An Updated Geophysical Model for AMSR-E and SSMIS Brightness Temperature Simulations over Oceans
Abstract
:1. Introduction
2. Modeling
2.1. Ocean Emission Model
2.2. Atmospheric Absorption Model
3. Data
3.1. Satellite Passive Microwave Data
3.2. Data for Brightness Temperature Calculations
4. Results and Discussion
5. Model Application
6. Conclusion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bell, W.; Candy, B.; Atkinson, N.; Hilton, F.; Baker, N.; Bormann, N.; Kelly, G.; Kazumori, M.; Campbell, W.F.; Swadley, S.D. The assimilation of SSMIS radiances in numerical weather prediction models. IEEE Trans. Geosci. Remote Sens 2008, 46, 884–900. [Google Scholar]
- Greenwald, T.; Bennartz, R.; O’Dell, C.; Heidinger, A. Fast computation of microwave radiances for data assimilation using the “Successive Order of Scattering” method. J. Appl. Meteorol 2005, 44, 960–966. [Google Scholar]
- Cavalieri, D.J.; Parkinson, C.L.; DiGirolamo, N.; Ivanoff, A. Intersensor calibration between F13 SSMI and F17 SSMIS for global sea ice data records. IEEE Geosci. Remote Sens. Lett 2012, 9, 233–236. [Google Scholar]
- Kunkee, D.B.; Swadley, S.D.; Poe, G.A.; Hong, Y.; Werner, M.F. Special Sensor Microwave Imager Sounder (SSMIS) radiometric calibration anomalies. Part I: Identification and characterization. IEEE Trans. Geosci. Remote Sens 2008, 46, 1017–1033. [Google Scholar]
- Cao, C.; Weinreb, M.; Xu, H. Predicting simultaneous Nadir overpasses among polar-orbiting meteorological satellites for the intersatellite calibration of radiometers. J. Atmos. Ocean. Technol 2004, 21, 537–542. [Google Scholar]
- Wilheit, T.T. Comparing calibrations of similar conically scanning window-channel microwave radiometers. IEEE Trans. Geosci. Remote Sens 2013, 51, 1453–1464. [Google Scholar]
- Yan, B.; Weng, F. Intercalibration between special sensor microwave imager/sounder and special sensor microwave imager. IEEE Trans. Geosci. Remote Sens 2008, 46, 984–995. [Google Scholar]
- Wentz, F.J.; Meissner, T. Algorithm Theoretical Basis Document (ATBD); Version 2; RSS Tech. Proposal 121599A-1; Remote Sensing Systems: Santa Rosa, CA, USA, 2000. [Google Scholar]
- Gentemann, C.L.; Wentz, F.J.; Brewer, M.; Hilburn, K.; Smith, D. Passive Microwave Remote Sensing of the Ocean: An Overview. In Oceanography from Space; Barale, V., Gower, J.F.R., Alberotanza, L., Eds.; Springer: The Hague, The Netherlands, 2010; pp. 13–33. [Google Scholar]
- Liu, Q.; Weng, F.; English, S.J. An improved fast microwave water emissivity model. IEEE Trans. Geosci. Remote Sens 2011, 49, 1238–1250. [Google Scholar]
- Wentz, F.J. A well-calibrated ocean algorithm for special sensor microwave/imager. J. Geophys. Res 1997, 102, 8703–8718. [Google Scholar]
- Saunders, R.; Matricardi, M.; Brunel, P. An improved fast radiative transfer model for assimilation of satellite radiance observations. Quart. J. Roy. Meteorol. Soc 1999, 125, 1407–1425. [Google Scholar]
- Anguelova, M.D.; Gaiser, P.W. Dielectric and radiative properties of sea foam at microwave frequencies: Conceptual understanding of foam emissivity. Remote Sens 2012, 4, 1162–1189. [Google Scholar]
- Basharinov, A.E.; Kutuza, B.G. Investigation of cloud atmosphere emission and absorption in millimeter and centimeter wave ranges. VMGO Trans 1968, 222, 100–110. [Google Scholar]
- Wentz, F.J.; Spencer, R.W. SSM/I rain retrievals within a unified all-weather ocean algorithm. J. Atmos. Sci 1998, 55, 1613–1627. [Google Scholar]
