Characteristics and Diurnal Cycle of GPM Rainfall Estimates over the Central Amazon Region
Abstract
:1. Introduction
2. Study Area, Data and Methodology
2.1. Study Area
2.2. Data Sources
2.2.1. Radar Rainfall Estimates
2.2.2. Goddard Profiling Algorithm
2.2.3. Integrated Multi-SatellitE Retrievals for GPM
2.3. Evaluation Methods
2.3.1. Radar Rainfall Estimates as Reference
2.3.2. Satellite-Radar Comparison
2.3.3. Probability Distributions by Rainfall Volumes and Occurrences
2.3.4. Statistical Analysis
3. Results and Discussion
3.1. How Good Is Our Reference for Evaluating Satellite Precipitation Products?
3.2. Assessment of GPM-Based Products
3.3. Precipitation Diurnal and Seasonal Cycles
3.4. Investigation on Possible Sources of Inaccuracy
4. Conclusions
- As an important initial step for further satellite precipitation validation analysis, S-band-SIPAM radar rainfall estimates are validated against another radar-based precipitation (i.e., the X-band dual polarization radar from the CHUVA project). Although a slight overestimation of light rainfall and an underestimation of heavy rainfall are observed in the PDFv and PDFc analysis, SIPAM radar is considered suitable to use as a reference dataset for validating satellite precipitation products.
- S-band SIPAM radar analyses revealed significant wet to dry contrast characteristics over the Manaus region by PDFv and PDFc distributions. During the wetter (drier) period, the volume and occurrence contributions of moderate (heavy) rainfall are clearly identified and strongly modulated by the diurnal cycle of precipitation.
- Statistical pixel-by-pixel analyses revealed a strong dependence of the IMERG dataset performance on seasonality. The Taylor and performance diagrams indicate that IMERG performances are strictly linked to the monsoonal rainfall pattern over the region. The overestimation (underestimation) of rain volumes is particularly significant for heavy rainfall classes (>10 mm·h−1) during IOP1 (IOP2).
- The diurnal cycle analysis during wet and dry periods presented certain times with strong discrepancies between IMERG and the reference. During IOP1, an overestimation between 00:00–04:00 UTC and 15:00–18:00 UTC is observed, due to an overestimation of the occurrence and volume of heavy rainfall. During IOP2, an opposite behavior with strong rainfall volume and occurrence underestimation is found at 13:00–21:00 UTC, mainly due to the non-captured isolated convective rain cells in the afternoon.
- Analysis of the GPROF2014 algorithm rainfall sensor retrievals explains the IMERG’s poor performance. GPROF2014 slightly overestimates and strongly underestimates heavy rainfall volume and occurrence, during the IOP1 and IOP2, respectively. GPROF2014 for the GMI sensor rainfall retrievals presented the largest impact by inland water surface type, compared to other sensors. Thus, a significant portion of rainfall volumes and occurrences, observed by IMERG, comes from the GPROF2014-GMI rainfall retrievals, most prominent over the inland water surface type, along the Negro, Solimões and Amazon rivers.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kummerow, C.; Barnes, W.; Kozu, T.; Shiue, J.; Simpson, J. The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Ocean. Technol. 1998, 15, 809–817. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Levizzani, V.; Bauer, P.; Turk, F.J. Measuring Precipitation from Space—EURAINSAT and the Future; ISBN 978-1-4020-5834-9. Springer: Dordrecht, The Netherlands, 2007; p. 748. [Google Scholar]
- International Precipitation Working Group (IPWG). Available online: http://www.isac.cnr.it/~ipwg/ (accessed on 10 March 2016).
