Joint Quality Measure for Evaluation of Pansharpening Accuracy
Abstract
:1. Introduction
2. Quality Assessment Measures
2.1. Full Reference Measures
2.2. Application Based Quality Assessment
2.3. Quality Assessment Based on Comparison with Input Data
2.3.1. Quality Assessment Based on an Original Multispectral Image at Low Resolution Scale
2.3.2. Quality Assessment based on Panchromatic Image in High Resolution Scale
2.3.3. Joint Quality Measures based on Both Inputs
3. Experimental Results
Sensor Parameter | IKONOS | WorldView-2 |
---|---|---|
Image date | 15 July 2005 | 12 July 2010 |
Image time (local) | 10:28:06 | 10:30:17 |
Mode | PAN+MS | PAN+MS |
Look angle | 5° Right | 5.2° Left |
Product | L2A | L2A |
Resolution PAN (m) | 1.0 | 0.5 |
Resolution MS (m) | 4.0 | 2.0 |
3.1. Pansharpening Methods
3.2. Interpolation Influence Only
3.3. Interpolation Influence on the HPFM Pansharpening Method
3.4. Comparison of Pansharpening Methods
Method | Cutoff Frequencies | Interpolation Method | Reference |
---|---|---|---|
1 GFF | 0.05 | ZP | [21] |
2 GFF | 0.15 | ZP | [21] |
3 GFF | 0.3, 0.25, 0.25, 0.15 | ZP | [21] |
4 GFF | 0.7 | ZP | [21] |
5 HPFM | 0.05 | BIL | [22] |
6 HPFM | 0.15 | BIL | [22] |
7 HPFM | 0.3, 0.25, 0.25, 0.1 | BIL | [22] |
8 HPFM | 0.7 | BIL | [22] |
9 CS IHS | - | BIL | - |
10 CS GS | - | BIL | IDL ENVI 5.0 |
11 ATWT | - | NN | [25,26] |
12 Ehlers | 0.15, 0.15 | CUB | [24] |
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Yang, J.; Zhang, J. Pansharpening: From a generalized model perspective. Int. J. Image Data Fusion 2014, 5, 285–299. [Google Scholar]
- Xu, Q.; Zhang, Y.; Li, B. Recent advances in pansharpening and key problems in applications. Int. J. Image Data Fusion 2014, 5, 175–195. [Google Scholar] [CrossRef]
- Pohl, C.; van Genderen, J. Structuring contemporary remote sensing image fusion. Int. J. Image Data Fusion 2015, 6, 3–21. [Google Scholar] [CrossRef]
- Alparone, L.; Wald, L.; Chanussot, J.; Thomas, C.; Gamba, P.; Bruce, L.M. Comparison of pansharpening algorithms: Outcome of the 2006 GRS-S data fusion contest. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3012–3021. [Google Scholar] [CrossRef] [Green Version]
- Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A. Quality assessment of pansharpening methods and products. IEEE Geosci. Remote Sens. Soc. Newsl. 2011, 161, 10–18. [Google Scholar]
- Makarau, A.; Palubinskas, G.; Reinartz, P. Analysis and selection of pan-sharpening assessment measures. J. Appl. Remote Sens. 2012, 6, 1–20. [Google Scholar]
- Wald, L.; Ranchin, T.; Mangolini, M. Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images. Photogramm. Eng. Remote Sens. 1997, 63, 691–699. [Google Scholar]
- Zhou, J.; Civco, D.L.; Silander, J.A. A wavelet transform method to merge Landsat TM and SPOT panchromatic data. Int. J. Remote Sens. 1998, 19, 743–757. [Google Scholar] [CrossRef]
- Alparone, L.; Aiazzi, B.; Baronti, S.; Garzelli, A.; Nencini, F.; Selva, M. Multispectral and panchromatic data fusion assessment without reference. Photogramm. Eng. Remote Sens. 2008, 74, 193–200. [Google Scholar] [CrossRef]
- Khan, M.M.; Alparone, L.; Chanussot, J. Pansharpening quality assessment using the modulation transfer functions of instruments. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3800–3891. [Google Scholar] [CrossRef]
- Padwick, C.; Deskevich, M.; Pacifici, F.; Smallwood, S. WorldView-2 pan-sharpening. In Proceedings of ASPRS, San Diego, CA, USA, 26–30 April 2010; pp. 1–13.