- Hilburn, K.A.; Wentz, F.J. Intercalibrated passive microwave rain products from the Unified Microwave Ocean Retrieval Algorithm (UMORA). J. Appl. Meteorol. Climatol 2008, 47, 778–794. [Google Scholar]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing Fundamentals and Radiometry. In Microwave Remote Sensing: Active and Passive; Addison-Wesley Publishing Co: Reading, MA, USA, 1981; Volume 1. [Google Scholar]
- Turner, D.S. Systematic errors inherent in the current modeling of the reflected downward flux term used by remote sensing models. Appl. Opt 2004, 43, 2369–2383. [Google Scholar]
- Güldner, J. A model-based approach to adjust microwave observations for operational applications: Results of a campaign at Munich Airport in winter 2011. Atmos. Meas. Tech 2013, 6, 2879–2891. [Google Scholar]
- Auligné, T.; McNally, A.P.; Dee, D.P. Adaptive bias correction for satellite data in a numerical weather prediction system. Quart. J. Roy. Meteorol. Soc 2007, 133, 631–642. [Google Scholar]
- Bobylev, L.P.; Zabolotskikh, E.V.; Mitnik, L.M.; Mitnik, M.L. Atmospheric water vapor and cloud liquid water retrieval over the Arctic Ocean using satellite passive microwave sensing. IEEE Trans. Geosci. Remote Sens 2010, 48, 283–294. [Google Scholar]
- Zabolotskikh, E.V.; Mitnik, L.M.; Chapron, B. New approach for severe marine weather study using satellite passive microwave sensing. Geophys. Res. Lett 2013, 40, 1–4. [Google Scholar]
- Stogryn, A. The apparent temperature of the sea at microwave frequencies. IEEE Trans. Antennas Propag 1967, 15, 278–286. [Google Scholar]
- Hollinger, J.P. Passive microwave measurements of sea surface roughness. IEEE Trans. Geosci. Electron 1971, 9, 165–169. [Google Scholar]
- Tsang, L.; Kong, J.A.; Shin, R.T. Solutions of Radiative Transfer Equations with Applications to Remote Sensing. In Theory of Microwave Remote Sensing, 1st ed; Wiley-Interscience: Hoboken, NJ, USA, 1985; pp. 214–235. [Google Scholar]
- Stogryn, A. The emissivity of sea foam at microwave frequencies. J. Geophys. Res 1972, 77, 1658–1666. [Google Scholar]
- Smith, P.M. The emissivity of sea foam at 19 and 37 GHz. IEEE Trans. Geosci. Remote Sens 1988, 26, 541–547. [Google Scholar]
- Bortkovskii, R.S. Air-Sea Exchange of Heat and Moisture during Storms; Springer: New York, NY, USA, 1987. [Google Scholar]
- Cox, C.; Munk, W. Measurement of the roughness of the sea surface from photographs of the sun’s glitter. J. Opt. Soc. Amer 1954, 44. [Google Scholar] [CrossRef]
- Mitsuyasu, H.; Honda, T. Wind-induced growth of water waves. J. Fluid Mech 1982, 123, 425–442. [Google Scholar]
- Monahan, E.C.; Muircheartaigh, I.Ó. Optimal power-law description of oceanic whitecap coverage dependence on wind speed. J. Phys. Oceanogr 1980, 10, 2094–2099. [Google Scholar]
- Guissard, A.; Sobieski, P. An approximate model for the microwave brightness temperature of the sea. Int. J. Remote Sens 1987, 8, 1607–1627. [Google Scholar]
- Meissner, T.; Wentz, F.J. The emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and earth incidence angles. IEEE Trans. Geosci. Remote Sens 2012, 50, 3004–3026. [Google Scholar]
- Padmanabhan, S.; Reising, S.C.; Asher, W.E.; Rose, L.A.; Gaiser, P.W.; Bobak, J.P.; Dowgiallo, D.J.; Anguelova, M. Azimuthal Dependence of the Microwave Emission from Foam Generated by Breaking Waves at 18.7 and 37 GHz. Proceedings of 2006 IEEE MicroRad, SanJuan, Puerto Rico, 28 February–3 March 2006; pp. 131–136.
