Ancient Burial Mounds Detection in the Altai Mountains with High-Resolution Satellite Images
Highlights
- Deep learning techniques are applied for automatic kurgan identification.
- Performance of various CNN-based and Transformer-based object detection methods is comprehensively compared.
- Deep learning techniques are feasible for automatic kurgan identification.
- Deep learning techniques show strong potential for building a comprehensive inventory of kurgans in Altai Mountains.
Abstract
1. Introduction
2. Study Areas and Image Data
2.1. Study Sites
2.2. Image Data
3. Methodology
Machine-Learning Method
4. Experimental Results
4.1. Accuracy Validation
4.2. Discovering Kurgans in Unexplored Regions
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baumer, C. The History of Central Asia: The Age of the Steppe Warriors; I.B. Tauris & Co., Ltd.: London, UK; New York, NY, USA, 2012. [Google Scholar]
- Han, J.; Frank, L.; Treselian, D. (Eds.) The Preservation of the Frozen Tombs of the Altai Mountains; UNESCO World Heritage Centre: Paris, France, 2008. [Google Scholar]
- Rudenko, S.I.; Thompson, M.W. Frozen Tombs of Siberia: The Pazyryk Burials of Iron-Age Horsemen; J.M. Dent & Sons Ltd.: London, UK, 1970. [Google Scholar]
- Kubarev, V.D. Kypгaны Улaндpыкa—Kurgany Ulandryka; Hayкa: Hoвocибиpcк, Russia, 1987. [Google Scholar]
- Kubarev, V.D. Kypгaны Юcтыдa—Kurgany Yustyda; Hayкa: Hoвocибиpcк, Russia, 1991. [Google Scholar]
- Kubarev, V.D. Kypгaны Caйлюгeмa—Kurgany Saylyugema; Hayкa: Hoвocибиpcк, Russia, 1992. [Google Scholar]
- Čugunov, K.V.; Parzinger, H.; Nagler, A. Der Goldschatz von Arzan: Ein Fürstengrab der Skythenzeit in der Südsibirischen Steppe; Schirmer/Mosel: München, Germany, 2006. [Google Scholar]
- Bourgeois, J.; De Wulf, A.; Goossens, R.; Gheyle, W. Saving the frozen Scythian tombs of the Altai Mountains (Central Asia). World Archaeol. 2007, 39, 458–474. [Google Scholar] [CrossRef]
- Bourgeois, J.; Gheyle, W.; Babin, V.; Lukyanenko, V.N. The frozen tombs of the Altay Mountains: Strategies and perspectives. In Proceedings of the UNESCO Workshop, Gorno-Altaisk, Russia, 28–31 March 2006; UNESCO/Flanders Funds-in-Trust. Gorno-Altaisk State University: Gorno-Altaisk, Russia, 2007. [Google Scholar]
- Jacobson-Tepfer, E.; Meacham, J.E. Archaeology and Landscape in the Mongolian Altai: An Atlas; ESRI Press: Redlands, CA, USA, 2009. [Google Scholar]
- Balz, T.; Caspari, G.; Fu, B.; Liao, M. Discernibility of burial mounds in high-resolution X-Band SAR images for archaeological prospections in the Altai Mountains. Remote Sens. 2016, 8, 817. [Google Scholar] [CrossRef]
- Caspari, G. Mapping and damage assessment of “royal” burial mounds in the Siberian Valley of the Kings. Remote Sens. 2020, 12, 773. [Google Scholar] [CrossRef]
- Caspari, G. Assessing looting from space: The destruction of Early Iron Age burials in northern Xinjiang. Heritage 2018, 1, 21. [Google Scholar] [CrossRef]
- Vavulin, M.V.; Chugunov, K.V.; Zaitceva, O.V.; Vodyasov, E.V.; Pushkarev, A.A. UAV-based photogrammetry: Assessing the application potential and effectiveness for archaeological monitoring and surveying in the research on the ‘valley of the kings’ (Tuva, Russia). Digit. Appl. Archaeol. Cult. Herit. 2021, 20, e00172. [Google Scholar] [CrossRef]
- Cai, Z.; Vasconcelos, N. Cascade R-CNN: Delving into high quality object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6154–6162. [Google Scholar]
- Chen, F.; Zhao, H.; Roberts, D.; Van de Voorde, T.; Batelaan, O.; Fan, T.; Xu, W. Mapping center pivot irrigation systems in global arid regions using instance segmentation and analyzing their spatial relationship with freshwater resources. Remote Sens. Environ. 2023, 297, 113760. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef]
- Caspari, G.; Crespo, P. Convolutional neural networks for archaeological site detection—Finding ‘Princely’ tombs. J. Archaeol. Sci. 2019, 110, 104998. [Google Scholar] [CrossRef]
- Chen, F.; Zhou, R.; Van de Voorde, T.; Chen, X.; Bourgeois, J.; Gheyle, W.; Goossens, R.; Yang, J.; Xu, W. Automatic detection of burial mounds (kurgans) in the Altai Mountains. ISPRS J. Photogramm. Remote Sens. 2021, 177, 217–237. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; p. 30. [Google Scholar]
- OpenAI GPT-4 Technical Report. arXiv 2023, arXiv:2303.08774v3.