- Palubinskas, G. Quality assessment of pan-sharpening methods. In Proceedings of IGARSS, Québec, QC, Canada, 13–18 July 2014; pp. 2526–2529.
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Palubinskas, G. Mystery behind similarity measures MSE and SSIM. In Proceedings of ICIP, Paris, France, 27–30 October 2014; pp. 575–579.
- Zhu, X.; Milanfar, P. Automatic parameter selection for denoising algorithms using a no-reference measure of image content. IEEE Trans. Image Process. 2010, 19, 3116–3132. [Google Scholar] [PubMed]
- Thomas, C.; Ranchin, T.; Wald, L.; Chanussot, J. Synthesis of multispectral to high spatial resolution: A critical review of fusion methods based on remote sensing physics. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1301–1312. [Google Scholar] [CrossRef] [Green Version]
- Boggione, G.A.; Pires, E.G.; Santos, P.A.; Fonseca, L.M.G. Simulation of panchromatic band by spectral combination of multispectral ETM+ bands. In Proceedings of ISPSE, Hawaii, HI, USA, 10–14 November 2003; pp. 321–324.
- Javan, F.D.; Samadzadegan, F.; Reinartz, P. Spatial quality assessment of pan-sharpened high resolution satellite imagery based on an automatically estimated edge based metric. Remote Sens. 2013, 5, 6539–6559. [Google Scholar]
- Wang, Z.; Ziou, D.; Armenakis, C.; Li, D.; Li, Q. A comparative analysis of image fusion methods. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1391–1401. [Google Scholar] [CrossRef]
- Aiazzi, B.; Baronti, S.; Lotti, F.; Selva, M. A comparison between global and context-adaptive pansharpening of multispectral images. IEEE Geosci. Remote Sens. Lett. 2009, 6, 302–306. [Google Scholar] [CrossRef]
- Palubinskas, G.; Reinartz, P. Multi-resolution, multi-sensor image fusion: General fusion framework. In Proceedings of JURSE, Munich, Germany, 11–13 April 2011; pp. 313–316.
- Palubinskas, G. Fast, simple and good pan-sharpening method. J. Appl. Remote Sens. 2013, 7, 1–12. [Google Scholar] [CrossRef]
- Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A.; Selva, M. MTF-tailored multiscale fusion of high-resolution MS and Pan imagery. Photogramm. Eng. Remote Sens. 2006, 72, 591–596. [Google Scholar] [CrossRef]
- Klonus, S.; Ehlers, M. Image fusion using the Ehlers spectral characteristics preservation algorithm. GISci. Remote Sens. 2007, 44, 93–116. [Google Scholar] [CrossRef]
- Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A. Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2300–2312. [Google Scholar] [CrossRef]
- Canty, M.J. Image Analysis, Classification and Change Detection in Remote Sensing: With Algorithms for ENVI/IDL and Python, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
© 2015 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palubinskas, G. Joint Quality Measure for Evaluation of Pansharpening Accuracy. Remote Sens. 2015, 7, 9292-9310. https://doi.org/10.3390/rs70709292
Palubinskas G. Joint Quality Measure for Evaluation of Pansharpening Accuracy. Remote Sensing. 2015; 7(7):9292-9310. https://doi.org/10.3390/rs70709292
Chicago/Turabian StylePalubinskas, Gintautas. 2015. "Joint Quality Measure for Evaluation of Pansharpening Accuracy" Remote Sensing 7, no. 7: 9292-9310. https://doi.org/10.3390/rs70709292
APA StylePalubinskas, G. (2015). Joint Quality Measure for Evaluation of Pansharpening Accuracy. Remote Sensing, 7(7), 9292-9310. https://doi.org/10.3390/rs70709292