Next Article in Journal
Soil Heat Flux Modeling Using Artificial Neural Networks and Multispectral Airborne Remote Sensing Imagery
Next Article in Special Issue
Using Remote Sensing Products for Environmental Analysis in South America
Previous Article in Journal
On the Misdiagnosis of Surface Temperature Feedbacks from Variations in Earth’s Radiant Energy Balance
Previous Article in Special Issue
Evaluation of a LIDAR Land-Based Mobile Mapping System for Monitoring Sandy Coasts
Article Menu

Export Article

Open AccessArticle
Remote Sens. 2011, 3(8), 1614-1626;

Effects of Individual Tree Detection Error Sources on Forest Management Planning Calculations

Department of Forest Sciences, University of Helsinki, P.O. Box 27 (Latokartanonkaari 7), FI-00014 Helsinki, Finland
Finnish Geodetic Institute, FI-02431 Masala, Finland
Simosol Oy, Asema-aukio 2, FI-11130 Riihimäki, Finland
Metsäteho Ltd., Helsinki, FI-00170, Finland
School of Science and Technology, Aalto University, FI-00076 Aalto, Finland
Author to whom correspondence should be addressed.
Received: 12 April 2011 / Revised: 20 May 2011 / Accepted: 8 July 2011 / Published: 25 July 2011
(This article belongs to the Special Issue 100 Years ISPRS - Advancing Remote Sensing Science)
Full-Text   |   PDF [276 KB, uploaded 19 June 2014]   |  


The objective was to investigate the error sources of the airborne laser scanning based individual tree detection (ITD), and its effects on forest management planning calculations. The investigated error sources were detection of trees (etd), error in tree height prediction (eh) and error in tree diameter prediction (ed). The effects of errors were analyzed with Monte Carlo simulations. etd was modeled empirically based on a tree’s relative size. A total of five different tree detection scenarios were tested. Effect of eh was investigated using 5% and 0% and effect of ed using 20%, 15%, 10%, 5%, 0% error levels, respectively. The research material comprised 15 forest stands located in Southern Finland. Measurements of 5,300 trees and their timber assortments were utilized as a starting point for the Monte Carlo simulated ITD inventories. ITD carried out for the same study area provided a starting point (Scenario 1) for etd. In Scenario 1, 60.2% from stem number and 75.9% from total volume (Vtotal) were detected. When the only error source was etd (tree detection varying from 75.9% to 100% of Vtotal), root mean square errors (RMSEs) in stand characteristics ranged between the scenarios from 32.4% to 0.6%, 29.0% to 0.5%, 7.8% to 0.2% and 5.4% to 0.1% in stand basal area (BA), Vtotal, mean height (Hg) and mean diameter (Dg), respectively. Saw wood volume RMSE varied from 25.1% to 0.2%, as pulp wood volume respective varied from 37.8% to 1.0% when errors stemmed only from etd. The effect of ed was most significant for Vtotal and BA and the decrease in RMSE was from 12.0% to 0.6% (BA) and from 10.9% to 0.5% (Vtotal) in the most accurate tree detection scenario when ed varied from 20% to 0%. The effect of increased accuracy in tree height prediction was minor for all the stand characteristics. The results show that the most important error source in ITD is tree detection. At stand level, unbiased predictions for tree height and diameter are enough, given the present tree detection accuracy. View Full-Text
Keywords: airborne laser scanning; forest inventory; simulation; accuracy airborne laser scanning; forest inventory; simulation; accuracy

Figure 1

This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Share & Cite This Article

MDPI and ACS Style

Vastaranta, M.; Holopainen, M.; Yu, X.; Hyyppä, J.; Mäkinen, A.; Rasinmäki, J.; Melkas, T.; Kaartinen, H.; Hyyppä, H. Effects of Individual Tree Detection Error Sources on Forest Management Planning Calculations. Remote Sens. 2011, 3, 1614-1626.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top