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 10012–10022. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 213–229. [Google Scholar]
- Zhu, X.; Su, W.; Lu, L.; Li, B.; Wang, X.; Dai, J. Deformable DETR: Deformable transformers for end-to-end object detection. arXiv 2020, arXiv:2010.04159. [Google Scholar]
- Gao, P.; Zheng, M.; Wang, X.; Dai, J.; Li, H. Fast convergence of DETR with spatially modulated co-attention. In Proceedings of the IEEE International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 3621–3630. [Google Scholar]
- Yao, Z.; Ai, J.; Li, B.; Zhang, C. Efficient DETR: Improving end-to-end object detector with dense prior. arXiv 2021, arXiv:2104.01318. [Google Scholar]
- Liu, S.; Li, F.; Zhang, H.; Yang, X.; Qi, X.; Su, H.; Zhu, J.; Zhang, L. Dab-DETR: Dynamic anchor boxes are better queries for DETR. arXiv 2022, arXiv:2201.12329. [Google Scholar] [CrossRef]
- Li, F.; Zhang, H.; Liu, S.; Guo, J.; Ni, L.M.; Zhang, L. DN-DETR: Accelerate DETR training by introducing query denoising. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 13619–13627. [Google Scholar]
- Zhang, H.; Li, F.; Liu, S.; Zhang, L.; Su, H.; Zhu, J.; Ni, L.M.; Shum, H.Y. Dino: DETR with improved denoising anchor boxes for end-to-end object detection. arXiv 2022, arXiv:2203.03605. [Google Scholar]
- Wang, W.; Xie, E.; Li, X.; Fan, D.P.; Song, K.; Liang, D.; Lu, T.; Luo, P.; Shao, L. Pvt v2: Improved baselines with pyramid vision transformer. Comput. Vis. Media 2022, 8, 415–424. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1492–1500. [Google Scholar]
- Bourgeois, J.; De Wulf, A.; Ebel, A.V.; Gheyle, W.; Goossens, R.; van Hoof, L. Mapping and surveying the archaeological monuments of the Altai Mountains (Altai Republic). In Proceedings of the 34th Conference Computer Applications and Quantitative Methods in Archaeology, Dublin, Ireland, 18–21 April 2006. [Google Scholar]
- Bourgeois, J.; Gheyle, W.; Goossens, R.; Van de Kerchove, R.; Dvornikov, E.P.; Ebel, A.V.; van Hoof, L.; De Wulf, A.; Loute, S.; De Langhe, K.; et al. Survey and inventory of the archaeological sites in the valley of the Karakol (Uch-Enmek Park): Report on the Belgian-Russian Expedition in the Russian Altay Mountains 2007–2008. Mir Evrazii 2009, 1, 10–20. [Google Scholar]
- Bourgeois, J.; Cheremisin, D.V.; Plets, G.; Dvornikov, E.P.; Ebel, A.V.; Stichelbaut, B.; Van Hoof, L.; Gheyle, W. An archaeological landscape in the Dzhazator valley (Altai Mountains): Surface monuments and petroglyphs from the Chalcolithic to the Ethnographic period. Archaeol. Ethnol. Anthropol. Eurasia 2014, 42, 106–119. [Google Scholar] [CrossRef]
- Gheyle, W.; Trommelmans, R.; Bourgeois, J.; Goossens, R.; Bourgeois, I.; De Wulf, A.; Willems, T. Evaluating CORONA: A case study in the Altai Republic (South Siberia). Antiquity 2004, 78, 391–403. [Google Scholar] [CrossRef]
- Gheyle, W.; De Wulf, A.; Dvornikov, E.P.; Ebel, A.V.; Goossens, R.; Bourgeois, J. Early Iron Age burial mounds in the Altay Mountains—From survey to analysis. In Tumulus as Sema: Space, Politics, Culture and Religion in the First Millennium BC; Henry, O., Kelp, U., Eds.; De Gruyter: Berlin, Germany, 2016. [Google Scholar]
