Wide Area Wetland Mapping in Semi-Arid Africa Using 250-Meter MODIS Metrics and Topographic Variables
Abstract
:1. Introduction
2. Site Description and Image Database
3. Methodology
3.1. DEM Data Processing and Gallery Forest Mapping
3.2. Basic Wetland Morphology Index Table
Class | Description | Vegetation Index – Dry Season Chlorophyll Activity | NIR Reflectance – Wet Season Flooding |
---|---|---|---|
0 | Non WL (background) | None | None |
1 | Herbaceous WL | High (0.46) | Low (0.28) |
2 | High-water WL | Low (0.14) | High (0.14) |
3 | Regular-flooded Herbaceous | High (0.44) | High (0.21) |
4 | Low-water WL | Low (0.24) | Moderate (0.24) |
5 | Seasonal flooded herbaceous | High (0.36) | Moderate (0.24) |
3.3. High Resolution Reference Data Analysis for Accuracy Assessments
4. Results and Discussion
4.1 Spatial Patterns of Wetland Types
4.2. Accuracy Assessment Results
MODIS | Landsat | Users | ||||||
0 | 1 | 2 | 3 | 4 | 5 | |||
0 | No wetland | 4,712.9 | 71.7 | 46.1 | 1.6 | 223.7 | 10.8 | 93.0 |
1 | Herbaceous wetland | 549.7 | 867.7 | 9.8 | 84.6 | 152.5 | 125.9 | 48.5 |
2 | High-water wetland | 19.2 | 1.7 | 62.5 | 0.8 | 16.9 | 1.0 | 61.2 |
3 | Regular-flooded herb. wetland | 32.7 | 352.1 | 27.3 | 218.0 | 66.0 | 209.5 | 24.1 |
4 | Low-water wetland | 285.3 | 16.0 | 45.8 | 0.9 | 171.1 | 6.8 | 32.5 |
5 | Seasonal-flooded herb. wetland | 224.6 | 199.8 | 17.7 | 21.9 | 276.4 | 169.9 | 18.7 |
Producers | 80.9 | 57.5 | 29.9 | 66.5 | 18.9 | 32.4 |
5. Conclusions
Acknowledgements
References
- Cowardin, L.M.; Carter, V.; Golet, F.; Laroe, E.T. Classification of Wetlands and Deepwater Habitats of the United States; US National Oceanographic and Atmospheric Administration Office of Coastal Zone Management: Washington, DC, USA, 1979.
- Thomas, K.L.; Benstead, J.; Davies, K.L.; Lloyd, D. Role of wetland plants in the diurnal control of CH4 and CO2 fluxes in peat. Soil Biol. Biochem. 1996, 28, 17–23. [Google Scholar] [CrossRef]
- Finlayson, M.; Moser, M. Wetlands; International Waterfowl and Wetlands Research Bureau: New York, NY, USA, 1991. [Google Scholar]
- Hails, A.J. Wetlands, Biodiversity, and the Ramsar Convention; Ramsar Convention Bureau: Gland, Switzerland, 1997. [Google Scholar]
- Mitsch, W.J.; Gosselink, J.G. Wetlands, 3rd ed.; John Wiley and Sons: New York, NY, USA, 1997. [Google Scholar]
- Lewis, W.M. Wetland: Characteristics and Boundaries, 1st ed.; National Academy Press: Washington, DC, USA, 1995. [Google Scholar]
- Tiner, R.W. Wetland Indicators: A Guide to Wetlands Identification, Delineation, Classification, and Mapping, 1st ed.; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Weller, D.E.; Snyder, M.N.; Whigham, D.F.; Jacobs, A.D.; Jordan, T.E. Landscape indicators of wetland condition in the Nanticoke River Watershed, Maryland and Delaware, USA. Wetlands 2007, 27, 498–514. [Google Scholar] [CrossRef]
- Kansiime, F.; Saunders, M.J.; Loiselle, S.A. Functioning and dynamics of wetland vegetation of Lake Victoria: An overview. Wetlands Ecol. Manag. 2007, 15, 433–451. [Google Scholar] [CrossRef]
- Townsend, P.T.; Walsh, S.J. Remote sensing of forested wetlands: Application of multitemporal and multispectral satellite imagery to determine plant community composition and structure in Southeastern USA. Plant Ecology 2001, 157, 129–149. [Google Scholar] [CrossRef]
- Wittig, R. The Syntaxonomy of the Aquatic Vegetation of Burkina Faso, 1st ed.; Wittig, R., Guinko, S., Eds.; Verlag Natur und Wissenschaft: Solingen, Germany, 2005; Volume 9. [Google Scholar]
