Mapping Irrigated and Rainfed Wheat Areas Using Multi-Temporal Satellite Data
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Datasets
3.1.1. Observation Data from Agrometeorological Stations
3.1.2. HJ Satellite Data
3.2. Methods
3.2.1. Wheat Surface Area Extraction
3.2.2. Estimation of the Wheat Growing Period Based on Satellite Data
3.2.3. NDVI Time Series-Based Classification
3.2.4. Classification Features Selection: Peak NDVI and Time-Integrated NDVI
3.2.5. Classification of SVM
(1) Maximum Margin Hyperplane
(2) Variable Determination
(3) t-Fold Cross-Validation
4. Results
4.1. Planted Wheat Area and Growth Periods Derived from Satellite Remote Sensing in South Central Shanxi Province
4.2. Spatial Distribution of Wheat Sowing and Maturity Dates in South Central Shanxi Province
4.3. Validation of the SVM Classification Model
4.4. Spatial Distribution of Irrigated and Rainfed Wheat in South Central Shanxi Province
4.5. Spatial Distribution of Sowing and Maturity Dates of Irrigated and Rainfed Wheat in South Central Shanxi Province
5. Discussion
5.1. Validation of SVM Classification Model
5.2. Spatial Distribution and Variation Patterns of Wheat Sowing and Maturity Dates
5.3. Uncertainties and Future Needs
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Grogan, D.S.; Zhang, F.; Prusevich, A.; Lammers, R.B.; Wisser, D.; Glidden, S.; Li, C.; Frolking, S. Quantifying the link between crop production and mined groundwater irrigation in China. Sci. Total Environ. 2015, 511, 161–175. [Google Scholar] [CrossRef] [PubMed]
- Shiklomanov, I.A. Appraisal and assessment of world water resources. Water Int. 2000, 25, 11–32. [Google Scholar] [CrossRef]
- Du, T.; Kang, S.; Sun, J.; Zhang, X.; Zhang, J. An improved water use efficiency of cereals under temporal and spatial deficit irrigation in north China. Agric. Water Manag. 2010, 97, 66–74. [Google Scholar] [CrossRef]
- Boucher, O.; Myhre, G.; Myhre, A. Direct human influence of irrigation on atmospheric water vapour and climate. Clim. Dyn. 2004, 22, 597–603. [Google Scholar] [CrossRef]
- Pervez, M.S.; Brown, J.F. Mapping irrigated lands at 250-m scale by merging modis data and national agricultural statistics. Remote Sens. 2010, 2, 2388–2412. [Google Scholar] [CrossRef]
- Gordon, L.J.; Steffen, W.; Jönsson, B.F.; Folke, C.; Falkenmark, M.; Johannessen, Å. Human modification of global water vapor flows from the land surface. Proc. Natl. Acad. Sci. USA 2005, 102, 7612–7617. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Inanaga, S.; Li, Z.; Eneji, A.E. Optimizing irrigation scheduling for winter wheat in the north china plain. Agric. Water Manag. 2005, 76, 8–23. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Douglas, E.M.; Green, P.A.; Revenga, C. Geospatial indicators of emerging water stress: An application to africa. AMBIO: A J. Hum. Environ. 2005, 34, 230–236. [Google Scholar] [CrossRef]
- Ozdogan, M.; Salvucci, G.D.; Anderson, B.T. Examination of the bouchet-morton complementary relationship using a mesoscale climate model and observations under a progressive irrigation scenario. J. Hydrometeorol. 2006, 7, 235–251. [Google Scholar] [CrossRef]
- Wu, Y.; Jia, Z.; Ren, X.; Zhang, Y.; Chen, X.; Bing, H.; Zhang, P. Effects of ridge and furrow rainwater harvesting system combined with irrigation on improving water use efficiency of maize (Zea mays L.) in semi-humid area of China. Agric. Water Manag. 2015, 158, 1–9. [Google Scholar] [CrossRef]
- Döll, P.; Siebert, S. A digital global map of irrigated areas. ICID J. 2000, 49, 55–66. [Google Scholar]
