancy, dementia and mortality—A review of recent evidence. Autoimmun. Rev. 2013, 12, 976–989. [Google Scholar] [CrossRef] [PubMed]
- Fishman, M.P.; Lombardo, S.J.; Kharrazi, F.D. Vitamin D deficiency among professional basketball players. Orthop. J. Sports Med. 2016, 4. [Google Scholar] [CrossRef] [PubMed]
- Von Hurst, P.R.; Beck, K.L. Vitamin D and skeletal muscle function in athletes. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Koundourakis, N.E.; Androulakis, N.E.; Malliaraki, N.; Margioris, A.N. Vitamin D and exercise performance in professional soccer players. PLoS ONE 2014, 9, e101659. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, B.; Whiteley, R.; Farooq, A.; Chalabi, H. Vitamin D concentration in 342 professional football players and association with lower limb isokinetic function. J. Sci. Med. Sport 2014, 17, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Pludowski, P.; Ducki, C.; Konstantynowicz, J.; Jaworski, M. Vitamin D status in Poland. Pol. Arch. Med. Wewn. 2016, 126, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Krzywanski, J.; Mikulski, T.; Krysztofiak, H.; Mlynczak, M.; Gaczynska, E.; Ziemba, A. Seasonal vitamin D status in polish elite athletes in relation to sun exposure and oral supplementation. PLoS ONE 2016, 11, e0164395. [Google Scholar] [CrossRef] [PubMed]
- Morton, J.P.; Iqbal, Z.; Drust, B.; Burgess, D.; Close, G.L.; Brukner, P.D. Seasonal variation in vitamin D status in professional soccer players of the English Premier League. Appl. Physiol. Nutr. Metab. 2012, 37, 798–802. [Google Scholar] [CrossRef] [PubMed]
- Larson-Meyer, D.E.; Willis, K.S. Vitamin D and athletes. Curr. Sports Med. Rep. 2010, 9, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci. 2014, 19, 164–174. [Google Scholar] [PubMed]
- Rodenberg, R.E.; Gustafson, S. Iron as an ergogenic aid: Ironclad evidence? Curr. Sports Med. Rep. 2007, 6, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.F. Iron deficiency anemia. Nutr. Clin. Pract. 2008, 23, 128–141. [Google Scholar] [CrossRef] [PubMed]
- Coad, J.; Conlon, C. Iron deficiency in women: Assessment, causes and consequences. Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Milman, N. Anemia—Still a major health problem in many parts of the world! Ann. Hematol. 2011, 90, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Fallon, K.E. Screening for haematological and iron-related abnormalities in elite athletes—Analysis of 576 cases. J. Sci. Med. Sport 2008, 11, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Koehler, K.; Braun, H.; Achtzehn, S.; Hildebrand, U.; Predel, H.-G.; Mester, J.; Schänzer, W. Iron status in elite young athletes: Gender-dependent influences of diet and exercise. Eur. J. Appl. Physiol. 2012, 112, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, L.M.; Hinton, P.S. Prevalence of iron deficiency with and without anemia in recreationally active men and women. J. Am. Diet. Assoc. 2005, 105, 975–978. [Google Scholar] [CrossRef] [PubMed]