- Yueh, S.H. Modeling of wind direction signals in polarimetric sea surface brightness temperatures. IEEE Trans. Geosci. Remote Sens 1997, 35, 1400–1418. [Google Scholar]
- Jones, W.L.; Black, P.G.; Boggs, D.M.; Bracalente, E.M.; Brown, R.A.; Dome, G.; Ernst, J.A.; Halberstam, I.M.; Overland, J.E.; Peteherych, S.; et al. Seasat scatterometer: Results of the Gulf of Alaska workshop. Science 1979, 204, 1413–1415. [Google Scholar]
- Aziz, M.A.; Reising, S.C.; Asher, W.E.; Rose, L.A.; Gaiser, P.W.; Horgan, K.A. Effects of air-sea interaction parameters on ocean surface microwave emission at 10 and 37 GHz. IEEE Trans. Geosci. Remote Sens 2005, 43, 1763–1774. [Google Scholar]
- Webster, W.J., Jr.; Wilheit, T.T.; Ross, D.B.; Gloersen, P. Spectral characteristics of the microwave emission from a wind-driven foam-covered sea. J. Geophys. Res 1976, 81, 3095–3099. [Google Scholar]
- Rosenkranz, P.W. Rough-sea microwave emissivities measured with the SSM/I. IEEE Trans. Geosci. Remote Sens 1992, 30, 1081–1085. [Google Scholar]
- Meissner, T.; Wentz, F. Ocean Retrievals for WindSat: Radiative Transfer Model, Algorithm, Validation. Proceedings of MTS/IEEE (OCEANS’05), Santa Rosa, CA, USA, 20–23 June 2005; pp. 130–133.
- Shibata, A. A wind speed retrieval algorithm by combining 6 and 10 GHz data from advanced microwave scanning radiometer: Wind speed inside hurricanes. J. Oceanogr 2006, 62, 351–359. [Google Scholar]
- Uhlhorn, E.W.; Black, P.G.; Franklin, J.L.; Goodberlet, M.; Carswell, J.; Goldstein, A.S. Hurricane surface wind measurements from an operational stepped frequency microwave radiometer. Month. Wea. Rev 2007, 135, 3070–3085. [Google Scholar]
- Chapron, B.; Bingham, A.; Collard, F.; Donlon, C.; Johannessen, J.A.; Piolle, J.F.; Reul, N. Ocean Remote Sensing Data Integration-Examples and Outlook. Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, Venice, Italy, 21–25 September 2009; ESA Publications Division: Frascati, Italy, 2010; 1. ESA Publication WPP-306. [Google Scholar]
- Klein, L.; Swift, C. An improved model for the dielectric constant of sea water at microwave frequencies. IEEE Trans. Antennas Propag 1977, 25, 104–111. [Google Scholar]
- Wang, J.R. A comparison of the MIR-estimated and model-calculated fresh water surface emissivities at 89, 150, and 220 GHz. IEEE Trans. Geosci. Remote Sens 2002, 40, 1356–1365. [Google Scholar]
- Stogryn, A.P.; Bull, H.T.; Rubayi, K.; Iravanchy, S. The Microwave Permittivity of Sea and Fresh Water; GenCorp Aerojet: Azusa, CA, USA, 1995. [Google Scholar]
- Ellison, W.; Balana, A.; Delbos, G.; Lamkaouchi, K.; Eymard, L.; Guillou, C.; Prigent, C. New permittivity measurements of seawater. Radio Sci 1998, 33, 639–648. [Google Scholar]
- Guillou, C.; Ellison, W.; Eymard, L.; Lamkaouchi, K.; Prigent, C.; Delbos, G.; Balana, G.; Boukabara, S.A. Impact of new permittivity measurements on sea surface emissivity modeling in microwaves. Radio Sci 1998, 33, 649–668. [Google Scholar]
- Meissner, T.; Wentz, F.J. The complex dielectric constant of pure and sea water from microwave satellite observations. IEEE Trans. Geosci. Remote Sens 2004, 42, 1836–1849. [Google Scholar]
- Waters, J.W. Absorption and Emission by Atmospheric Gases. In Astrophysics Radio Telescopes; Academic Press: Waltham, MA, USA, 1976; Volume 12, Part B, pp. 142–176. [Google Scholar]
- Meirold-Mautner, I.; Prigent, C.; Defer, E.; Pardo, J.R.; Chaboureau, J.P.; Pinty, J.P.; Mech, M.; Crewell, S. Radiative transfer simulations using mesoscale cloud model outputs: Comparisons with passive microwave and infrared satellite observations for midlatitudes. J. Atmos. Sci 2007, 64, 1550–1568. [Google Scholar]
