Nicotinic Acid Long-Term Effectiveness in a Patient with Bipolar Type II Disorder: A Case of Vitamin Dependency
Abstract
:1. Introduction
2. Case Report
3. Discussion
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Merikangas, K.R.; Jin, R.; He, J.P.; Kessler, R.C.; Lee, S.; Sampson, N.A.; Viana, M.C.; Andrade, L.H.; Hu, C.; Karam, E.G.; et al. Prevalence and correlates of bipolar spectrum disorder in the world mental health survey initiative. Arch. Gen. Psychiatry 2011, 68, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Babcock, J.W. The prevalence and psychology of pellagra. Am. J. Psychiatry 1911, 67, 517–540. [Google Scholar] [CrossRef]
- Goldberger, J. The relation of diet to pellagra. J. Am. Med. Assoc. 1922, 78, 1676–1680. [Google Scholar]
- Elvehjem, C.A.; Madden, R.J.; Strong, F.M.; Woolley, D.W. Relation of nicotinic acid and nicotinic acid amide to canine black tongue. J. Am. Chem. Soc. 1937, 59, 1767–1768. [Google Scholar] [CrossRef]
- Spies, T.D.; Aring, C.D.; Gelperin, J.; Bean, W.B. The mental symptoms of pellagra. Their relief with nicotinic acid. Am. J. Med. Sci. 1938, 196, 461–475. [Google Scholar] [CrossRef]
- Osmond, H.; Hoffer, A. Massive niacin treatment in schizophrenia. Review of a nine-year study. Lancet 1962, 279, 316–319. [Google Scholar] [CrossRef]
- Loebl, T.; Raskin, S. A novel case report: Acute manic psychotic episode after treatment with niacin. J. Neuropsychiatry Clin. Neurosci. 2013, 25, E14. [Google Scholar] [CrossRef] [PubMed]
- Vescovi, P.P.; Gerra, G.; Ippolito, L.; Caccavari, R.; Maestri, D.; Passeri, M. Nicotinic-acid effectiveness in the treatment of benzodiazepine withdrawal. Curr. Ther. Res. Clin. Exp. 1987, 41, 1017–1021. [Google Scholar]
- Schork, N.J. Personalized medicine: Time for one-person trials. Nature 2015, 520, 609–611. [Google Scholar] [CrossRef] [PubMed]
- Garrod, A. The incidence of alkaptonuria: A study in chemical individuality. Lancet 1902, 160, 1616–1620. [Google Scholar] [CrossRef]
- Williams, R.J.; Berry, L.J.; Beerstecher, E. Individual Metabolic Patterns, Alcoholism, Genetotrophic Diseases. Proc. Natl. Acad. Sci. USA 1949, 35, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Scriver, C.R. Vitamin B6 deficiency and dependency in man. Am. J. Dis. Child. 1967, 113, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Lonsdale, D.; Faulkner, W.R.; Price, W.; Smeby, R.R. Pyruvic acidemia with hyperalaninemia: Vitamin B1 dependency. J. Pediatr. 1969, 74, 827–828. [Google Scholar] [CrossRef]
- Hoffer, A. Vitamin B3 dependent family. Schizophrenia 1971, 3, 41–46. [Google Scholar]
- Rosenberg, L.E.; Lilljeqvist, A.; Hsia, Y.E. Methylmalonic aciduria: Metabolic block localization and vitamin B12 dependency. Science 1968, 162, 805–807. [Google Scholar] [CrossRef] [PubMed]
- Regland, B. Schizophrenia and single-carbon metabolism. Prog. Neuropsychopharmacol. Biol. Psychiatry 2005, 29, 1124–1132. [Google Scholar] [CrossRef] [PubMed]
- Arnaud, C.; Maijer, R.; Reade, T.; Scriver, C.R.; Whelan, D.T. Vitamin D dependency: An inherited postnatal syndrome with secondary hyperparathyroidism. Pediatrics 1970, 46, 871–880. [Google Scholar] [PubMed]
- Goraya, J.S. Congenital deficiency of vitamin K-dependent coagulation factors—A vitamin-K dependency state? Thromb. Haemost. 2001, 86, 932. [Google Scholar] [PubMed]
- Carlson, L.A. Nicotinic acid: The broad-spectrum lipid drug. A 50th anniversary review. J. Intern. Med. 2005, 258, 94–114. [Google Scholar] [CrossRef] [PubMed]
- Mohler, H.; Polc, P.; Cumin, R.; Pieri, L.; Kettler, R. Nicotinamide is a brain constituent with benzodiazepine-like actions. Nature 1979, 278, 563–565. [Google Scholar] [CrossRef] [PubMed]