- Siebert, S.; Döll, P.; Hoogeveen, J.; Faures, J.-M.; Frenken, K.; Feick, S. Development and validation of the global map of irrigation areas. Hydrol. Earth Syst. Sci. Discuss. 2005, 2, 1299–1327. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Provincial Land Cover Atlas of Islamic Republic of Afghanistan; FAO: Rome, Italy, 2010. [Google Scholar]
- Droogers, P. Global Irrigated Area Mapping: Overview and Recommendations; IWMI: Colombo, Sri Lanka, 2002; Volume 36. [Google Scholar]
- Biggs, T.; Thenkabail, P.; Gumma, M.; Scott, C.; Parthasaradhi, G.; Turral, H. Irrigated area mapping in heterogeneous landscapes with MODIS time series, ground truth and census data, Krishna Basin, India. Int. J. Remote Sens. 2006, 27, 4245–4266. [Google Scholar] [CrossRef]
- Loveland, T.; Reed, B.; Brown, J.; Ohlen, D.; Zhu, Z.; Yang, L.; Merchant, J. Development of a global land cover characteristics database and igbp discover from 1 km avhrr data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Thenkabail, P.S. An Irrigated Area Map of the World (1999), Derived from Remote Sensing; IWMI: Colombo, Sri Lanka, 2006; Volume 105. [Google Scholar]
- Thenkabail, P.S.; Biradar, C.M.; Noojipady, P.; Dheeravath, V.; Li, Y.; Velpuri, M.; Gumma, M.; Gangalakunta, O.R.P.; Turral, H.; Cai, X. Global irrigated area map (GIAM), derived from remote sensing, for the end of the last millennium. Int. J. Remote Sens. 2009, 30, 3679–3733. [Google Scholar] [CrossRef]
- Ozdogan, M.; Gutman, G. A new methodology to map irrigated areas using multi-temporal MODIS and ancillary data: An application example in the continental us. Remote Sens. Environ. 2008, 112, 3520–3537. [Google Scholar] [CrossRef]
- Kamthonkiat, D.; Honda, K.; Turral, H.; Tripathi, N.; Wuwongse, V. Discrimination of irrigated and rainfed rice in a tropical agricultural system using SPOT vegetation NDVI and rainfall data. Int. J. Remote Sens. 2005, 26, 2527–2547. [Google Scholar] [CrossRef]
- Zheng, B.; Myint, S.W.; Thenkabail, P.S.; Aggarwal, R.M. A support vector machine to identify irrigated crop types using time-series landsat NDVI data. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 103–112. [Google Scholar] [CrossRef]
- Pervez, M.S.; Budde, M.; Rowland, J. Mapping irrigated areas in afghanistan over the past decade using MODIS NDVI. Remote Sens. Environ. 2014, 149, 155–165. [Google Scholar] [CrossRef]
- Lu, S.; Wu, B.; Yan, N.; Wang, H. Water body mapping method with HJ-1A/B satellite imagery. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 428–434. [Google Scholar] [CrossRef]
- Vapnik, V.N. Statistical Learning Theory; Wiley: New York, NY, USA, 1998; Volume 1. [Google Scholar]
- Ben-Hur, A.; Weston, J. A user’s guide to support vector machines. In Data Mining Techniques for the Life Sciences; Springer: New York, NY, USA, 2010; pp. 223–239. [Google Scholar]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: New York, NY, USA, 2013. [Google Scholar]
- Foody, G.M.; Mathur, A. The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM. Remote Sens. Environ. 2006, 103, 179–189. [Google Scholar] [CrossRef]
- Alcantara, C.; Kuemmerle, T.; Prishchepov, A.V.; Radeloff, V.C. Mapping abandoned agriculture with multi-temporal MODIS satellite data. Remote Sens. Environ. 2012, 124, 334–347. [Google Scholar] [CrossRef]
- Barrett, B.; Nitze, I.; Green, S.; Cawkwell, F. Assessment of multi-temporal, multi-sensor radar and ancillary spatial data for grasslands monitoring in ireland using machine learning approaches. Remote Sens. Environ. 2014, 152, 109–124. [Google Scholar] [CrossRef]
