Global Distribution of Cloud Top Height as Retrieved from SCIAMACHY Onboard ENVISAT Spaceborne Observations
Abstract
:1. Introduction
2. A Brief Description of the Algorithm
- the modified version of the cloud fraction algorithm initially developed in [5] is used;
- the GOME minimal reflectance database is used [12];
- the GTOPO30 database of the ground height is used (http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html).
3. Results
4. Conclusions
Acknowledgements
References
- Yamamoto, G.; Wark, D.Q. Discussion of the letter by R. A. Hanel, “Determination of cloud altitude from a satellite”. J. Geophys. Res. 1961, 66, 3596. [Google Scholar] [CrossRef]
- Koelemeijer, R.B.A.; Stammes, P.; Hovenier, J.P.; de Haan, J.F. A fast method for retrieval of cloud parameters using oxygen A-band measurements from GOME. J. Geophys. Res. 2001, 106, 3475–3490. [Google Scholar] [CrossRef]
- Rozanov, V.V.; Kokhanovsky, A.A. The semi-analytical cloud retrieval algorithm as applied to the cloud top altitude and the cloud geometrical thickness determination from the top of atmosphere reflectance measurements in the oxygen absorption bands. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef]
- Grzegorski, M.; Wenig, M.; Platt, U.; Stammes, P.; Fournier, N.; Wagner, T. The Heidelberg iterative cloud retrieval utilities (HICRU) and its application to GOME data. Atmos. Chem. Phys. 2006, 6, 4461–4476. [Google Scholar] [CrossRef]
- Loyola, D. Automatic Cloud Analysis from Polar-Orbiting Satellites Using Neural Network and Data Fusion Techniques. In Proceedings of 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; pp. 2530–2533.
- Loyola, D.; Thomas, W.; Livschitz, Y.; Ruppert, T.; Albert, P.; Hollmann, R. Cloud properties derived from GOME/ERS-2 backscatter data for trace gas retrieval. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2747–2758. [Google Scholar]
- Loyola, D.; Thomas, W.; Spurr, R.; Mayer, B. Global patterns in daytime cloud properties derived from GOME backscatter UV-VIS measurements. Int. J. Remote Sens. 2010, 31, 4295–4318. [Google Scholar] [CrossRef]
- Gottwald, M.; Bovensmann, H.; Lichtenberg, G.; Noël, S.; von Bargen, A.; Slijkhuis, S.; Piters, A.; Hoogeveen, R.; von Savigny, C.; Buchwitz, M.; et al. SCIAMACHY: Monitoring the Changing Earth’s Atmosphere; DLR: Oberpfaffenhofen, Germany, 2006. [Google Scholar]
- Kokhanovsky, A.A.; Rozanov, V.V. The physical parameterization of the top of atmosphere reflection function for a cloudy atmosphere-underlying surface system: The oxygen A-band case study. J. Quant. Spectrosc. Radiative Transfer 2004, 85, 35–55. [Google Scholar] [CrossRef]
- Kokhanovsky, A.A.; Vountas, M.; Rozanov, V.V.; Lotz, W.; Bovensmann, H.; Burrows, J.P.; Schumann, U. Global cloud top height and thermodynamic phase distribution as obtained by SCIAMACHY on ENVISAT. Int. J. Remote Sens. 2007, 28, 4499–4507. [Google Scholar] [CrossRef]
- von Bargen, A.; Schröder, T.; Kretschel, K.; Hess, M.; Lerot, C.; Van Roozendael, M.; Vountas, M.; Kokhanovsky, A.; Lotz, W.; Bovensmann, H. Operational SCIAMACHY Level 1B-2 Off-Line Processor: Total Vertical Columns of O3 and NO2 and Cloud Products. In Proceedings of ENVISAT Symposium, Montreux, Switzerland, 23–27 April 2007. SP636, [CD-ROM].
- Koelemeijer, R.B.A.; de Haan, J.F.; Stammes, P. A database of spectral surface reflectivity in the range 335–772 nm derived from 5.5 years of GOME observations. J. Geophys. Res. 2003, 108, 4070. [Google Scholar] [CrossRef]
- Kokhanovsky, A.A.; Naud, C.M.; Devasthale, A. Intercomparison of ground-based satellite cloud-top height retrievals for overcast single-layered cloud fields. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1901–1908. [Google Scholar] [CrossRef]
- Mace, G.G.; Marchand, R.; Zhang, Q.; Stephens, G. Global hydrometeor occurrence as observed by CloudSat: Initial observations from summer 2006. Geophys. Res. Lett. 2007, 34, L09808. [Google Scholar] [CrossRef]
- Haynes, J.M.; Stephens, G.L. Tropical oceanic cloudiness and the incidence of precipitation: Early results from Cloudsat. Geophys. Res. Lett. 2007, 34, L09811. [Google Scholar] [CrossRef]
- Meyer, K.; Yang, P.; Gao, B.-C. Tropical ice optical depth, ice water path, and frequency fields inferred from the MODIS level-3 data. Atmos. Res. 2007, 85, 171–182. [Google Scholar] [CrossRef]
- Sherwood, S.C.; Minnis, P.; McGill, M. Deep convective cloud—Top heights and their thermodynamic control during CRYSTAL-FACE. J. Geophys. Res. 2004, 109, D20119. [Google Scholar] [CrossRef]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kokhanovsky, A.; Vountas, M.; Burrows, J.P. Global Distribution of Cloud Top Height as Retrieved from SCIAMACHY Onboard ENVISAT Spaceborne Observations. Remote Sens. 2011, 3, 836-844. https://doi.org/10.3390/rs3050836
Kokhanovsky A, Vountas M, Burrows JP. Global Distribution of Cloud Top Height as Retrieved from SCIAMACHY Onboard ENVISAT Spaceborne Observations. Remote Sensing. 2011; 3(5):836-844. https://doi.org/10.3390/rs3050836
Chicago/Turabian StyleKokhanovsky, Alexander, Marco Vountas, and John P. Burrows. 2011. "Global Distribution of Cloud Top Height as Retrieved from SCIAMACHY Onboard ENVISAT Spaceborne Observations" Remote Sensing 3, no. 5: 836-844. https://doi.org/10.3390/rs3050836
APA StyleKokhanovsky, A., Vountas, M., & Burrows, J. P. (2011). Global Distribution of Cloud Top Height as Retrieved from SCIAMACHY Onboard ENVISAT Spaceborne Observations. Remote Sensing, 3(5), 836-844. https://doi.org/10.3390/rs3050836