# Error Analysis on ESA’s Envisat ASAR Wave Mode Significant Wave Height Retrievals Using Triple Collocation Model

^{1}

^{2}

^{3}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Data Description

#### 2.1. Envisat ASAR Wave Mode Data

_{s}could be obtained by

**Figure 1.**Envisat ASAR imagette acquired on (

**a**) 01 August 2008 20:49:43; (

**b**) 1 January 2007 01:52:24; and (

**c**) 30 October 2008 22:08:29; with the image variance of 2.34, 1.02 and 1.30, respectively.

#### 2.2. Buoy Data

**Figure 2.**Locations of the 152 collocated buoys used in the validation. 54 of the buoys, deployed in the deep and open ocean are represented by red dots.

#### 2.3. Wavewatch III SWH Hindcast

## 3. Triple Collocation Error Model

_{buoy}(from NDBC buoy observation), H

_{ASAR}(from Envisat ASAR wave mode product) and H

_{ww}

_{3}(from ww3 wave model hindcast), with their independent random errors (e

_{buoy}, e

_{ASAR}and e

_{ww}

_{3}), are related to the hypothetical true significant wave height H linearly as shown below:

_{buoy}, β

_{ASAR}and β

_{ww3}in Equation (2) can be eliminated by introducing new variables ${H}_{X}^{\prime}={H}_{X}/{\mathrm{\beta}}_{\mathrm{X}}$, ${e}_{{X}^{\prime}}^{\prime}={e}_{X}/{\mathrm{\beta}}_{\mathrm{X}}$ (with subscript X standing for buoy, ASAR, and ww3, respectively), and then eliminate the unknown truth H utilizing the assumption of independent errors in order to obtain

_{ASAR}= 1, β

_{ww}

_{3}= 1 and scales H

_{ASAR}and H

_{ww}

_{3}with β

_{ASAR}and β

_{ww}

_{3}. In addition, first estimates for the errors and the calibration constants are determined using Equation (3) and a neutral regression [36], respectively. In the next step, H

_{ASAR}and H

_{ww}

_{3}are scaled with the newly found estimates for β

_{ASAR}and β

_{ww}

_{3}, and then the errors and the calibration constants are determined again, until the convergence is achieved.

_{buoy}) and the calibration coefficients of β

_{ASAR}and β

_{ww}

_{3}were calculated.

## 4. Triple Collocation and Error Analysis

#### 4.1. Collocation Criteria and Collocated Results

**Figure 3.**Collocation example of Envisat ASAR and NDBC buoy when the maximum collocation distance is set to be 50 km.

**Figure 4.**Histograms of triple collocation numbers with the all buoys (

**left**), and those in the deep and open ocean (

**right**). The red lines represent the collocation numbers of 1500.

#### 4.2. Triple Collocation Comparison Results

**Table 1.**Estimates of calibration coefficients, RMSE and SI for the triple collocated SWH datasets from all the 152 buoys, Envisat ASAR and ww3 model hindcasts.

Collocation Distance (km) | Calibration Coefficients | RMSE (m) | SI | |||||
---|---|---|---|---|---|---|---|---|

β_{ASAR} | β_{ww}_{3} | RMSE_{buoy} | RMSE_{ASAR} | RMSE_{ww}_{3} | SI_{buoy} | SI_{ASAR} | SI_{ww}_{3} | |