- Gibson, J.C.; Stuart-Hill, L.; Martin, S.; Gaul, C. Nutrition status of junior elite Canadian female soccer athletes. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Malczewska-Lenczowska, J.; Orysiak, J.; Szczepańska, B.; Turowski, D.; Burkhard-Jagodzińska, K.; Gajewski, J. Reticulocyte and erythrocyte hypochromia markers in detection of iron deficiency in adolescent female athletes. Biol. Sport 2017, 34, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Sim, J.J.; Lac, P.T.; Liu, I.L.A.; Meguerditchian, S.O.; Kumar, V.A.; Kujubu, D.A.; Rasgon, S.A. Vitamin D deficiency and anemia: A cross-sectional study. Ann. Hematol. 2010, 89, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Rojo, R.; Pérez-Granados, A.M.; Toxqui, L.; Zazo, P.; de la Piedra, C.; Vaquero, M.P. Relationship between vitamin D deficiency, bone remodelling and iron status in iron-deficient young women consuming an iron-fortified food. Eur. J. Nutr. 2013, 52, 695–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.A.; Hwang, J.S.; Hwang, I.T.; Kim, D.H.; Seo, J.-H.; Lim, J.S. Low vitamin D levels are associated with both iron deficiency and anemia in children and adolescents. Pediatr. Hematol. Oncol. 2015, 32, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhong, S.; Liu, L.; Liu, S.; Li, X.; Zhou, T.; Zhang, J. Vitamin D deficiency and the risk of anemia: A meta-analysis of observational studies. Ren. Fail. 2015, 37, 929–934. [Google Scholar] [CrossRef] [PubMed]
- Constantini, N.W.; Arieli, R.; Chodick, G.; Dubnov-Raz, G. High prevalence of vitamin D insufficiency in athletes and dancers. Clin. J. Sport Med. 2010, 20, 368–371. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Jain, R.; Dabla, P.K. The role of 25-hydroxy vitamin D deficiency in iron deficient children of North India. Indian J. Clin. Biochem. 2015, 30, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Monlezun, D.J.; Camargo, C.A., Jr.; Mullen, J.T.; Quraishi, S.A. Vitamin D status and the risk of anemia in community-dwelling adults: Results from the National Health and Nutrition Examination Survey 2001–2006. Medicine 2015, 94, e1799. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.Y.; Shim, J.Y. Low vitamin D levels increase anemia risk in Korean women. Clin. Chim. Acta 2013, 421, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Zughaier, S.M.; Alvarez, J.A.; Sloan, J.H.; Konrad, R.J.; Tangpricha, V. The role of vitamin D in regulating the iron-hepcidin-ferroportin axis in monocytes. J. Clin. Transl. Endocrinol. 2014, 1, e19–e25. [Google Scholar] [CrossRef] [PubMed]
- Bacchetta, J.; Zaritsky, J.J.; Sea, J.L.; Chun, R.F.; Lisse, T.S.; Zavala, K.; Nayak, A.; Wesseling-Perry, K.; Westerman, M.; Hollis, B.W.; et al. Suppression of iron-regulatory hepcidin by vitamin D. J. Am. Soc. Nephrol. 2014, 25, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.M.; Alvarez, J.A.; Kearns, M.D.; Hao, L.; Sloan, J.H.; Konrad, R.J.; Ziegler, T.R.; Zughaier, S.M.; Tangpricha, V. High-dose vitamin D3 reduces circulating hepcidin concentrations: A pilot, randomized, double-blind, placebo-controlled trial in healthy adults. Clin. Nutr. 2017, 36, 980–985. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.C.; Vaja, V.; Babitt, J.L.; Lin, H.Y. Targeting the hepcidin-ferroportin axis to develop new treatment strategies for anemia of chronic disease and anemia of inflammation. Am. J. Hematol. 2012, 87, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Alon, D.B.; Chaimovitz, C.; Dvilansky, A.; Lugassy, G.; Douvdevani, A.; Shany, S.; Nathan, I. Novel role of 1,25(OH)(2)D(3) in induction of erythroid progenitor cell proliferation. Exp. Hematol. 2002, 30, 403–409. [Google Scholar] [CrossRef]