- Aunan, K.; Fang, J.; Vennemo, H.; Oye, K.; Seip, H.M. Co-benefits of climate policy—Lessons learned from a study in Shanxi, China. Energy Policy 2004, 32, 567–581. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, Z.; Xiao, D.; Zhang, S.; Rötter, R.P.; Shi, W.; Liu, Y.; Wang, M.; Liu, F.; Zhang, H. Responses of wheat growth and yield to climate change in different climate zones of China, 1981–2009. Agric. For. Meteorol. 2014, 189, 91–104. [Google Scholar] [CrossRef]
- Yu, Q.; Li, L.; Luo, Q.; Eamus, D.; Xu, S.; Chen, C.; Wang, E.; Liu, J.; Nielsen, D.C. Year patterns of climate impact on wheat yields. Int. J. Climatol. 2014, 34, 518–528. [Google Scholar] [CrossRef]
- Rao, B.B.; Chowdary, P.S.; Sandeep, V.; Pramod, V.; Rao, V. Spatial analysis of the sensitivity of wheat yields to temperature in India. Agric. For. Meteorol. 2015, 200, 192–202. [Google Scholar] [CrossRef]
- Wanjura, D.; Hatfield, J.; Upchurch, D. Crop water stress index relationships with crop productivity. Irrig. Sci. 1990, 11, 93–99. [Google Scholar] [CrossRef]
- Lobell, D.B.; Asner, G.P. Cropland distributions from temporal unmixing of MODIS data. Remote Sens. Environ. 2004, 93, 412–422. [Google Scholar] [CrossRef]
- Galford, G.L.; Mustard, J.F.; Melillo, J.; Gendrin, A.; Cerri, C.C.; Cerri, C.E. Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil. Remote Sens. Environ. 2008, 112, 576–587. [Google Scholar] [CrossRef]
- Liu, M.W.; Ozdogan, M.; Zhu, X. Crop type classification by simultaneous use of satellite images of different resolutions. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3637–3649. [Google Scholar] [CrossRef]
- Cong, N.; Wang, T.; Nan, H.; Ma, Y.; Wang, X.; Myneni, R.B.; Piao, S. Changes in satellite—Derived spring vegetation green—Up date and its linkage to climate in China from 1982 to 2010: A multimethod analysis. Glob. Change Biol. 2013, 19, 881–891. [Google Scholar] [CrossRef] [PubMed]
- You, X.; Meng, J.; Zhang, M.; Dong, T. Remote sensing based detection of crop phenology for agricultural zones in china using a new threshold method. Remote Sens. 2013, 5, 3190. [Google Scholar] [CrossRef]
- White, M.A.; BEURS, D.; Kirsten, M.; DIDAN, K.; INOUYE, D.W.; RICHARDSON, A.D.; JENSEN, O.P.; O’KEEFE, J.; ZHANG, G.; NEMANI, R.R. Intercomparison, interpretation, and assessment of spring phenology in north america estimated from remote sensing for 1982–2006. Glob. Chang. Biol. 2009, 15, 2335–2359. [Google Scholar] [CrossRef]
- Busetto, L.; Colombo, R.; Migliavacca, M.; Cremonese, E.; Meroni, M.; Galvagno, M.; Rossini, M.; Siniscalco, C.; Morra Di Cella, U.; Pari, E. Remote sensing of larch phenological cycle and analysis of relationships with climate in the alpine region. Glob. Change Biol. 2010, 16, 2504–2517. [Google Scholar] [CrossRef]
- JEONG, S.J.; HO, C.H.; GIM, H.J.; Brown, M.E. Phenology shifts at start vs. End of growing season in temperate vegetation over the northern hemisphere for the period 1982–2008. Glob. Change Biol. 2011, 17, 2385–2399. [Google Scholar] [CrossRef]
- Jeganathan, C.; Dash, J.; Atkinson, P. Remotely sensed trends in the phenology of northern high latitude terrestrial vegetation, controlling for land cover change and vegetation type. Remote Sens. Environ. 2014, 143, 154–170. [Google Scholar] [CrossRef]
- Jönsson, P.; Eklundh, L. Timesat—A program for analyzing time-series of satellite sensor data. Comput. Geosci. 2004, 30, 833–845. [Google Scholar] [CrossRef]
- Atkinson, P.M.; Jeganathan, C.; Dash, J.; Atzberger, C. Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sens. Environ. 2012, 123, 400–417. [Google Scholar] [CrossRef]
- Butt, B.; Turner, M.D.; Singh, A.; Brottem, L. Use of MODIS NDVI to evaluate changing latitudinal gradients of rangeland phenology in Sudano-Sahelian West Africa. Remote Sens. Environ. 2011, 115, 3367–3376. [Google Scholar] [CrossRef]