- Jones, K.; Lanthier, Y.; van der Voet, P.; van Valkengoed, E.; Taylor, D.; Fernandez-Prieto, D. Monitoring and assessment of wetlands using Earth Observation: The GlobWetland project. J. Environ. Manag. 2009, 90, 2154–2169. [Google Scholar] [CrossRef] [PubMed]
- Finlayson, C.M. The challenge of integrating wetland inventory, assessment and monitoring Aquatic Conservation. Marine Freshwater Ecosyst. 2003, 13, 281–286. [Google Scholar] [CrossRef]
- Di Gregorio, A.; Jansen, L.J.M. Land Cover Classification System (LCCS). Classification Concepts and User Manual; Food and Agricultural Organization (FAO) Environment and Natural Resources Services: Rome, Italy, 2005. [Google Scholar]
- Amezaga, J.M.; Santamaria, L.; Green, A.J. Biotic wetland connectivity—Supporting a new approach for wetland policy. Acta Oecol. 2002, 23, 213–222. [Google Scholar] [CrossRef]
- Weber, T. Landscape ecological assessment of the Chesapeake Bay watershed. Environ. Monitor. Assessment 2004, 94, 39–53. [Google Scholar] [CrossRef]
- Tiner, R.W. Estimated extend of geographically isolated wetlands in selected areas of the United States. Wetlands 2003, 23, 636–652. [Google Scholar] [CrossRef]
- Nielsen, E.M.; Prince, S.D.; Koeln, G.T. Wetland change mapping for the U.S. mid-Atlantic region using an outlier detection technique. Remote Sens. Environ. 2008, 112, 4061–4074. [Google Scholar] [CrossRef]
- IUCN. Reducing West Africa’s Vulnerability to Climate Change Impacts on Water Resources, Wetlands and Desertification: Elements for a Regional Strategy for Preparedness and Adaptation, 1st ed.; Niasse, M., Afouda, A., Amani, A., Eds.; IUCN: Gland, Switzerland, 2004. [Google Scholar]
- Saunders, M.J.; Jones, M.B.; Kansiime, F. Carbon and water cycles in tropical papyrus wetlands. Wetlands Ecol. Manag. 2007, 15, 489–498. [Google Scholar] [CrossRef]
- Muchoney, D.M. Earth observations for terrestrial biodiversity and ecosystems. Remote Sens. Environ. 2008, 112, 190–191. [Google Scholar] [CrossRef]
- MacKay, H.; Finlayson, C.M.; Fernandez-Prieto, D.; Davidson, N.; Pritchard, D.; Rebelo, L.M. The role of Earth Observation (EO) technologies in supporting implementation of the Ramsar Convention on Wetlands. J. Environ. Manag. 2009, 90, 2234–2242. [Google Scholar] [CrossRef] [PubMed]
- Peter, N. The use of remote sensing to support the application of multilateral, environmental agreements. Space Policy 2004, 20, 189–195. [Google Scholar] [CrossRef]
- MedWet. Inventory, Assessment and Monitoring of Mediterranean Wetlands: Mapping Wetlands Using Earth Observation Techniques, 1st ed.; Fitoka, E., Keramitsoglou, F., Eds.; MedWet: Thessaloniki, Greece, 2008. [Google Scholar]
- Rebelo, L.M.; Finlayson, C.M.; Nagabhatla, N. Remote sensing and GIS for wetland inventory, mapping and change analysis. J. Environ. Manag. 2009, 90, 2144–2153. [Google Scholar] [CrossRef] [PubMed]
- Barnes, W.L.; Pagano, T.S.; Salomonson, V.V. Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AMI. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1088–1100. [Google Scholar] [CrossRef]
- Vekerdy, Z.; Gross, D. Monitoring of riverine wetland dynamics with MODIS images. In Proceedings of the EGS-AGU-EUG Joint Assembly, Nice, France, April 2003.
- Colditz, R.; Keil, M.; Strohbach, B.; Gessner, U.; Schmidt, M.; Dech, S. Vegetation structure mapping with remote sensing time series: Capabilities and improvements. In Proceedings of the 32nd International Symposium on Remote Sensing of Environment, San Jose, Costa Rica, June 2007.