50 | 0.9495 | 0.9583 | 0.2427 | 0.5660 | 0.2330 | 11.93% | 27.84% | 11.82% |

60 | 0.9478 | 0.9618 | 0.2599 | 0.5725 | 0.2254 | 12.75% | 28.08% | 11.37% |

70 | 0.9510 | 0.9670 | 0.2698 | 0.5738 | 0.2254 | 13.33% | 28.26% | 11.39% |

80 | 0.9558 | 0.9716 | 0.2864 | 0.5710 | 0.2148 | 14.18% | 28.08% | 10.83% |

90 | 0.9583 | 0.9743 | 0.3027 | 0.5665 | 0.2042 | 15.08% | 28.00% | 10.33% |

100 | 0.9604 | 0.9771 | 0.3068 | 0.5617 | 0.2039 | 15.37% | 27.87% | 10.34% |

110 | 0.9619 | 0.9822 | 0.3191 | 0.5607 | 0.1953 | 16.08% | 27.94% | 9.92% |

120 | 0.9649 | 0.9842 | 0.3295 | 0.5646 | 0.1925 | 16.59% | 28.03% | 9.74% |

130 | 0.9642 | 0.9852 | 0.3366 | 0.5663 | 0.1897 | 16.90% | 28.04% | 9.56% |

140 | 0.9629 | 0.9866 | 0.3415 | 0.5678 | 0.1921 | 17.03% | 27.98% | 9.61% |

150 | 0.9631 | 0.9886 | 0.3466 | 0.5698 | 0.1938 | 17.23% | 28.00% | 9.65% |

160 | 0.9622 | 0.9904 | 0.3522 | 0.5721 | 0.1969 | 17.43% | 28.02% | 9.74% |

170 | 0.9609 | 0.9917 | 0.3557 | 0.5762 | 0.1986 | 17.55% | 28.15% | 9.79% |

180 | 0.9592 | 0.9920 | 0.3575 | 0.5773 | 0.2012 | 17.60% | 28.17% | 9.88% |

190 | 0.9581 | 0.9917 | 0.3605 | 0.5787 | 0.2017 | 17.71% | 28.22% | 9.89% |

200 | 0.9583 | 0.9927 | 0.3643 | 0.5789 | 0.2021 | 17.90% | 28.23% | 9.90% |

**Table 2.**As in Table 1, but for collocated datasets with the 54 buoys only in the deep and open ocean.

Collocation Distance (km) | Calibration Coefficients | RMSE (m) | SI | |||||
---|---|---|---|---|---|---|---|---|

β_{ASAR} | β_{ww}_{3} | RMSE_{buoy} | RMSE_{ASAR} | RMSE_{ww}_{3} | SI_{buoy} | SI_{ASAR} | SI_{ww}_{3} | |

50 | 0.9044 | 0.9614 | 0.2176 | 0.5017 | 0.1887 | 9.61% | 23.62% | 8.59% |

60 | 0.8989 | 0.9622 | 0.2253 | 0.5131 | 0.1875 | 9.85% | 24.02% | 8.45% |

70 | 0.9034 | 0.9637 | 0.2289 | 0.5122 | 0.1799 | 10.05% | 23.97% | 8.14% |

80 | 0.9069 | 0.9650 | 0.2376 | 0.5108 | 0.1789 | 10.47% | 23.92% | 8.12% |

90 | 0.9091 | 0.9661 | 0.2433 | 0.5094 | 0.1792 | 10.76% | 23.95% | 8.16% |

100 | 0.9075 | 0.9663 | 0.2415 | 0.5095 | 0.1848 | 10.75% | 24.14% | 8.46% |

110 | 0.9055 | 0.9662 | 0.2442 | 0.5072 | 0.1837 | 10.92% | 24.20% | 8.46% |

120 | 0.9057 | 0.9669 | 0.2545 | 0.5167 | 0.1779 | 11.36% | 24.57% | 8.16% |

130 | 0.9046 | 0.9666 | 0.2596 | 0.5188 | 0.1790 | 11.55% | 24.61% | 8.19% |

140 | 0.9042 | 0.9687 | 0.2669 | 0.5227 | 0.1778 | 11.81% | 24.67% | 8.08% |

150 | 0.9049 | 0.9699 | 0.2677 | 0.5236 | 0.1819 | 11.84% | 24.69% | 8.25% |

160 | 0.9034 | 0.9712 | 0.2676 | 0.5284 | 0.1870 | 11.78% | 24.82% | 8.43% |

170 | 0.9028 | 0.9716 | 0.2700 | 0.5330 | 0.1866 | 11.85% | 24.99% | 8.39% |

180 | 0.9024 | 0.9722 | 0.2699 | 0.5343 | 0.1896 | 11.82% | 25.01% | 8.50% |

190 | 0.9016 | 0.9719 | 0.2717 | 0.5363 | 0.1910 | 11.89% | 25.09% | 8.55% |

200 | 0.9014 | 0.9723 | 0.2738 | 0.5383 | 0.1899 | 11.98% | 25.10% | 8.51% |

**Figure 5.**Scatter plots of the comparison results with all the 152 buoys, for Envisat ASAR vs. NDBC buoys (

**the left panels**), Envisat ASAR vs. ww3 model (

**the middle panels**), and ww3 model vs. NDBC buoys (

**the right panels**). The collocation distances between ASAR and buoy in the plots from upper to bottom panels are 50 km, 100 km, 150 km and 200 km, respectively. The numbers in the color bar represent the number of collocated data points per 0.1 m histogram bins.

