Radiometric Block Adjustment for Multi-Strip Airborne Waveform Lidar Data
Abstract
:1. Introduction
2. Study Area and Dataset
Strip No. | Direction | Height (m) | Length (m) | Swath (m) | Area (m2) | Point | Density | |
---|---|---|---|---|---|---|---|---|
A | N to S | 409 | 2019 | 621 | 1,254,503 | 14,624,049 | 11.66 | |
B | S to N | 379 | 2312 | 703 | 1,625,821 | 11,246,618 | 6.92 | |
C | N to S | 382 | 2066 | 679 | 1,403,830 | 14,536,123 | 10.35 | |
D | S to N | 408 | 2416 | 737 | 1,780,059 | 10,289,728 | 5.78 | |
E | W to E | 420 | 2412 | 729 | 1,759,366 | 11,509,870 | 6.54 | |
F | E to W | 385 | 2382 | 639 | 1,521,724 | 15,960,908 | 10.49 | |
G | W to E | 363 | 2451 | 737 | 1,806,575 | 12,383,787 | 6.85 | |
H | E to W | 370 | 2413 | 726 | 1,750,655 | 15,058,611 | 8.60 | |
I | S to N | 575 | 2331 | 964 | 2,35,5476 | 7,492,812 | 3.33 | |
Total | 6,806,076 | 113,102,506 | 16.62 |
3. Proposed Scheme
3.1. Feature Extraction
3.2. Single-Strip Calibration
3.3. Multi-Strip Normalization
3.4. Accuracy Assessment
4. Results and Discussions
4.1. Quantitative Analyses
Residuals () | Single-Strip Adjustment | Multi-Strip Adjustment | Improvement | |||
---|---|---|---|---|---|---|
Mean | Std | Mean | Std | |||
Backscattering coefficient (γ) | GCR | 0.158 | 0.213 | 0.038 | 0.056 | 73.78% |
ICR | 0.127 | 0.112 | 0.038 | 0.041 | 63.58% | |
Corrected intensity (I) | GCR | 42.75 | 37.98 | 6.02 | 9.02 | 76.23% |
ICR | 42.17 | 38.53 | 6.86 | 10.14 | 73.68% |
Residuals () | N | Single-Strip Adjustment | Multi-Strip Adjustment | Improvement | ||||
---|---|---|---|---|---|---|---|---|
Mean | Std | Mean | Std | |||||
Backscattering coefficient (γ) | All | GCR | 54 | 0.158 | 0.213 | 0.038 | 0.056 | 73.78% |
ICR | 52 | 0.127 | 0.112 | 0.038 | 0.041 | 63.58% | ||
Road | GCR | 40 | 0.140 | 0.161 | 0.029 | 0.047 | 70.61% | |
ICR | 52 | 0.127 | 0.112 | 0.028 | 0.035 | 69.01% | ||
Non-Road | GCR | 14 | 0.243 | 0.366 | 0.087 | 0.082 | 77.66% | |
ICR | 52 | 0.127 | 0.112 | 0.081 | 0.052 | 53.43% | ||
Corrected intensity (I) | All | GCR | 54 | 42.75 | 37.98 | 6.02 | 9.02 | 76.23% |
ICR | 52 | 42.17 | 38.53 | 6.86 | 10.14 | 73.68% | ||
Road | GCR | 40 | 41.24 | 33.43 | 4.64 | 7.43 | 77.76% | |
ICR | 52 | 42.17 | 38.53 | 5.65 | 9.54 | 75.23% | ||
Non-Road | GCR | 14 | 50.06 | 54.97 | 13.15 | 12.28 | 77.65% | |
ICR | 52 | 42.17 | 38.53 | 19.77 | 16.53 | 57.11% |
Before | After | Improvement | |||||
---|---|---|---|---|---|---|---|
Mean | Std. | Mean | Std. | ||||
Backscattering Coefficient (γ) | Block Adjustment | ICR | 0.127 | 0.112 | 0.038 | 0.041 | 63.58% |
Pair-Wise Adjustment | ICR | 0.127 | 0.112 | 0.110 | 0.067 | 40.07% | |
Corrected Intensity (I) | Block Adjustment | ICR | 42.17 | 38.53 | 6.86 | 10.14 | 73.68% |
Pair-Wise Adjustment | ICR | 42.17 | 38.53 | 16.82 | 17.99 | 53.29% |
4.2. Qualitative Analysis
5. Conclusion and Future Work
- (1)
- Systematic error can be eliminated through the radiometric block adjustment. Experimental results indicated that the proposed method may improve the radiometric consistency between multiple strips. The improvement rate for backscattering coefficient and corrected intensity reached 63% and 73% in overlapped area.
- (2)
- In model-driven single-strip adjustment, the consistency of backscattering coefficient was better than intensity. After the data-driven block adjustment, both the backscattering coefficient and intensity showed similar results.
- (3)
- In the qualitative check, the backscattering coefficient and corrected intensity became more consistent after normalization in overlapped areas. Profiles at seam lines also showed high continuity after normalization.