- Turk, F.J.; Arkin, P.; Ebert, E.; Sapiano, M. Evaluating high resolution precipitation products: The first workshop of the program for the evaluation of high resolution precipitation products. Bull. Am. Meteorol. Soc. 2008, 89, 1911–1916. [Google Scholar] [CrossRef]
- Hong, Y.; Hsu, K.; Moradkhani, H.; Sorooshian, S. Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
- Tang, L.; Tian, Y.; Yan, F.; Habib, E. An improved procedure for the validation of satellite-based precipitation estimates. Atmos. Res. 2015, 163, 61–73. [Google Scholar] [CrossRef]
- Petković, V.; Kummerow, C.D. Performance of the GPM passive microwave retrieval in the balkan flood event of 2014. J. Hydrometeorol. 2015, 16, 2501–2518. [Google Scholar] [CrossRef]
- Guo, H.; Chen, S.; Bao, A.; Hu, J.; Gebregiorgis, A.; Xue, X.; Zhang, X. Inter-comparison of high-resolution satellite precipitation products over Central Asia. Remote Sens. 2015, 7, 7181–7212. [Google Scholar] [CrossRef]
- Tang, G.; Zeng, Z.; Long, D.; Guo, X.; Yong, B.; Zhang, W.; Hong, Y. Statistical and hydrological comparisons between TRMM and GPM Level-3 products over a midlatitude basin: Is Day-1 IMERG a good successor for TMPA 3B42V7? J. Hydrometeorol. 2015, 17, 121–137. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Mehran, A. Extended contingency table: Performance metrics for satellite observatins and climatemodel simulations. Water Resour. Res. 2013, 49, 7144–7149. [Google Scholar] [CrossRef]
- Prakash, S.; Mitra, A.K.; Pai, D.S.; AghaKouchak, A. From TRMM to GPM: How well can heavy rainfall be detected from space? Adv. Water Resour. 2015, 88, 1–7. [Google Scholar] [CrossRef]
- Tang, G.; Ma, Y.; Long, D.; Zhong, L.; Hong, Y. Evaluation of GPM Day-1 IMERG and TMPA Version-7 Legacy Products over Mainland China at Multiple Spatiotemporal Scales. J. Hydrol. 2016, 533, 152–167. [Google Scholar] [CrossRef]
- Prakash, S.; Mitra, A.K.; AghaKouchak, A.; Liu, Z.; Norouzi, H.; Pai, D.S. A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region. J. Hydrol. 2016. [Google Scholar] [CrossRef]
- Amitai, E.; Petersen, W.; Llort, X.; Vasiloff, S. Multi-platform comparisons of rain intensity for extreme precipitation events. IEEE Trans. Geosci. Remote Sens. 2012, 50, 675–686. [Google Scholar] [CrossRef]
- Kirstetter, P.-E.; Hong, Y.; Gourley, J.J.; Schwaller, M.; Petersen, W.; Zhang, J. Comparison of TRMM 2A25 Products, Versions 6 and 7, with NOAA/NSSL Ground Radar–Based National Mosaic QPE. J. Hydrometeorol. 2013, 14, 661–669. [Google Scholar] [CrossRef]
- Oliveira, R.A.J.; Braga, R.C.; Vila, D.A.; Morales, C.A. Evaluation of GPROF-SSMI/S rainfall estimates over land during the Brazilian CHUVA-VALE campaign. Atmos. Res. 2014, in press. [Google Scholar] [CrossRef]
- Wolff, D.B.; Fisher, B.L. Assessing the relative performance of microwave-based satellite rainrate retrievals using TRMM ground validation data. J. Appl. Meteorol. Climatol. 2009, 48, 1069–1099. [Google Scholar] [CrossRef]
- Maggioni, V.; Sapiano, M.R.P.; Adler, R.F.; Tian, Y.; Huffman, G.J. An Error Model for Uncertainty Quantification in High-Time-Resolution Precipitation Products. J. Hydrometeorol. 2014, 15, 1274–1292. [Google Scholar] [CrossRef]
- MacHado, L.A.T.; Silva Dias, M.A.F.; Morales, C.; Fisch, G.; Vila, D.; Albrecht, R.; Goodman, S.J.; Calheiros, A.J.P.; Biscaro, T.; Kummerow, C. The CHUVA Project—How does convection vary across Brazil? Bull. Am. Meteorol. Soc. 2014, 95, 1365–1380. [Google Scholar] [CrossRef]
- CHUVA Project. Available online: http://chuvaproject.cptec.inpe.br (accessed on 10 March 2016).
- Martin, S.T.; Artaxo, P.; Machado, L.A.T.; Manzi, A.O.; Souza, R.A.F.; Schumacher, C.; Wang, J.; Andreae, M.O.; Barbosa, H.M.J.; Fan, J.; et al. Introduction: Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5). Atmos. Chem. Phys. 2016, 16, 4785–4797. [Google Scholar] [CrossRef]
- GoAmazon Project. Available online: http://campaign.arm.gov/goamazon2014/ (accessed on 10 March 2016).