- White, M.A.; Thornton, P.E.; Running, S.W. A continental phenology model for monitoring vegetation responses to interannual climatic variability. Glob. Biogeochem. Cycles 1997, 11, 217–234. [Google Scholar] [CrossRef]
- Kross, A.; Fernandes, R.; Seaquist, J.; Beaubien, E. The effect of the temporal resolution of NDVI data on season onset dates and trends across Canadian broadleaf forests. Remote Sens. Environ. 2011, 115, 1564–1575. [Google Scholar] [CrossRef]
- Cong, N.; Piao, S.; Chen, A.; Wang, X.; Lin, X.; Chen, S.; Han, S.; Zhou, G.; Zhang, X. Spring vegetation green-up date in China inferred from SPOT NDVI data: A multiple model analysis. Agric. For. Meteorol. 2012, 165, 104–113. [Google Scholar] [CrossRef]
- Lobell, D.B.; Ortiz-Monasterio, J.I.; Sibley, A.M.; Sohu, V. Satellite detection of earlier wheat sowing in India and implications for yield trends. Agric. Syst. 2013, 115, 137–143. [Google Scholar] [CrossRef]
- Thenkabail, P.; GangadharaRao, P.; Biggs, T.; Krishna, M.; Turral, H. Spectral matching techniques to determine historical land-use/land-cover (LULC) and irrigated areas using time-series 0.1-degree AVHRR pathfinder datasets. Photogramm. Eng. Remote Sens. 2007, 73, 1029–1040. [Google Scholar]
- Geerken, R.; Zaitchik, B.; Evans, J.P. Classifying rangeland vegetation type and coverage from NDVI time series using fourier filtered cycle similarity. Int. J. Remote Sens. 2005, 26, 5535–5554. [Google Scholar] [CrossRef]
- Verbeiren, S.; Eerens, H.; Piccard, I.; Bauwens, I.; Van Orshoven, J. Sub-pixel classification of spot-vegetation time series for the assessment of regional crop areas in Belgium. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 486–497. [Google Scholar] [CrossRef]
- Aparicio, N.; Villegas, D.; Casadesus, J.; Araus, J.L.; Royo, C. Spectral vegetation indices as nondestructive tools for determining durum wheat yield. Agron. J. 2000, 92, 83–91. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L. Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S. Central Great Plains. Remote Sens. Environ. 2008, 112, 1096–1116. [Google Scholar] [CrossRef]
- Huang, C.; Davis, L.; Townshend, J. An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 2002, 23, 725–749. [Google Scholar] [CrossRef]
- Pal, M. Support vector machine—based feature selection for land cover classification: A case study with DAIS hyperspectral data. Int. J. Remote Sens. 2006, 27, 2877–2894. [Google Scholar] [CrossRef]
- Tso, B.; Mather, P. Classification Methods for Remotely Sensed Data; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Belousov, A.; Verzakov, S.; Von Frese, J. A flexible classification approach with optimal generalisation performance: Support vector machines. Chemom. Intell. Lab. Syst. 2002, 64, 15–25. [Google Scholar] [CrossRef]
- Chang, C.-C.; Lin, C.-J. LibSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 27. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, S.; Zhang, Z. Spatiotemporal changes of wheat phenology in China under the effects of temperature, day length and cultivar thermal characteristics. Eur. J. Agron. 2012, 43, 201–212. [Google Scholar] [CrossRef]
- Xiao, D.; Tao, F. Contributions of cultivars, management and climate change to winter wheat yield in the North China plain in the past three decades. Eur. J. Agron. 2014, 52, 112–122. [Google Scholar] [CrossRef]
Yanhu | Yaodu | Ruicheng | Wanrong | Jincheng | Fenyang | Jiexiu | Anze | Changzhi | Average | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Irrigated/rainfed | Irrigated | Irrigated | Irrigated | Rainfed | Rainfed | Irrigated | Irrigated | Rainfed | Rainfed | ||