- (4)
- In the mosaicking of multi-strip lidars, the mosaicked data removed the inconsistency and can be used in land cover recognition, classification, and other applications.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Shan, J.; Sampath, A. Urban DEM generation from raw lidar data: A labeling algorithm and its performance. ISPRS J. Photogramm. Remote Sens. 2005, 71, 217–226. [Google Scholar] [CrossRef]
- Kaasalainen, S.; Krooks, A.; Kukko, A.; Kaartinen, H. Radiometric calibration of terrestrial laser scanners with external reference targets. Remote Sens. 2009, 1, 144–158. [Google Scholar] [CrossRef]
- Vosselman, G.; Kessels, P.; Gorte, B. The utilisation of airborne laser scanning for mapping. Int. J. Appl. Earth Obs. Geoinform. 2005, 6, 177–186. [Google Scholar] [CrossRef]
- Elberink, S.O.; Vosselman, G. Building reconstruction by target based graph matching on incomplete laser data: Analysis and limitations. Sensors 2009, 9, 6101–6118. [Google Scholar] [CrossRef] [PubMed]
- Sithole, G.; Vosselman, G. Bridge detection in airborne laser scanner data. ISPRS J. Photogramm. Remote Sens. 2006, 61, 33–46. [Google Scholar] [CrossRef]
- Tseng, Y.H.; Wang, C.K.; Chu, H.J.; Hung, Y.C. Waveform-based point cloud classification in land-cover identification. Int. J. Appl. Earth Obs. Geoinfor. 2015, 34, 78–88. [Google Scholar] [CrossRef]
- Kim, K.; Shan, J. Building roof modeling from airborne laser scanning data based on level set approach. ISPRS J. Photogramm. Remote Sens. 2011, 66, 484–497. [Google Scholar] [CrossRef]
- Rebecca, O.C.; Gold, C.; Kidner, D. 3D city modelling from lidar data. Adv. 3D Geoinform. Syst. 2008. [Google Scholar] [CrossRef]
- Sun, S.; Salvaggio, C. Aerial 3D building detection and modeling from airborne lidar point clouds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1440–1449. [Google Scholar] [CrossRef]
- Filin, S.; Vosselman, G. Adjustment of airborne laser altimetry strips. Int. Arch. Photogramm. Remote Sens. Spat. Inform. Sci. 2004, 35, 285–289. [Google Scholar]
- Kager, H. Discrepancies between overlapping laser scanner strips–simultaneous fitting of aerial laser scanner strips. Int. Arch. Photogram. Remote Sens. Spat. Inform. Sci. 2004, 35, 555–560. [Google Scholar]
- Lee, J.; Yu, K.; Kim, Y.; Habib, A.F. Adjustment of discrepancies between lidar data strips using linear features. IEEE Geosci. Remote Sens. Lett. 2007, 4, 475–479. [Google Scholar] [CrossRef]
- Doneus, M.; Miholjek, I.; Mandlburger, G.; Doneus, N.; Verhoeven, G.; Briese, C.; Pregesbauer, M. Airborne laser bathymetry for documentation of submerged archaeological sites in shallow water. ISPRS Int. Ann. Photogramm. Remote Sens. Spat. Inform. Sci. 2015, 1, 99–107. [Google Scholar] [CrossRef]
- Rees, V.E. The first multispectral airborne lidar sensor. GeoInformatics 2015, 18, 10. [Google Scholar]
- Sawamura, P.; Müller, D.; Hoff, R.M.; Hostetler, C.A.; Ferrare, R.A.; Hair, J.W.; Rogers, R.R.; Anderson, B.E.; Ziemba, L.D.; Beyersdorf, A.J.; et al. Aerosol optical and microphysical retrievals from a hybrid multiwavelength lidar data set—DISCOVER-AQ 2011. Atmos. Meas. Tech. 2014, 7, 3113–3157. [Google Scholar] [CrossRef]
- Suvorina, A.S.; Veselovskii, I.A.; Whiteman, D.N.; Korenskiy, M.Y. Profiling of the forest fire aerosol plume with multiwavelength Raman lidar. Int. Laser Opt. Conf. 2014. [Google Scholar] [CrossRef]
- Hartzell, P.; Glennie, C.; Biber, K.; Khan, S. Application of multispectral lidar to automated virtual outcrop geology. ISPRS J. Photogramm. Remote Sens. 2014, 88, 147–155. [Google Scholar] [CrossRef]
- Wagner, W. Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: Basic physical concepts. ISPRS J. Photogramm. Remote Sens. 2010, 65, 505–513. [Google Scholar] [CrossRef]
- Wagner, W.; Ullrich, A.; Ducic, V.; Melzer, T.; Studnicka, N. Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner. ISPRS J. Photogramm. Remote Sens. 2006, 60, 100–112. [Google Scholar] [CrossRef]
- Abed, F.M.; Mills, J.P.; Miller, P.E. Echo amplitude normalization of full-waveform airborne laser scanning data based on robust incidence angle estimation. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2910–2918. [Google Scholar] [CrossRef]
- Briese, C.; Höfle, B.; Lehner, H.; Wagner, W.; Pfennigbauer, M.; Ullrich, A. Calibration of full-waveform airborne laser scanning data for object classification. Conf. Laser Radar Technol. Appl. 2008. [Google Scholar] [CrossRef]