- Zhou, J.; Lau, K.M. Does a monsoon climate exist over South America? J. Clim. 1998, 11, 1020–1040. [Google Scholar] [CrossRef]
- Vera, C.; Higgins, W.; Amador, J.; Ambrizzi, T.; Garreaud, R.; Gochis, D.; Gutzler, D.; Lettenmaier, D.; Marengo, J.; Mechoso, C.R.; et al. Toward a unified view of the American monsoon systems. J. Clim. 2006, 19, 4977–5000. [Google Scholar] [CrossRef]
- Raia, A.; Cavalcanti, I.F.A. The life cycle of the South American monsoon system. J. Clim. 2008, 21, 6227–6246. [Google Scholar] [CrossRef]
- De Souza, D.O.; dos Santos Alvalá, R.C. Observational evidence of the urban heat island of Manaus City. Meteorol. Appl. 2014, 21, 186–193. [Google Scholar] [CrossRef]
- Dos Santos, M.J.; Silva Dias, M.A.F.; Freitas, E.D. Influence of local circulations on wind, moisture, and precipitation close to Manaus City, Amazon Region, Brazil. J. Geophys. Res. Atmos. 2014, 119, 13233–13249. [Google Scholar] [CrossRef]
- Tanaka, L.M.D.S.; Satyamurty, P.; Machado, L.A.T. Diurnal variation of precipitation in central Amazon Basin. Int. J. Climatol. 2014, 34, 3574–3584. [Google Scholar] [CrossRef]
- Cohen, J.C.P.; da Silva Dias, M.A.F.; Nobre, C.A. Environmental conditions associated with Amazonian squall lines: A case study. Mon. Weather Rev. 1995, 123, 3163–3174. [Google Scholar] [CrossRef]
- Alcântara, C.R.; Silva Dias, M.A.F.; Souza, E.P.; Cohen, J.C.P. Verification of the role of the low level jets in Amazon squall lines. Atmos. Res. 2011, 100, 36–44. [Google Scholar] [CrossRef]
- Gonçalves, W.A.; Machado, L.A.T.; Kirstetter, P.-E. Influence of biomass aerosol on precipitation over the Central Amazon: An observational study. Atmos. Chem. Phys. 2015, 15, 6789–6800. [Google Scholar] [CrossRef]
- Machado, L.A.T.; Laurent, H.; Dessay, N.; Miranda, I. Seasonal and diurnal variability of convection over the Amazonia: A comparison of different vegetation types and large scale forcing. Theor. Appl. Climatol. 2004, 78, 61–77. [Google Scholar] [CrossRef]
- Angelis, C.F.; McGregor, G.R.; Kidd, C. Diurnal cycle of rainfall over the Brazilian Amazon. Clim. Res. 2004, 26, 139–149. [Google Scholar] [CrossRef]
- Park, S.G.; Maki, M.; Iwanami, K.; Bringi, V.N. Correction of radar reflectivity and differential reflectivity for rain attenuation and estimation of rainfall at X-band wavelength. In Proceedings of the 6th International Symposium on Hydrological Applications of Weather Radar, Melbourne, Australia, 2–4 February 2004.