- Liebe, H.J. An updated model for millimeter wave propagation in moist air. Radio Sci 1985, 20, 1069–1089. [Google Scholar]
- Liebe, H.J.; Layton, D.H. Millimeter-Wave Properties of the Atmosphere: Laboratory Studies and Propagation Modeling; Nat. Tech. Inf. Services: Boulder, CO, USA, 1987. [Google Scholar]
- Liebe, H.J.; Hufford, G.A.; Cotton, M.G. Propagation Modeling of Moist Air and Suspended Water/Ice Particles at Frequencies below 1000 GHz. AGARD Conference Proceedings 542, Atmospheric Propagation Effects through Natural and Man-Made Obscurants for Visible through MM-Wave Radiation, 3.1-3.10, 1993; Available online: http://ftp.rta.nato.int/public/PubFullText/AGARD/CP/AGARD-CP-542/CP-542-03.pdf (accessed on 11 March 2014).
- Rosenkranz, P.W. Water vapor microwave continuum absorption: A comparison of measurements and models. Radio Sci 1998, 33, 919–928. [Google Scholar]
- Cruz Pol, S.L.; Ruf, C.S.; Keihm, S.J. Improved 20-to 32-GHz atmospheric absorption model. Radio Sci 1998, 33, 1319–1333. [Google Scholar]
- Turner, D.D.; Cadeddu, M.P.; Lohnert, U.; Crewell, S.; Vogelmann, A.M. Modifications to the water vapor continuum in the microwave suggested by ground-based 150-GHz observations. IEEE Trans. Geosci. Remote Sens. Lett 2009, 47, 3326–3337. [Google Scholar]
- Makarov, D.S.; Tretyakov, M.Y.; Rosenkranz, P.W. 60-GHz oxygen band: Precise experimental profiles and extended absorption modeling in a wide temperature range. J. Quant. Spectrosc. Radiat. Transf 2011, 112, 1420–1428. [Google Scholar]
- Rothman, L.S.; Gordon, I.E.; Barbe, A.; Benner, D.C.; Bernath, P.F.; Birk, M.; Boudon, V.; Brown, L.R.; Campargue, A.; Champion, J.-P.; et al. The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf 2009, 110, 533–572. [Google Scholar]
- Liljegren, J.C.; Boukabara, S.A.; Cady-Pereira, K.; Clough, S.A. The effect of the half-width of the 22-GHz water vapor line on retrievals of temperature and water vapor profiles with a 12-channel microwave radiometer. IEEE Trans. Geosci. Remote Sens 2005, 43, 1102–1108. [Google Scholar]
- Marchand, R.; Ackerman, T.; Westwater, E.R.; Clough, S.A.; Cady-Pereira, K.; Liljegren, J.C. An assessment of microwave absorption models and retrievals of cloud liquid water using clear-sky data. J. Geophys. Res 2003, 108. [Google Scholar] [CrossRef]
- Melsheimer, C.; Verdes, C.; Buehler, S.A.; Emde, C.; Eriksson, P.; Feist, D.G.; Ichizawa, S.; John, V.O.; Kasai, Y.; Kopp, G.; et al. Intercomparison of general purpose clear sky atmospheric radiative transfer models for the millimeter/submillimeter spectral range. Radio Sci 2005, 40, 1–28. [Google Scholar]
- Hewison, T.J.; Cimini, D.; Martin, L.; Gaffard, C.; Nash, J. Validating clear air absorption models using ground-based microwave radiometers and vice-versa. Meteorol. Z 2006, 15, 27–36. [Google Scholar]
- Clough, S.A.; Shephard, M.W.; Mlawer, E.J.; Delamere, J.S.; Iacono, M.J.; Cady-Pereira, K.; Boukabara, S.; Brown, P.D. Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transf 2005, 91, 233–244. [Google Scholar]
- Kawanishi, T.; Sezai, T.; Ito, Y.; Imaoka, K.; Takeshima, T.; Ishido, Y.; Shibata, A.; Miura, M.; Inahata, H.; Spencer, R.W. The Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), NASDA’s contribution to the EOS for global energy and water cycle studies. IEEE Trans. Geosci. Remote Sens 2003, 41, 184–194. [Google Scholar]
- NOAA Comprehensive Large Array—Data Stewardship System (CLASS). Available online: http://www.class.ncdc.noaa.gov (accessed on 11 March 2014).