- Kaasalainen, S.; Hyyppä, J.; Litkey, P.; Hyyppä, H.; Ahokas, E.; Kukko, A.; Kaartinen, H. Radiometric calibration of ALS intensity. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2007, 36, 201–205. [Google Scholar]
- Roncat, A.; Bergauer, G.; Pfeifer, N. B-spline deconvolution for differential target cross-section determination in full-waveform laser scanning data. ISPRS J. Photogramm. Remote Sens. 2011, 66, 418–428. [Google Scholar] [CrossRef]
- Ding, Q.; Chen, W.; King, B.; Liu, Y.; Liu, G. Combination of overlap-driven adjustment and Phong model for lidar intensity correction. ISPRS J. Photogramm. Remote Sens. 2013, 75, 40–47. [Google Scholar] [CrossRef]
- Phong, B.T. Illumination for computer generated pictures. Commun. ACM 1975, 18, 311–317. [Google Scholar] [CrossRef]
- Höfle, B.; Hollaus, M.; Hagenauer, J. Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne lidar data. ISPRS J. Photogramm. Remote Sens. 2012, 67, 137–147. [Google Scholar] [CrossRef]
- Höfle, B.; Pfeifer, N. Correction of laser scanning intensity data: Data and model-driven approaches. ISPRS J. Photogramm. Remote Sens. 2007, 62, 415–433. [Google Scholar] [CrossRef]
- Jutzi, B.; Gross, H. Normalization of lidar intensity data based on range and surface incidence angle. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2009, 38, 213–218. [Google Scholar]
- Alexander, C.; Tansey, K.; Kaduk, J.; Holland, D.; Tate, N.J. Backscatter coefficient as an attribute for the classification of full-waveform airborne laser scanning data in urban areas. ISPRS J. Photogramm. Remote Sens. 2010, 65, 423–432. [Google Scholar] [CrossRef]
- Chandelier, L.; Martinoty, G. Radiometric aerial triangulation for the equalization of digital aerial images and orthoimages. Photogramm. Eng. Remote Sens. 2009, 75, 193–200. [Google Scholar] [CrossRef]
- Pros, A.; Colomina, I.; Navarro, J.A.; Antequera, R.; Andrinal, P. Radiometric block adjustment and digital radiometric model generation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, XL-1/W1, 293–298. [Google Scholar] [CrossRef]
- Yan, W.Y.; Shaker, A. Radiometric correction and normalization of airborne lidar intensity data for improving land-cover classification. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7658–7673. [Google Scholar]
- APSRS Las specification version 1.3-R10. Available online: http://www.asprs.org/a/society/committees/standards/asprs_las_spec_v13.pdf (accessed on 6 June 2015).
- RIEGL RiWorld User Manual. Available online: http://www.riegl.com/products/software-packages/riworld/ (accessed on 10 December 2015).
- Teo, T.A.; Huang, S.H. Surface-based registration of airborne and terrestrial mobile lidar point clouds. Remote Sens. 2014, 6, 12686–12707. [Google Scholar] [CrossRef]
- Kaasalainen, S.; Pyysalo, U.; Krooks, A.; Vain, A.; Kukko, A.; Hyyppä, J.; Kaasalainen, M. Absolutie radiometric calibration of ALS inteisyt data: Effects on accuracy and target classification. Sensors 2011, 11, 10586–10602. [Google Scholar] [CrossRef] [PubMed]
- Pauly, M.G.M.; Kobbelt, L.P. Efficient simplification of point-sampled surfaces. Proc. IEEE Vis. 2002, 2, 163–170. [Google Scholar]
- Willian, H.P.; Sual, A.T.; Willian, T.V.; Brian, P.F. Numerical Recipes in C; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Lin, Y.C. Normalization of echo features derived from full-waveform airborne laser scanning data. Remote Sens. 2015, 7, 2731–2751. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teo, T.-A.; Wu, H.-M. Radiometric Block Adjustment for Multi-Strip Airborne Waveform Lidar Data. Remote Sens. 2015, 7, 16831-16848. https://doi.org/10.3390/rs71215856
Teo T-A, Wu H-M. Radiometric Block Adjustment for Multi-Strip Airborne Waveform Lidar Data. Remote Sensing. 2015; 7(12):16831-16848. https://doi.org/10.3390/rs71215856
Chicago/Turabian StyleTeo, Tee-Ann, and Hsien-Ming Wu. 2015. "Radiometric Block Adjustment for Multi-Strip Airborne Waveform Lidar Data" Remote Sensing 7, no. 12: 16831-16848. https://doi.org/10.3390/rs71215856
APA StyleTeo, T. -A., & Wu, H. -M. (2015). Radiometric Block Adjustment for Multi-Strip Airborne Waveform Lidar Data. Remote Sensing, 7(12), 16831-16848. https://doi.org/10.3390/rs71215856