Elevation (m) | 376.0 | 450.0 | 507.0 | 590.0 | 744.0 | 749.0 | 750.0 | 858.0 | 991.0 | ||
Longitude | 111.02 | 111.50 | 110.71 | 110.83 | 112.83 | 111.76 | 111.93 | 112.25 | 113.06 | ||
Latitude | 35.03 | 36.06 | 34.70 | 35.40 | 35.51 | 37.25 | 37.05 | 36.16 | 36.05 | ||
Sowing dates | 10/7 | 9/28 | 10/17 | 9/25 | 9/21 | 10/6 | 10/16 | 9/30 | 9/23 | 9/30 | |
Maturity dates | 6/6 | 6/6 | 6/12 | 6/12 | 6/13 | 6/26 | 6/22 | 6/24 | 6/20 | 6/15 | |
Yield (kg/ha) | 2011 | 3825.0 | 3750.0 | 4800.0 | 1935.0 | 2658.0 | 5325.0 | 6150.0 | 1950.0 | 3670.5 | 3784.5 |
2006 to 2014 | 3700.5 | 5394.0 | 5286.0 | 2142.0 | 3000.0 | 5674.5 | 5617.5 | 2484.0 | 3621.0 | 4102.5 | |
Cumulated precipitation (mm) | 2011 | 125.8 | 102.0 | 108.0 | 112.2 | 118.3 | 83.3 | 99.9 | 190.8 | 176.5 | 124.1 |
2006 to 2014 | 162.4 | 143.9 | 160.0 | 194.9 | 192.0 | 132.1 | 127.9 | 231.2 | 211.6 | 172.9 | |
Cumulated temperature (°C) | 2011 | 2258.4 | 2291.7 | 2027.7 | 2520.1 | 2264.9 | 2220.5 | 2055.7 | 1888.6 | 2068.5 | 2177.3 |
2006 to 2014 | 2290.5 | 2309.1 | 2039.8 | 2412.3 | 2178.8 | 2224.0 | 2120.7 | 1910.7 | 2032.6 | 2168.7 | |
Cumulated sunshine duration (hours) | 2011 | 1438.7 | 1679.1 | 1481.8 | 1665.9 | 1905.8 | 1513.1 | 1642.9 | 1835.2 | 1845.1 | 1667.5 |
2006 to 2014 | 1270.1 | 1317.9 | 1372.4 | 1432.6 | 1665.3 | 1522.4 | 1450.8 | 1654.6 | 1725.3 | 1490.2 |
Sensor | Year | Date of Imagery |
---|---|---|
HJ-1A/B CCD | 2010 | 9/11, 9/17, 9/27, 10/5, 10/15, 11/3, 11/13, 11/19, 11/28, 12/8, 12/16, 12/26 |
2011 | 1/12, 1/24, 2/23, 3/10, 3/24, 4/9, 4/24, 5/12, 5/28, 6/7, 6/28, 7/8 | |
Landsat 8 | 2013 | 11/18, 11/27, 12/11 |
Reported Sowing Date | HJ Sowing Date | Difference (HJ-Reported) | Reported Maturity Date | HJ Maturity Date | Difference (HJ-Reported) | |
---|---|---|---|---|---|---|
Yanhu | 280 | 270 | −10 | 157 | 164 | 7 |
Yaodu | 271 | 267 | −4 | 157 | 165 | 8 |
Ruicheng | 290 | 275 | −15 | 163 | 170 | 7 |
Wanrong | 268 | 269 | 1 | 163 | 169 | 6 |
Jincheng | 264 | 267 | 3 | 164 | 170 | 6 |
Fenyang | 279 | 271 | −8 | 177 | 172 | −5 |
Jiexiu | 289 | 271 | −18 | 173 | 170 | −3 |
Anze | 273 | 268 | −5 | 175 | 172 | −3 |
Changzhi | 266 | 268 | 2 | 171 | 173 | 2 |
Average | 276 | 270 | −6 | 167 | 169 | 2 |
Data Sources | Google Earth Additional Testing Samples | |||||||
---|---|---|---|---|---|---|---|---|
Feature vectors | NDVI time series | Peak NDVI and TIN | ||||||
Irrigated | Rainfed | Total | User’s accuracy (%) | Irrigated | Rainfed | Total | User’s accuracy (%) | |
Irrigated | 349 | 20 | 369 | 94.6 | 377 | 20 | 397 | 95.0 |
Rainfed | 39 | 366 | 405 | 90.4 | 11 | 366 | 377 | 97.1 |
Total | 388 | 386 | 774 | 388 | 386 | 774 | ||
Producer’s accuracy (%) | 89.9 | 94.8 | 97.2 | 94.8 | ||||
Overall accuracy (%) | 92.4 | 96.0 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, N.; Tao, B.; Ren, W.; Feng, M.; Sun, R.; He, L.; Zhuang, W.; Yu, Q. Mapping Irrigated and Rainfed Wheat Areas Using Multi-Temporal Satellite Data. Remote Sens. 2016, 8, 207. https://doi.org/10.3390/rs8030207
Jin N, Tao B, Ren W, Feng M, Sun R, He L, Zhuang W, Yu Q. Mapping Irrigated and Rainfed Wheat Areas Using Multi-Temporal Satellite Data. Remote Sensing. 2016; 8(3):207. https://doi.org/10.3390/rs8030207
Chicago/Turabian StyleJin, Ning, Bo Tao, Wei Ren, Meichen Feng, Rui Sun, Liang He, Wei Zhuang, and Qiang Yu. 2016. "Mapping Irrigated and Rainfed Wheat Areas Using Multi-Temporal Satellite Data" Remote Sensing 8, no. 3: 207. https://doi.org/10.3390/rs8030207
APA StyleJin, N., Tao, B., Ren, W., Feng, M., Sun, R., He, L., Zhuang, W., & Yu, Q. (2016). Mapping Irrigated and Rainfed Wheat Areas Using Multi-Temporal Satellite Data. Remote Sensing, 8(3), 207. https://doi.org/10.3390/rs8030207