- GEMATRONIK. Dual-Polarization Weather Radar Handbook, 2nd ed.; Bringi, V.N., Thurai, M., Hannesen, R., Eds.; Selex-SI Gematronik: Neuss, Germany, 2007; p. 163. [Google Scholar]
- Schumacher, C.; Houze, R.A., Jr. Comparison of radar data from the TRMM satellite and Kwajalein oceanic validation site. J. Appl. Meteorol. 2000, 39, 2151–2164. [Google Scholar] [CrossRef]
- Silberstein, D.S.; Wolff, D.B.; Marks, D.A.; Atlas, D.; Pippitt, J.L. Ground clutter as a monitor of radar stability at Kwajalein, RMI. J. Atmos. Ocean. Technol. 2008, 25, 2037–2045. [Google Scholar] [CrossRef]
- Kummerow, C.; Olson, W.S.; Giglio, L. A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans. Geosci. Remote Sens. 1996, 34, 1213–1232. [Google Scholar] [CrossRef]
- Kummerow, C.; Hong, Y.; Olson, W.S.; Yang, S.; Adler, R.F.; Mc-Collum, J.; Ferraro, R.; Petty, G.; Shin, D.-B.; Wilheit, T.T. The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteorol. 2001, 40, 1801–1820. [Google Scholar] [CrossRef]
- Vila, D.A.; Hernandez, C.; Ferraro, R.; Semunegus, H. The performance of hydrological monthly products using SSM/I–SSMI/S Sensors. J. Hydrometeorol. 2013, 14, 266–274. [Google Scholar] [CrossRef]
- Kummerow, C.; Randel, D.L.; Kulie, M.; Wang, N-Y.; Ferraro, R.; Munchak, S.J.; Petkovic, V. The evolution of the Goddard profiling algorithm to a fully parametric scheme. J. Atmos. Ocean. Technol. 2015. [Google Scholar] [CrossRef]
- Kidd, C.; Matsui, T.; Chern, J.; Mohr, K.; Kummerow, C.; Randel, D. Global Precipitation Estimates from Cross-Track Passive Microwave Observations Using a Physically Based Retrieval Scheme. J. Hydrometeorol. 2016, 17, 383–400. [Google Scholar] [CrossRef]
- GPM Data Access. Available online: http://pmm.nasa.gov/data-access/downloads/gpm (accessed on 10 March 2016).
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Xie, P. GPM Integrated Multi-Satellite Retrievals for GPM (IMERG) Algorithm Theoretical Basis Document (ATBD) Version 4.4. PPS, NASA/GSFC, 2014. Available online: http://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.4.pdf (accessed on 1 April 2016). [Google Scholar]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J. Integrated Multi-satellitE Retrievals for GPM (IMERG) Technical Documentation. NASA/GSFC Code 612; 2015. Available online: http://pmm.nasa.gov/sites/default/files/document_files/IMERG_doc.pdf (accessed on 1 April 2016). [Google Scholar]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Nelkin, E.J. The TRMM Multi-Satellite Precipitation Analysis (TMPA). In Satellite Rainfall Applications for Surface Hydrology; Springer: Berlin, Germany, 2010; pp. 3–22. [Google Scholar]
- Huffman, G.J.; Bolvin, D.T. TRMM and Other Data Precipitation Data Set Documentation, Mesoscale Atmospheric Processes Laboratory, NASA Global Change Master Directory Doc. 2015. Available online: http://pmm.nasa.gov/sites/default/files/document_files/3B42_3B43_doc_V7.pdf (accessed on 1 April 2016). [Google Scholar]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Joyce, R.J.; Xie, P. Kalman Filter–Based CMORPH. J. Hydrometeorol. 2011, 12, 1547–1563. [Google Scholar] [CrossRef]
- Hong, Y.; Hsu, L.K.; Sorooshian, S.; Gao, X. Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J. Appl. Meteorol. 2004, 43, 1834–1852. [Google Scholar] [CrossRef]
- Amitai, E.; Llort, X.; Sempere-Torres, D. Comparison of TRMM Radar Rainfall Estimates with NOAA Next-Generation QPE. J. Meteorol. Soc. Jpn. 2009, 87A, 109–118. [Google Scholar] [CrossRef]
- Sapiano, M.R.P.; Arkin, P.A. An Intercomparison and Validation of High-ResolutionSatellite Precipitation Estimates with 3-Hourly Gauge Data. J. Hydrometeorol. 2009, 10, 149–166. [Google Scholar] [CrossRef]