- Heldenberg, D.; Tenenbaum, G.; Weisman, Y. Effect of iron on serum 25-hydroxyvitamin D and 24,25-dihydroxyvitamin D concentrations. Am. J. Clin. Nutr. 1992, 56, 533–536. [Google Scholar] [CrossRef] [PubMed]
- Wright, I.; Blanco-Rojo, R.; Fernández, M.C.; Toxqui, L.; Moreno, G.; Pérez-Granados, A.M.; de la Piedra, C.; Remacha, Á.F.; Vaquero, M.P. Bone remodelling is reduced by recovery from iron-deficiency anaemia in premenopausal women. J. Physiol. Biochem. 2013, 69, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Toxqui, L.; Vaquero, M.P. Chronic iron deficiency as an emerging risk factor for osteoporosis: A hypothesis. Nutrients 2015, 7, 2324–2344. [Google Scholar] [CrossRef] [PubMed]
- Katsumata, S.; Katsumata, R.; Matsumoto, N.; Inoue, H.; Takahashi, N.; Uehara, M. Iron deficiency decreases renal 25-hydroxyvitamin D 3-1α-hydroxylase activity and bone formation in rats. BMC Nutr. 2016, 2, 33. [Google Scholar] [CrossRef]
- Desbrow, B.; McCormack, J.; Burke, L.M.; Cox, G.R.; Fallon, K.; Hislop, M.; Logan, R.; Marino, N.; Sawyer, S.M.; Shaw, G.; et al. Sports Dietitians Australia position statement: Sports nutrition for the adolescent athlete. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 570–584. [Google Scholar] [CrossRef] [PubMed]
- McClung, J.P.; Gaffney-Stomberg, E.; Lee, J.J. Female athletes: A population at risk of vitamin and mineral deficiencies affecting health and performance. J. Trace Elem. Med. Biol. 2014, 28, 388–392. [Google Scholar] [CrossRef] [PubMed]
- Durnin, J.V.G.A.; Womersley, J. Body fat assessed from total body density and its estimation from skinfold thickness: Measurements on 481 men and women aged from 16 to 72 years. Br. J. Nutr. 1974, 32, 77–97. [Google Scholar] [CrossRef] [PubMed]
- Backx, E.M.P.; Tieland, M.; Maase, K.; Kies, A.K.; Mensink, M.; van Loon, L.J.C.; de Groot, L. The impact of 1-year vitamin D supplementation on vitamin D status in athletes: A dose-response study. Eur. J. Clin. Nutr. 2016, 70, 1009–1014. [Google Scholar] [CrossRef] [PubMed]
- Kulling, P.M.; Olson, K.C.; Olson, T.L.; Feith, D.J.; Loughran, T.P.J. Vitamin D in hematological disorders and malignancies. Eur. J. Haematol. 2017, 98, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.M.; Alvarez, J.A.; Martin, G.S.; Zughaier, S.M.; Ziegler, T.R.; Tangpricha, V. Vitamin D deficiency is associated with anaemia among African Americans in a US cohort. Br. J. Nutr. 2015, 113, 1732–1740. [Google Scholar] [CrossRef] [PubMed]