- Sun, N.; Weng, F. Evaluation of special sensor microwave imager/sounder (SSMIS) environmental data records. IEEE Trans. Geosci. Remote Sens 2008, 46, 1006–1016. [Google Scholar]
- University of Wyoming. Available online: http://weather.uwyo.edu/upperair/sounding.html (accessed on 11 March 2014).
- NOAA National Oceanographic Data Center. Available online: http://www.nodc.noaa.gov/OC5/WOD/pr_wod.html (accessed on 11 March 2014).
- Tretyakov, M.Y.; Koshelev, M.A.; Dorovskikh, V.V.; Makarov, D.S.; Rosenkranz, P.W. 60-GHz oxygen band: Precise broadening and central frequencies of fine-structure lines, absolute absorption profile at atmospheric pressure, and revision of mixing coefficients. J. Mol. Spectrosc 2005, 231, 1–14. [Google Scholar]
- Surface Weather Analysis. Available online: http://www.wetter3.de/Archiv/archiv_dwd.html (accessed on 11 March 2014).
- Hanafin, J.; Quilfen, Y.; Ardhuin, F.; Sienkiewicz, J.; Queffeulou, P.; Obrebski, M.; Chapron, B.; Reul, N.; Collard, F.; Corman, D. Phenomenal sea states and swell from a North Atlantic Storm in February 2011: A comprehensive analysis. Bull. Am. Meteorol. Soc 2012, 93, 1825–1832. [Google Scholar]
TB50V | TB52V | TB53V | TB54V | TB55V | |
---|---|---|---|---|---|
Liebe87 | 0.46 | 0.57 | 0.84 | 0.56 | 0.88 |
Tret05 | 0.51 | 0.59 | 0.92 | 0.58 | 1.10 |
TB19H | TB19V | TB22V | TB37H | TB37V | ||
---|---|---|---|---|---|---|
WV OE | Turn09 Chapr12 | 1.42 | 1.21 | 1.25 | 1.28 | 0.76 |
WV OE | Ros98 Chapr12 | 1.50 | 1.32 | 1.40 | 1.31 | 1.20 |
WV OE | MonoRTM Chapr12 | 1.49 | 1.32 | 1.27 | 1.30 | 0.81 |
WV OE | Liebe87 Chapr12 | 1.43 | 1.23 | 1.38 | 1.30 | 0.95 |
WV OE | Turn09 Ros92 | 1.62 | 1.43 | 1.55 | 1.47 | 1.10 |
WV OE | Ros98 Ros92 | 1.67 | 1.48 | 1.62 | 1.52 | 1.40 |
WV OE | MonoRTM Ros92 | 1.65 | 1.47 | 1.58 | 1.51 | 1.20 |
WV OE | Liebe87 Ros92 | 1.64 | 1.44 | 1.60 | 1.51 | 1.30 |
TB06H | TB06V | TB10H | TB10V | TB18H | TB18V | TB23H | TB23V | TB36H | TB36V | ||
---|---|---|---|---|---|---|---|---|---|---|---|
WV OE | Turn09 Chapr12 | 0.83 | 0.70 | 0.91 | 0.78 | 1.14 | 0.77 | 1.94 | 1.08 | 1.22 | 0.65 |
WV OE | Ros98 Chapr12 | 0.84 | 0.71 | 0.91 | 0.79 | 1.21 | 0.93 | 2.60 | 1.50 | 1.42 | 0.90 |
WV OE | MonoRTM Chapr12 | 0.83 | 0.71 | 0.91 | 0.78 | 1.20 | 0.90 | 2.40 | 1.48 | 1.38 | 0.87 |