- Tallman, J.F.; Paul, S.M.; Skolnick, P.; Gallager, D.W. Receptors for the age of anxiety: Pharmacology of the benzodiazepines. Science 1980, 207, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.L.; Murakami, P.; Ruczinski, I.; Ross, R.G.; Sinkus, M.; Sullivan, B.; Leonard, S. Two complex genotypes relevant to the kynurenine pathway and melanotropin function show association with schizophrenia and bipolar disorder. Schizophr. Res. 2009, 113, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Shehadah, A.; Chen, J.; Zacharek, A.; Cui, Y.; Ion, M.; Roberts, C.; Kapke, A.; Chopp, M. Niaspan treatment induces neuroprotection after stroke. Neurobiol. Dis. 2010, 40, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Penberthy, W.T. Niacin, Riboflavin, and Thiamine. In Biochemical, Physiological, and Molecular Aspects of Human Nutrition; Stipanuk, M.H., Caudill, M.A., Eds.; Elsevier/Saunders: St. Louis, MO, USA, 2013; pp. 540–564. [Google Scholar]
- Shi, H.; Enriquez, A.; Rapadas, M.; Martin, E.; Wang, R.; Moreau, J.; Lim, C.K.; Szot, J.O.; Ip, E.; Hughes, J.N.; et al. NAD Deficiency, Congenital Malformations, and Niacin Supplementation. N. Engl. J. Med. 2017, 377, 544–552. [Google Scholar] [CrossRef] [PubMed]
- Imai, S.; Guarente, L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 2014, 24, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Garrido, A.; Djouder, N. NAD+ Deficits in Age-Related Diseases and Cancer. Trends Cancer 2017, 3, 593–610. [Google Scholar] [CrossRef] [PubMed]
- Abe, N.; Uchida, S.; Otsuki, K.; Hobara, T.; Yamagata, H.; Higuchi, F.; Shibata, T.; Watanabe, Y. Altered sirtuin deacetylase gene expression in patients with a mood disorder. J. Psychiatr. Res. 2011, 45, 1106–1112. [Google Scholar] [CrossRef] [PubMed]
- Nivoli, A.; Porcelli, S.; Albani, D.; Forloni, G.; Fusco, F.; Colom, F.; Vieta, E.; Serretti, A. Association between sirtuin 1 gene rs10997870 polymorphism and suicide behaviors in bipolar disorder. Neuropsychobiology 2016, 74, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hara, N.; Yamada, K.; Shibata, T.; Osago, H.; Hashimoto, T.; Tsuchiya, M. Elevation of cellular NAD levels by nicotinic acid and involvement of nicotinic acid phosphoribosyltransferase in human cells. J. Biol. Chem. 2007, 282, 24574–24582. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Ibrahim, K.; Stucki, M.; Frapolli, M.; Shahbeck, N.; Chaudhry, F.A.; Gorg, B.; Haussinger, D.; Penberthy, W.T.; Ben-Omran, T.; et al. Secondary NAD+ deficiency in the inherited defect of glutamine synthetase. J. Inherit. Metab. Dis. 2015, 38, 1075–1083. [Google Scholar] [CrossRef] [PubMed]
- Trammell, S.A.; Schmidt, M.S.; Weidemann, B.J.; Redpath, P.; Jaksch, F.; Dellinger, R.W.; Li, Z.; Abel, E.D.; Migaud, M.E.; Brenner, C. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat. Commun. 2016, 7, 12948. [Google Scholar] [CrossRef] [PubMed]
- Ames, B.N.; Elson-Schwab, I.; Silver, E.A. High-dose vitamin therapy stimulates variant enzymes with decreased coenzyme binding affinity (increased K(m)): Relevance to genetic disease and polymorphisms. Am. J. Clin. Nutr. 2002, 75, 616–658. [Google Scholar] [CrossRef] [PubMed]
- Kerner, B. Genetics of bipolar disorder. Appl. Clin. Genet. 2014, 7, 33–42. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jonsson, B.H. Nicotinic Acid Long-Term Effectiveness in a Patient with Bipolar Type II Disorder: A Case of Vitamin Dependency. Nutrients 2018, 10, 134. https://doi.org/10.3390/nu10020134
Jonsson BH. Nicotinic Acid Long-Term Effectiveness in a Patient with Bipolar Type II Disorder: A Case of Vitamin Dependency. Nutrients. 2018; 10(2):134. https://doi.org/10.3390/nu10020134
Chicago/Turabian StyleJonsson, Bo H. 2018. "Nicotinic Acid Long-Term Effectiveness in a Patient with Bipolar Type II Disorder: A Case of Vitamin Dependency" Nutrients 10, no. 2: 134. https://doi.org/10.3390/nu10020134
APA StyleJonsson, B. H. (2018). Nicotinic Acid Long-Term Effectiveness in a Patient with Bipolar Type II Disorder: A Case of Vitamin Dependency. Nutrients, 10(2), 134. https://doi.org/10.3390/nu10020134