- Zacharski, L.R.; Ornstein, D.L.; Woloshin, S.; Schwartz, L.M. Association of age, sex, and race with body iron stores in adults: Analysis of NHANES III data. Am. Heart J. 2000, 140, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Ernst, J.B.; Zittermann, A.; Pilz, S.; Kleber, M.E.; Scharnagl, H.; Brandenburg, V.M.; König, W.; Grammer, T.B.; März, W. Independent associations of vitamin D metabolites with anemia in patients referred to coronary angiography: The LURIC study. Eur. J. Nutr. 2017, 56, 1017–1024. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, M.A.; Melamed, M.L.; Kumar, J.; Roy, C.N.; Miller, E.R.; Furth, S.L.; Fadrowski, J.J. Vitamin D, race, and risk for anemia in children. J. Pediatr. 2014, 164, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Malczewska-Lenczowska, J.; Sitkowski, D.; Orysiak, J.; Pokrywka, A.; Szygula, Z. Total haemoglobin mass, blood volume and morphological indices among athletes from different sport disciplines. Arch. Med. Sci. 2013, 9, 780–787. [Google Scholar] [CrossRef] [PubMed]
- Peeling, P.; McKay, A.K.A.; Pyne, D.B.; Guelfi, K.J.; McCormick, R.H.; Laarakkers, C.M.; Swinkels, D.W.; Garvican-Lewis, L.A.; Ross, M.L.R.; Sharma, A.P.; et al. Factors influencing the post-exercise hepcidin-25 response in elite athletes. Eur. J. Appl. Physiol. 2017, 117, 1233–1239. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.-N.; Gao, G.; Chang, Y.-Z. Hepcidin and sports anemia. Cell Biosci. 2014, 4, 19. [Google Scholar] [CrossRef] [PubMed]
- Blazsek, I.; Farabos, C.; Quittet, P.; Labat, M.; Bringuier, A.F.; Triana, B.K.; Machover, D.; Reynes, M.; Misset, J.-L. Bone marrow stromal cell defects and 1 alpha, 25-dihydroxyvitamin D3 deficiency underlying human myeloid leukemias. Cancer Detect. Prev. 1996, 20, 31–42. [Google Scholar] [PubMed]
- Pikuleva, I.A.; Waterman, M.R. Cytochromes P450: Roles in diseases. J. Biol. Chem. 2013, 288, 17091–17098. [Google Scholar] [CrossRef] [PubMed]
- Wolf, M.; Koch, T.A.; Bregman, D.B. Effects of iron deficiency anemia and its treatment on fibroblast growth factor 23 and phosphate homeostasis in women. J. Bone Miner. Res. 2013, 28, 1793–1803. [Google Scholar] [CrossRef] [PubMed]
n | Age (Years) | Body Height (m) | Body Mass (kg) | Body Fat (%) | Athletic Experience (h/Week) |
---|---|---|---|---|---|
219 * | 20.0 ± 4.4 | 1.74 ± 0.8 | 64.8 ± 7.5 | 23.3 ± 3.6 | 7.0 ± 3.4 |
Variables | Units | Mean Values | Ranges | Reference Values |
---|---|---|---|---|
25(OH)D | nmol/L | 74.8 ± 23.8 | (10.8–132.3) | 75–250 |
Ferritin | µg/L | 34.8 ± 22.4 | (2.7–135.2) | 16–120 |
sTfR | mg/L | 5.7 ± 2.0 | (2.3–18.6) | 2.9–8.3 |
TIBC | µmol/L | 59.0 ± 6.8 | (44.4–78.5) | 44.6–69.6 |
Iron | µmol/L | 15.2 ± 7.2 | (1.97–45.8) | 6.6–29.5 |
Hb | g/L | 135 ± 6.9 | (116–154) | 120–160 |
RBC | ×1012/L | 4.6 ± 0.3 | (3.6–5.4) | 4.2–5.4 |
Hct | % | 40.3 ± 2.0 | (34.7–45.6) | 37–47 |
MCH | pg | 29.5 ± 1.4 | (24.7–32.6) | 26–32 |
MCV | fl | 87.8 ± 3.7 | (77–99) | 81–99 |
CH | pg | 29.4 ± 1.4 | (23.7–32.4) | - |
MCHC | g/L | 336 ± 9.8 | (312–377) | 330–370 |
RDW | % | 12.8 ± 0.61 | (11.6–14.8) | 11.5–14.5 |
RETIC | % | 1.4 ± 0.34 | (0.57–2.77) | 0.5–2.5 |
#RETIC | 109/L | 63.9 ± 15.22 | (29–128) | 22–139 |
MCVr | fl | 101.4 ± 3.0 | (90–111) | 101–119 |
CHr | pg | 31.4 ± 1.44 | (26–34) | 27–32 |
CHCMr | g/dL | 31.0 ± 1.24 | (27–35) | 33–37 |
LowCHr | % | 9.9 ± 10.0 | (0.7–68.7) | - |
LowCHm | % | 24.0 ± 13.5 | (6.0–81.8) | - |
HYPOm | % | 0.86 ± 1.31 | (0.02–11.2) | - |
HYPOr | % | 13.0 ± 11.7 | (0.6–67.4) | - |
