Laser Scanning in Forests
The introduction of Airborne Laser Scanning (ALS) to forests has been revolutionary during the last decade. This development was facilitated by combining earlier ranging lidar discoveries [1–5], with experience obtained from full-waveform ranging radar [6,7] to new airborne laser scanning systems which had components such as a GNSS receiver (Global Navigation Satellite System), IMU (Inertial Measurement Unit) and a scanning mechanism. Since the first commercial ALS in 1994, new ALS-based forest inventory approaches have been reported feasible for operational activities [8–12]. ALS is currently operationally applied for stand level forest inventories, for example, in Nordic countries. In Finland alone, the adoption of ALS for forest data collection has led to an annual savings of around 20 M€/year, and the work is mainly done by companies instead of governmental organizations. In spite of the long implementation times and there being a limited tradition of making changes in the forest sector, laser scanning was commercially and operationally applied after about only one decade of research. When analyzing high-ranked journal papers from ISI Web of Science, the topic of laser scanning of forests has been the driving force for the whole laser scanning research society over the last decade. Thus, the topic “laser scanning in forests” has provided a significant industrial, societal and scientific impact. [...] View Full-Text
Hyyppä, J.; Holopainen, M.; Olsson, H. Laser Scanning in Forests. Remote Sens. 2012, 4, 2919-2922. https://doi.org/10.3390/rs4102919
Hyyppä J, Holopainen M, Olsson H. Laser Scanning in Forests. Remote Sensing. 2012; 4(10):2919-2922. https://doi.org/10.3390/rs4102919
Chicago/Turabian StyleHyyppä, Juha, Markus Holopainen, and Håkan Olsson. 2012. "Laser Scanning in Forests" Remote Sensing 4, no. 10: 2919-2922. https://doi.org/10.3390/rs4102919