WV OE | Liebe87 Chapr12 | 0.83 | 0.70 | 0.92 | 0.79 | 1.16 | 0.79 | 2.00 | 1.10 | 1.23 | 0.69 |
WV OE | Turn09 Ros92 | 1.11 | 1.00 | 1.30 | 1.22 | 1.40 | 0.92 | 2.15 | 1.30 | 1.43 | 0.95 |
WV OE | Ros98 Ros92 | 1.12 | 1.11 | 1.32 | 1.25 | 1.48 | 1.20 | 3.20 | 1.96 | 1.56 | 1.43 |
WV OE | MonoRTM Ros92 | 1.11 | 1.11 | 1.31 | 1.24 | 1.47 | 1.10 | 3.15 | 1.90 | 1.52 | 1.35 |
WV OE | Liebe87 Ros92 | 1.12 | 1.1 | 1.35 | 1.24 | 1.46 | 0.94 | 2.18 | 1.35 | 1.47 | 1.10 |
TB19H | TB19V | TB22V | TB37H | TB37V | TB50V | TB52V | TB53V | TB54V | TB55V | |
---|---|---|---|---|---|---|---|---|---|---|
mean, K | 1.76 | 1.37 | 0.80 | 1.93 | −2.03 | −0.63 | 1.34 | 4.54 | 1.55 | 0.99 |
rms, K | 1.42 | 1.21 | 1.25 | 1.28 | 0.76 | 0.46 | 0.57 | 0.84 | 0.56 | 0.88 |
minimum, K | −1.29 | −1.17 | −2.89 | −1.06 | −4.08 | −2.05 | 0.04 | 2.46 | 0.25 | −1.05 |
maximum, K | 5.79 | 5.11 | 4.04 | 5.14 | −0.16 | 0.45 | 2.61 | 6.26 | 2.63 | 2.64 |
TB06H | TB06V | TB10H | TB10V | TB18H | TB18V | TB23H | TB23V | TB36H | TB36V | |
---|---|---|---|---|---|---|---|---|---|---|
mean, K | 1.10 | 0.56 | −0.09 | −0.09 | 0.28 | −0.21 | 0.90 | 0.67 | −3.81 | −4.07 |
rms, K | 0.83 | 0.70 | 0.91 | 0.78 | 1.14 | 0.77 | 1.94 | 1.08 | 1.22 | 0.65 |
minimum, K | −0.79 | −0.80 | −2.32 | −1.81 | −2.24 | −1.75 | −4.14 | −1.95 | −6.27 | −5.71 |
maximum, K | 3.00 | 2.40 | 1.72 | 2.07 | 2.66 | 2.43 | 4.24 | 3.07 | −0.55 | −2.37 |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zabolotskikh, E.; Mitnik, L.; Chapron, B. An Updated Geophysical Model for AMSR-E and SSMIS Brightness Temperature Simulations over Oceans. Remote Sens. 2014, 6, 2317-2342. https://doi.org/10.3390/rs6032317
Zabolotskikh E, Mitnik L, Chapron B. An Updated Geophysical Model for AMSR-E and SSMIS Brightness Temperature Simulations over Oceans. Remote Sensing. 2014; 6(3):2317-2342. https://doi.org/10.3390/rs6032317
Chicago/Turabian StyleZabolotskikh, Elizaveta, Leonid Mitnik, and Bertrand Chapron. 2014. "An Updated Geophysical Model for AMSR-E and SSMIS Brightness Temperature Simulations over Oceans" Remote Sensing 6, no. 3: 2317-2342. https://doi.org/10.3390/rs6032317
APA StyleZabolotskikh, E., Mitnik, L., & Chapron, B. (2014). An Updated Geophysical Model for AMSR-E and SSMIS Brightness Temperature Simulations over Oceans. Remote Sensing, 6(3), 2317-2342. https://doi.org/10.3390/rs6032317