MICROm | % | 0.65 ± 0.6 | (0.1–4.86) | - |
CRP | mg/L | 0.37 ± 0.6 | (0–4) | to 5 |
ESR | mm/h | 4.4 ± 2.3 | (1–13) | to 15 |
WBC | ×109/L | 5.6 ± 1.2 | (3.2–10.4) | 4.5–10.4 |
OR | 95% CI | p | |
---|---|---|---|
Vitamin D deficiency | |||
Iron deficiency (ferritin < 16 µg/L) | 2.96 | 1.45–6.02 | 0.003 |
Length of day * | 2.29 | 1.28–4.07 | 0.005 |
Iron deficiency | |||
25(OH)D < 75 nmol/L | 2.73 | 1.32–5.62 | 0.007 |
Age | 0.82 | 0.73–0.91 | 0.000 |
OR | 95% CI | p | ||
---|---|---|---|---|
A | Vitamin D deficiency | |||
Ferritin < 30 µg/L | 1.75 | 1.02–2.99 | 0.040 | |
Ferritin < 16 µg/L | 3.14 | 1.56–6.31 | 0.001 | |
Ferritin < 12 µg/L | 3.56 | 1.60–7.91 | 0.002 | |
stage II of ID + IDA * | 4.60 | 1.81–11.65 | 0.001 | |
B | Iron deficiency | |||
25(OH)D < 75 nmol/L | 3.14 | 1.56–6.31 | 0.001 | |
25(OH)D < 50 nmol/L | 3.18 | 1.09–9.26 | 0.030 |
Normal Iron Status | Iron Deficiency | p | |
---|---|---|---|
25(OH)D nmol/L | 77.0 ± 19.0 | 65.0 ± 14.5 | 0.000 |
Variables | Units | Sufficient Vitamin D | Vitamin D Deficiency | p |
---|---|---|---|---|
Ferritin | µg/L | 37.8 ± 24.0 | 31.4 ± 20.5 | 0.043 |
sTfR | mg/L | 5.1 ± 1.6 | 6.1 ± 2.3 | 0.001 |
TIBC | µmol/L | 57.6 ± 6.4 | 60.1 ± 8.1 | 0.016 |
Iron | µmol/L | 16.7 ± 7.5 | 13.7 ± 6.6 | 0.004 |
Hb | g/L | 135 ± 6.7 | 136 ±7.1 | 0.39 |
Hct | % | 40.1 ± 2.0 | 40.3 ± 2.0 | 0.33 |
MCH | pg | 29.7 ± 1.4 | 29.4 ± 1.5 | 0.22 |
RBC | ×1012/L | 4.56 ± 0.26 | 4.64 ± 0.27 | 0.029 |
MCV | fl | 88.2 ± 3.6 | 87.4 ± 3.7 | 0.22 |
CH | pg | 29.6 ± 1.4 | 29.3 ± 1.4 | 0.08 |
MCHC | g/L | 337 ± 10 | 337 ± 10 | 0.90 |
RDW | % | 12.8 ± 0.5 | 12.8 ± 0.7 | 0.56 |
RETIC | % | 1.37 ± 0.34 | 1.42 ± 0.33 | 0.34 |
#RETIC | ×109/L | 62.3 ± 15.1 | 65.5 ± 15.0 | 0.17 |
MCVr | fl | 102 ± 3 | 101 ± 3 | 0.020 |
CHr | pg | 31.6 ± 1.5 | 31.2 ± 1.4 | 0.049 |
CHCMr | g/dL | 31.0 ± 1.2 | 31.0 ± 1.3 | 0.84 |
LowCHr | % | 9.18 ± 9.44 | 10.48 ± 10.36 | 0.17 |
LowCHm | % | 22.8 ± 12.6 | 24.9 ± 13.6 | 0.22 |
HYPOm | % | 0.77 ± 1.08 | 0.93 ± 1.47 | 0.37 |
HYPOr | % | 12.8 ± 11.5 | 13.1 ± 11.8 | 0.97 |
MICROm | % | 0.57 ± 0.44 | 0.73 ± 0.69 | 0.10 |
WBC | ×109/L | 5.48 ± 1.18 | 5.77 ± 1.28 | 0.08 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malczewska-Lenczowska, J.; Sitkowski, D.; Surała, O.; Orysiak, J.; Szczepańska, B.; Witek, K. The Association between Iron and Vitamin D Status in Female Elite Athletes. Nutrients 2018, 10, 167. https://doi.org/10.3390/nu10020167
Malczewska-Lenczowska J, Sitkowski D, Surała O, Orysiak J, Szczepańska B, Witek K. The Association between Iron and Vitamin D Status in Female Elite Athletes. Nutrients. 2018; 10(2):167. https://doi.org/10.3390/nu10020167
Chicago/Turabian StyleMalczewska-Lenczowska, Jadwiga, Dariusz Sitkowski, Olga Surała, Joanna Orysiak, Beata Szczepańska, and Konrad Witek. 2018. "The Association between Iron and Vitamin D Status in Female Elite Athletes" Nutrients 10, no. 2: 167. https://doi.org/10.3390/nu10020167
APA StyleMalczewska-Lenczowska, J., Sitkowski, D., Surała, O., Orysiak, J., Szczepańska, B., & Witek, K. (2018). The Association between Iron and Vitamin D Status in Female Elite Athletes. Nutrients, 10(2), 167. https://doi.org/10.3390/nu10020167