- Cimini, D.; Romano, F.; Ricciardelli, E.; Di Paola, F.; Viggiano, M.; Marzano, F.S.; Colaiuda, V.; Picciotti, E.; Vulpiani, G.; Cuomo, V. Validation of satellite OPEMW precipitation product with ground-based weather radar and rain gauge networks. Atmos. Meas. Tech. 2013, 6, 3181–3196. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 3rd ed.; Academic Press: San Diego, CA, USA, 2011; p. 698. [Google Scholar]
- Ebert, E.E. Methods for verifying satellite precipitation estimates. In Measuring Precipitation from Space; Levizzani, V., Bauer, P., Turk, F.J., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 345–356. [Google Scholar]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Roebber, P.J. Visualizing multiple measures of forecast quality. Weather Forecast. 2009, 24, 601–608. [Google Scholar] [CrossRef]
- Bringi, V.N.; Chandrasekar, V. Polarimetric Doppler Weather Radar: Principles and Applications; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Tota, J.; Fisch, G.; Fuentes, J.; Oliveira, P.J.; Garstang, M.; Heitz, R.; Sigler, J. Análise da variabilidade diária da precipitação em área de pastagem para a época chuvosa de 1999—Projeto TRMM/LBA. Acta Amazôn. 2000, 30, 629–639. [Google Scholar]
- Negri, A.J.; Adler, R.F.; Xu, L. A TRMM-calibrated infrared rainfall algorithm applied over Brazil. J. Geophys. Res. 2002, 107, 8048. [Google Scholar] [CrossRef]
Satellite Sensor | No. of Channels | Frequency (GHz) | Scanning | Sampling (km) |
---|---|---|---|---|
DMSP(F16/F17/F18).SSMI/S | 24 | 19.35–183.31 | Conical | 12.5 × 12.5 |
GCOMW1.AMSR2 | 14 | 7–89 V/H | Conical | 10 × 7 |
GPM.GMI | 13 | 10.65 V/H, 18.7 V/H, 23.8 V, 36.5 V/H, 89 V/H, 165.5 V/H, 183.3 ± 3 V, 183 ± 7 V | Conical | 13.4 × 8 |
TRMM.TMI | 9 | 10.65 V/H, 19.35 V/H, 21.3 V, 37 V/H, 85 V/H | Conical | 13.7 × 6 |
MT1.SAPHIR | 6 | 183.31 ± 0.2 H, 183.31 ± 1.1 H; 183.31 ± 2.7 H; 183.31 ± 4 H; 183.31 ± 6.6 H; 183.31 ± 11 H | Cross-track | 10 × variable |
METOP(A/B).MHS | 5 | 89 V, 157 V, 183.3 ± 1 H, 183.3 ± 3 H, 190.3 V | Cross-track | 15.88 × variable |
NOAA(18/19).MHS | 5 | 89 V, 157 V, 183.3 ± 1 H, 183.3 ± 3 H, 190.3 V | Cross-track | 15.88 × variable |
Product | S-Band SIPAM Radar | ||||||
---|---|---|---|---|---|---|---|
IOP1 | IOP2 All Seven Months | ||||||
Cases | Sample | Cases | Sample | Cases | Sample | ||
IMERG | 826 | 185,850 | 1324 | 297,900 | 8578 | 1,930,050 | |
GPROF2014 | GMI | 12 (24) | 5583 | 9 (30) | 3048 | ||
TMI | 13 (39) | 6479 | 17 (43) | 8587 | |||
F16 | *** (36) | *** | 16 (42) | 3461 | |||
F17 | *** (37) | *** | *** (42) | *** | |||
F18 | 9 (40) | 2600 | *** (40) | *** | |||
NOAA18 | *** (42) | *** | 22 (46) | 1740 | |||
NOAA19 | 24 (44) | 1986 | 23 (46) | 1803 | |||
METOPA | 19 (35) | 1648 | 18 (43) | 1638 | |||
METOPB | 20 (42) | 1601 | 20 (45) | 1803 | |||
SAPHIR | 38 (93) | 13,445 | 32 (107) | 10,787 | |||
GCOMW1 | 20 (38) | 18,500 | 21 (40) | 18,954 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, R.; Maggioni, V.; Vila, D.; Morales, C. Characteristics and Diurnal Cycle of GPM Rainfall Estimates over the Central Amazon Region. Remote Sens. 2016, 8, 544. https://doi.org/10.3390/rs8070544
Oliveira R, Maggioni V, Vila D, Morales C. Characteristics and Diurnal Cycle of GPM Rainfall Estimates over the Central Amazon Region. Remote Sensing. 2016; 8(7):544. https://doi.org/10.3390/rs8070544
Chicago/Turabian StyleOliveira, Rômulo, Viviana Maggioni, Daniel Vila, and Carlos Morales. 2016. "Characteristics and Diurnal Cycle of GPM Rainfall Estimates over the Central Amazon Region" Remote Sensing 8, no. 7: 544. https://doi.org/10.3390/rs8070544
APA StyleOliveira, R., Maggioni, V., Vila, D., & Morales, C. (2016). Characteristics and Diurnal Cycle of GPM Rainfall Estimates over the Central Amazon Region. Remote Sensing, 8(7), 544. https://doi.org/10.3390/rs8070544