- Conrad, C.; Dech, S.; Hafeez, M.; Lamers, J.; Martius, C.; Strunz, G. Mapping and assessing water use in a Central Asian irrigation system by utilizing MODIS remote sensing products. Irrig. Drain. Syst. 2005, 21, 197–218. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Moore, B. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens. Environ. 2005, 95, 480–492. [Google Scholar] [CrossRef]
- Thenkabail, P.; Schull, M.; Turral, H. Ganges and Indus river basin land/use/land cover (LULC) and irrigation area mapping using continuous streams of MODIS data. Remote Sens. Environ. 2004, 95, 317–341. [Google Scholar] [CrossRef]
- Knight, J.F.; Lunetta, R.L.; Ediriwickrema, J.; Khorram, S. Regional scale land-cover characterization using MODIS-NDVI 250m Multi-Temporal Imagery: A phenology based approach. GISci. Remote Sens. 2006, 43, 2–23. [Google Scholar] [CrossRef]
- Harvey, K.R.; Hill, G. Vegetation mapping of a tropical freshwater swamp in the Northern Territory, Australia: A comparison of aerial photography, Landsat TM and SPOT satellite imagery. Int. J. Remote Sens. 2001, 22, 2911–2925. [Google Scholar] [CrossRef]
- Bock, M.; Xofis, P.; Mitchley, J. Object-oriented methods for habitat mapping at multiple scales—Case studies from Northern Germany and Wye Downs. J. Nature Conserv. 2005, 13, 75–89. [Google Scholar] [CrossRef]
- Baker, C.; Lawrence, R.; Montagne, C.; Patten, D. Mapping wetlands and riparian areas using Landsat ETM+ imagery and decision-tree-based models. Wetlands 2006, 26, 465–74. [Google Scholar] [CrossRef]
- Jensen, J.R.; Narumalani, S.; Weatherbee, O.; Mackey, H.E. Measurement of seasonal and yearly cattail and waterlily changes using multidate SPOT panchromatic data. Photogramm. Eng. Remote Sens. 1993, 59, 519–525. [Google Scholar]
- Sersland, C.A.; Johnston, C.; Bonde, J. Assessing wet land vegetation with GPS-linked, color video image mosaics. In Proceedings of the ASPRS 15th Biennial Workshop on Vidcography and Color Photography in Resource Assessment, Terre Haute, IN, USA; 1995. [Google Scholar]
- Wolter, P.T.; Johnston, C.A.; Niemi, G.J. Mapping submerged aquatic vegetation in the U.S. Great Lakes using Quickbird satellite data. Int. J. Remote Sens. 2005, 26, 55–74. [Google Scholar] [CrossRef]
- Hubert-Moy, L.; Clément, B.; Lennon, M.; Houet, T.; Lefeuvre, E. Study of wetlands using CASI hyperspectral images: Application to the valley floors of the Armorican Massif. Photo-Interprétation 2003, 39, 33–43. [Google Scholar]
- Dapaah-Siakwan, S.; Gyau-Boakye, P. Hydrogeologic framework and borehole yields in Ghana. Hydrogeol. J. 2000, 8, 405–416. [Google Scholar] [CrossRef]
- Hayward, D.F.; Oguntoyinbo, J.S. The Climatology of West Africa, 1st ed.; Barnes and Noble Books: Totowa, NJ, USA, 1987. [Google Scholar]
- Driessen, P.; Deckers, J.; Spaargaren, O. Lectures Notes on the Major Soils of the World; FAO World Soil Resources Report-94; Food and Agriculture Organization of the United Nations: Rome, Italy, 2001. [Google Scholar]
- Justice, C.O.; Townshend, J.R.G.; Vermote, E.F.; Masouka, E.; Wolfe, R.E.; Saleous, S.; Roy, D.P.; Morisette, J.T. An overview of MODIS Land data processing and product status. Remote Sens. Environ. 2002, 83, 3–15. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.; Gao, X.; Ferreira, L. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Colditz, R.; Conrad, C.; Wehrmann, T.; Schmidt, M.; Dech, S. TiSeG: Flexible software tool for time-series generation of MODIS data utilizing the quality assessment science data set. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3296–3308. [Google Scholar] [CrossRef]
- Fontes, J.; Guinko, S. Carte de végétation et de l'occupation du sol du Burkina Faso; Projet Campus, UPS, ICIV: Toulouse, France, 1995. [Google Scholar]
- Jensen, S.K.; Domingue, J.O. Extraction of topographic structure from digital elevation data for geographic information system analysis. Photogramm. Eng. Remote Sens. 1988, 54, 1593–1600. [Google Scholar]