**Figure 6.**As in Figure 5, but for datasets with 54 buoys only in the deep and open ocean.

#### 4.3. Error Analysis on Collocation Distance

**Figure 7.**Change of Envisat ASAR wave mode SWH errors as functions of the collocation distance. Circles and lines refer the RMSEs of ASAR SWH estimated from triple collocations and the regression lines, respectively. Blue and red symbols indicate the results from all buoys and deep-and-open-ocean buoys, respectively.

#### 4.4. Discussion on Error of Envisat ASAR Wave Mode SWH in Coastal Waters

^{R}and velocity bunching MTF [1]:

^{v}the orbital velocity transfer function and j

^{2}= −1. And K, k

_{y}and k

_{y}are wavenumber, and its components in azimuth and radar look direction, respectively.

#### 4.5. Discussion on the Triple Collocation Results

## 5. Conclusions

## List of All Acronyms

ASAR | Advanced Synthetic Aperture Radar |

CDIP | Coastal Data Information Program |

Envisat | Environmental Satellite |

ECMWF | European Centre for Medium-Range Weather Forecasts |

ERS | European Remote Sensing Satellite |

IFREMER | Institut Français de Recherche pour l’Exploitation de la Mer |

IOWAGA | Integrated Ocean Waves for Geophysical and other Applications |

MEDS | Marine Environmental Data Service |

MTF | Modulation Transfer Function |

NDBC | National Data Buoy Centre |

NOAA | National Oceanic and Atmospheric Administration |

RAR | Real Aperture Radar |

RMSE | Root Mean Square Error |

SAR | Synthetic Aperture Radar |

SI | Scatter Index |

SWH | Significant Wave Height |

ww3 | WaveWatch III |

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Hasselmann, K.; Hasselmann, S. On the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum and its inversion. J. Geophys. Res.
**1991**, 96, 10713–10729. [Google Scholar] - Krogstad, H.E.; Barstow, S.F. Satellite wave measurement for coastal engineering applications. Coast. Eng.
**1999**, 37, 283–307. [Google Scholar] [CrossRef] - Hasselmann, K.; Chapron, B.; Aouf, L.; Ardhuin, F.; Collard, F.; Engen, G.; Hasselmann, S.; Heimbach, P.; Janssen, P.A.E.M.; Johnsen, H.; et al. The ERS SAR wave mode: A breakthrough in global ocean wave observations. In ERS Missions: 20 Years of Observing Earth, 1st ed.; Fletcher, K., Ed.; European Space Agency: Noordwijk, The Netherlands, 2013; pp. 165–198. [Google Scholar]
- Chapron, B.; Collard, F.; Johnsen, H.; Engen, G. ASAR Wave mode first geophysical results. In Proceedings of 2002 ENVISAT Calibration Review Meeting, ESTEC, Noordwijk, The Netherlands, 9–13 September 2002.
- Li, X.M.; Lehner, S.; Bruns, T. Ocean wave integral parameter measurements using ENVISAT ASAR wave mode data. IEEE Trans. Geosci. Remote Sens.
**2011**, 49, 155–174. [Google Scholar] [CrossRef] - Li, X.M.; Lehner, S.; Bruns, T. Simultaneous measurements of global ocean waves by ASAR and Radar Altimeter onboard ENVISAT. IEEE Trans. Geosci. Remote Sens.
**2014**, 52, 2508–2518. [Google Scholar] [CrossRef] - Malenovsky, Z.; Rott, H.; Cihlar, J.; Schaepman, M.; Garcia-Santos, G.; Fernandes, R.; Berger, M. Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land. Remote Sens. Environ.
**2012**, 120, 91–101. [Google Scholar] [CrossRef] - Husson, R.; Mouche, A.; Collard, F.; Johnsen, H.; Grouazel, A.; Chapron, B.; Coat, M.; Vincent, P.; Hajduch, G. Sentinel-1 advanced capabilities for improved wave spectra estimation and beyond. In Proceedings of the 2014 Waves in Shallow Water Environment Meeting, Reading, UK, 8–12 June 2014.
- Aouf, L.; Lefevre, J.M.; Hauser, D.; Chapron, B. On the combined assimilation of RA-2 and ASAR wave data for the improvement of wave forecasting. In Proceedings of the 2006 15 Years of Radar Altimetry Symposium, Venice, Italy, 13–18 March 2006.