- O’Callaghan, J.F.; Mark, D.M. The extraction of drainage networks from digital elevation data. Comput. Vis. Graph. Image Process. 1984, 28, 328–344. [Google Scholar]
- Rosenquist, A.; Forsberg, B.R.; Pimentel, T.; Rauste, Y.A.; Richey, J.E. The use of spaceborne radar data to model inundation patterns and trace gas emissions in the central Amazon floodplain. Int. J. Remote Sens. 2002, 23, 1303–1328. [Google Scholar] [CrossRef]
- Tou, J.T.; Gonzalez, RC. Pattern Recognition Principles, 1st ed.; Addison-Wesley: Reading, MA, USA, 1974. [Google Scholar]
- Reinelt, L.; Taylor, B.; Horner, R.R. Morphology and hydrology. In Wetlands and Urbanization-Implications for the Future, 1st ed.; Azous, A., Horner, R., Eds.; Lewis Publishers: Boca Raton, FL, USA, 2001; Volume 1, pp. 31–36. [Google Scholar]
- Nyarko, B.K. Floodplain Wetland-River Flow Synergy in the White Volta Basin of Ghana. Ph.D. Thesis, Rheinische Friedrich Wilhelms University, Bonn, Germany, 2007. [Google Scholar]
- Tappan, G.G.; Sall, M.; Wood, E.C.; Cushing, M. Ecoregions and land cover trends in Senegal. J. Arid Environ. 2003, 59, 427–462. [Google Scholar] [CrossRef]
- IGB. Guide Technique de la Nomenclature BDOT Burkina Faso; IGN-FI: Ouagadougou, Burkina Faso, 2005. [Google Scholar]
- Costantini, C.; Ayala, D.; Guelbeogo, W.M. Living at the edge: Biogeographic patterns of habitat segregation conform to speciation by niche expansion in Anopheles gambiae. BMC Ecol. 2009, 9, 2–28. [Google Scholar]
- Defourny, P.; Bicheron, P.; Brockman, C.; Bontemps, S.; van Bogaert, E.; Vancutsem, C. The first 300 m global land cover map for 2005 using ENVISAT MERIS time series: A product of the GlobCover system. In Proceedings of the 33th International Symposium of Remote Sensing of Environment, Stresa, Italy, May 2009.
- Lunetta, R.S.; Alvarez, R.; Edmonds, C.M.; Lyon, J.G.; Elvidge, C.D.; Boniface, R.; Garcia, C. NALC/Mexico land-cover mapping results: implications for assessing landscape condition. Int. J. Remote Sens. 2002, 23, 3129–3148. [Google Scholar] [CrossRef]
- Kovacs, J.M.; Wang, J.; Blanca-Correa, M. Mapping disturbances in a mangrove forest using multidate Landsat TM imagery. Environ. Manag. 2001, 27, 763–776. [Google Scholar] [CrossRef]
- Sader, S.A.; Ahl, D.; Liou, W.S. Accuracy of Landsat TM and GIS rule-based methods for forest wetland classification in Maine. Remote Sens. Environ. 1995, 53, 133–144. [Google Scholar] [CrossRef]
- Bicheron, P.; Defourny, P.; Schouten, C.B.L.; Vancutsem, C.; Huc, M.; Bontemps, S.; Leroy, M.; Achard, F.; Herold, M.; Ranera, F.; Arino, O. GLOBCOVER—Products description and validation report, medias France technical documants. Available online: http://postel.mediasfrance.org/en/ DOWNLOAD/Documents/ (accessed on 10 March 2010).
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Landmann, T.; Schramm, M.; Colditz, R.R.; Dietz, A.; Dech, S. Wide Area Wetland Mapping in Semi-Arid Africa Using 250-Meter MODIS Metrics and Topographic Variables. Remote Sens. 2010, 2, 1751-1766. https://doi.org/10.3390/rs2071751
Landmann T, Schramm M, Colditz RR, Dietz A, Dech S. Wide Area Wetland Mapping in Semi-Arid Africa Using 250-Meter MODIS Metrics and Topographic Variables. Remote Sensing. 2010; 2(7):1751-1766. https://doi.org/10.3390/rs2071751
Chicago/Turabian StyleLandmann, Tobias, Matthias Schramm, Rene R. Colditz, Andreas Dietz, and Stefan Dech. 2010. "Wide Area Wetland Mapping in Semi-Arid Africa Using 250-Meter MODIS Metrics and Topographic Variables" Remote Sensing 2, no. 7: 1751-1766. https://doi.org/10.3390/rs2071751
APA StyleLandmann, T., Schramm, M., Colditz, R. R., Dietz, A., & Dech, S. (2010). Wide Area Wetland Mapping in Semi-Arid Africa Using 250-Meter MODIS Metrics and Topographic Variables. Remote Sensing, 2(7), 1751-1766. https://doi.org/10.3390/rs2071751