- Ardhuin, F.; Chapron, B.; Collard, F. Observation of swell dissipation across oceans. Geophys. Res. Lett.
**2009**, 36. [Google Scholar] [CrossRef] - De Farias, E.G.G.; Lorenzzetti, J.A.; Bentamy, A.; Chapron, B.; Husson, R. Fuzzy logic applied to track generation areas of swell systems observed by SAR. IEEE Trans. Geosci. Remote Lett.
**2012**, 9, 841–845. [Google Scholar] [CrossRef] - Voorrips, A.G.; Mastenbroek, C.; Hansen, B. Validation of two algorithms to retrieve ocean wave spectra from ERS synthetic aperture radar. J. Geophys. Res.
**2001**, 106, 16825–16840. [Google Scholar] [CrossRef] - Violante-Carvalho, N.; Robinson, I.S.; Schulz-Stellenfleth, J. Assessment of ERS synthetic aperture radar wave spectra retrieved from the Max-Planck-Institut (MPI) scheme through intercomparisons of 1 year of directional buoy measurements. J. Geophys. Res.
**2005**, 110. [Google Scholar] [CrossRef] - Collard, F.; Ardhuin, F.; Chapron, B. Monitoring and analysis of ocean swell fields from space: New methods for routine observations. J. Geophys. Res.
**2009**, 114. [Google Scholar] [CrossRef] - Wang, H.; Zhu, J.H.; Yang, J.S.; Shi, C.Y. A semiempirical algorithm for SAR wave height retrieval and its validation using Envisat ASAR wave mode data. Acta Oceanol. Sin.
**2012**, 31, 59–66. [Google Scholar] - Zhang, B.; Perrie, W.; He, Y.J. Remote sensing of ocean waves by along-track interferometric synthetic aperture radar. J. Geophys. Res.
**2009**, 114. [Google Scholar] [CrossRef] - Zhang, B.; Perrie, W.; He, Y.J. Validation of RADARSAT-2 fully polarimetric SAR measurements of ocean surface waves. J. Geophys. Res.
**2010**, 115. [Google Scholar] [CrossRef] - Heimback, P.; Hasselmann, S.; Hasselmann, K. Statistical analysis and intercomparison of WAM model data with global ERS-1 SAR wave mode spectral retrievals over 3 years. J. Geophys. Res.
**1998**, 103, 7931–7977. [Google Scholar] [CrossRef] - Li, X.M.; KönigKonig, T.; Schulz-Stellenfleth, J.; Lehner, S. Validation and intercomparison of ocean wave spectra inversion schemes using ASAR wave mode data. Int. J. Remote Sens.
**2010**, 31, 4969–4993. [Google Scholar] [CrossRef] - Krogstad, H.E.; Wolf, J.; Thompson, S.P.; Wyatt, L.R. Methods for intercomparison of wave measurements. Coast. Eng.
**1999**, 37, 235–257. [Google Scholar] [CrossRef] - Stoffelen, A. Toward the true near-surface wind speed: Error modeling and calibration using triple collocation. J. Geophys. Res.
**1998**, 103, 7755–7766. [Google Scholar] [CrossRef] - Portabella, M.; Stoffelen, A. On scatterometer ocean stress. J. Atmos. Ocean. Technol.
**2009**, 26, 368–382. [Google Scholar] [CrossRef] - Vogelzang, J.; Stoffelen, A.; Verhoef, A.; Figa-SaldañaSaldana, J. On the quality of high-resolution scatterometer winds. J. Geophys. Res.
**2011**, 116. [Google Scholar] [CrossRef] - Chakraborty, A.; Kumar, R.; Stoffelen, A. Validation of ocean surface winds from the OCEANSAT-2 scatterometer using triple collocation. Remote Sens. Lett.
**2013**, 4, 85–94. [Google Scholar] - Caires, S.; Sterl, A. Validation of ocean wind and wave data using triple collocation. J. Geophys. Res.
**2003**, 108. [Google Scholar] [CrossRef] - Janssen, P.A.E.M.; Abdalla, S.; Hersbach, H.; Bidlot, J.R. Error estimates of buoy, satellite, and model wave height data. J. Atmos. Ocean. Technol.
**2007**, 24, 1665–1677. [Google Scholar] [CrossRef] - Abdalla, S.; Janssen, P.A.E.M.; Bidlot, J.R. Altimeter near real time wind and wave products: Random error estimation. Mar. Geod.
**2011**, 34, 393–406. [Google Scholar] [CrossRef] - Chen, G.; Lin, H. Impacts of collocation window on the accuracy of altimeter/buoy wind-speed comparison—A simulation study. Int. J. Remote Sens.
**2001**, 22, 35–44. [Google Scholar] [CrossRef] - Chen, G.; Xu, P.; Fang, C.Y. Numerical simulation on the choice of space and time windows for altimeter/buoy comparison of significant wave height. In Proceedings of the 2000 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 24–28 July 2000.
- Engen, G.; Johnsen, H.; HøgdaHogda, K.A.; Chapron, B.; Collard, F. Envisat ASAR Level 2 Wave Mode Product Algorithm Specification—Software Requirements Document (Version 2.2.9); ESA ESTEC Contract “Envisat ASAR Wind & Wave Measurements from Level 1 Product” Report; Norut IT: Tromsø, Norway, 2005. [Google Scholar]
- Chapron, B.; Johnsen, H.; Garello, R. Wave and wind retrieval from SAR images of the ocean. Ann. Telecommun.
**2001**, 56, 682–699. [Google Scholar] - Engen, G.; Johnsen, H. SAR-ocean wave inversion using image cross spectra. IEEE Trans. Geosci. Remote Sens.
**1995**, 33, 1047–1056. [Google Scholar] [CrossRef] - Ardhuin, F.; Hanafin, J.; Quilfen, Y.; Chapron, B.; Queffeulou, P.; Obrebski, M.; Sienkiewicz, J.; Vandemark, D. Calibration of the “IOWAGA” global wave hindcast (1991–2011) using ECMWF and CFSR wind. In Proceedings of the 2011 International Workshop on Wave Hindcasting and Forecasting and 3rd Coastal Hazard Symposium, Kona, HI, USA, 30 October–4 November 2011.
- Rascle, N.; Ardhuin, F.; Queffeulou, P.; Croize-Fillon, D. A global wave parameter database for geophysical applications. Part 1: Wave-current-turbulence interaction parameters for the open ocean based on traditional parameterizations. Ocean Model.
**2008**, 25, 154–171. [Google Scholar] [CrossRef] - Ardhuin, F.; Rogers, E.; Babanin, A.V.; Filipot, J.R.; Magne, R.; Roland, A.; Van der Westhuysen, A.J.; Queffeulou, P.; Lefevre, J.M.; Aouf, L.; et al. Semiempirical dissipation source functions for ocean waves. Part I: Definition, calibration, and validation. J. Phys. Oceanogr.
**2010**, 40, 1917–1941. [Google Scholar] [CrossRef] - Marsden, R.F. A proposal for a neutral regression. J. Atmos. Ocean. Technol.
**1999**, 16, 876–883. [Google Scholar] [CrossRef] - Zwieback, S.; Scipal, K.; Dorigo, W.; Wagner, W. Structural and statistical properties of the collocation technique for error characterization. Nonlin. Process. Geophys.
**2012**, 19, 69–80. [Google Scholar] [CrossRef] [Green Version] - Collard, F.; Ardhuin, F.; Chapron, B. Extraction of coastal ocean wave fields from SAR images. IEEE J. Ocean. Eng.
**2005**, 30, 526–533. [Google Scholar] [CrossRef] - Johnsen, H.; Collard, F. Sentinel-1 Ocean Swell Wave Spectra (OSW) Algorithm Definition; Sentinel-1 IPF Development (Project No.: 355) Report; Norut IT: Tromsø, Norway, 2010. [Google Scholar]

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wang, H.; Zhu, J.; Yang, J.
Error Analysis on ESA’s Envisat ASAR Wave Mode Significant Wave Height Retrievals Using Triple Collocation Model. *Remote Sens.* **2014**, *6*, 12217-12233.
https://doi.org/10.3390/rs61212217

**AMA Style**

Wang H, Zhu J, Yang J.
Error Analysis on ESA’s Envisat ASAR Wave Mode Significant Wave Height Retrievals Using Triple Collocation Model. *Remote Sensing*. 2014; 6(12):12217-12233.
https://doi.org/10.3390/rs61212217

**Chicago/Turabian Style**

Wang, He, Jianhua Zhu, and Jingsong Yang.
2014. "Error Analysis on ESA’s Envisat ASAR Wave Mode Significant Wave Height Retrievals Using Triple Collocation Model" *Remote Sensing* 6, no. 12: 12217-12233.
https://doi.org/10.3390/rs61212217