- Goossens, R.; De Wulf, A.; Bourgeois, J.; Gheyle, W.; Willems, T. Satellite imagery and archaeology: The example of CORONA in the Altai Mountains. J. Archaeol. Sci. 2006, 33, 745–755. [Google Scholar] [CrossRef]
- Caspari, G.; Plets, G.; Balz, T.; Fu, B. Landscape archaeology in the Chinese Altai Mountains–Survey of the Heiliutan Basin. Archaeol. Res. Asia 2017, 10, 48–53. [Google Scholar] [CrossRef]
- Laben, C.A.; Brower, B.V. Process for Enhancing the Spatial Resolution of Multispectral Imagery Using Pan-Sharpening. U.S. Patent 6011875, 4 January 2000. [Google Scholar]
- Zhang, S.; Wang, X.; Wang, J.; Pang, J.; Lyu, C.; Zhang, W.; Luo, P.; Chen, K. Dense distinct query for end-to-end object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 7329–7338. [Google Scholar]
- Duporge, I.; Isupova, O.; Reece, S.; Macdonald, D.W.; Wang, T. Using very-high-resolution satellite imagery and deep learning to detect and count African elephants in heterogeneous landscapes. Remote Sens. Ecol. Conserv. 2021, 7, 369–381. [Google Scholar] [CrossRef]
- Lin, T.; Goyal, P.; Girshick, R.B.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2999–3007. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Wu, Z.; Zhang, C.; Gu, X.; Duporge, I.; Hughey, L.F.; Stabach, J.A.; Skidmore, A.K.; Hopcraft, J.G.C.; Lee, S.J.; Atkinson, P.M.; et al. Deep learning enables satellite-based monitoring of large populations of terrestrial mammals across heterogeneous landscape. Nat. Commun. 2023, 14, 3072. [Google Scholar] [CrossRef]
- Bourgeois, J.; De Langhe, K.; Ebel, A.V.; Dvornikov, E.P.; Konstantinov, N.A.; Gheyle, W. Geometric stone settings in the Yustyd valley and its surroundings (Altai Mountains, Russia): Bronze age ‘virtual dwellings’ and associated structures. Archaeol. Res. Asia 2017, 10, 17–31. [Google Scholar] [CrossRef]
- Gheyle, W. Highlands and Steppes: An Analysis of the Changing Archaeological Landscape of the Altay Mountains from the Eneolithic to the Ethnographic Period. Ph.D. Thesis, Ghent University, Gent, Belgium, 2009. [Google Scholar]








| Algorithm | Backbone | Loss | #Param | AR | AP | Recall50 | Precision50 | F2 |
|---|---|---|---|---|---|---|---|---|
| Faster R-CNN | ResNet-101 | CE | 60 M | 0.469 | 0.388 | 0.674 | 0.739 | 0.686 |
| Faster R-CNN | ResNeXt-101 | CE | 60 M | 0.490 | 0.418 | 0.708 | 0.787 | 0.723 |
| Faster R-CNN | PVT-v2 | CE | 99 M | 0.572 | 0.445 | 0.632 | 0.831 | 0.664 |
| Faster R-CNN | Swin-small | CE | 45 M | 0.497 | 0.410 | 0.653 | 0.823 | 0.681 |
| Faster R-CNN | Swin-large | CE | 213 M | 0.516 | 0.442 | 0.755 | 0.791 | 0.762 |
| Faster R-CNN | Swin-large | FL | 211 M | 0.585 | 0.520 | 0.796 | 0.846 | 0.806 |
| Cascade R-CNN | ResNet-101 | CE | 88 M | 0.494 | 0.419 | 0.716 | 0.788 | 0.729 |
| Cascade R-CNN | ResNeXt-101 | CE | 87 M | 0.527 | 0.456 | 0.765 | 0.767 | 0.765 |
| Cascade R-CNN | PVT-v2 | CE | 126 M | 0.556 | 0.465 | 0.826 | 0.672 | 0.790 |
| Cascade R-CNN | Swin-small | CE | 73 M | 0.499 | 0.420 | 0.768 | 0.737 | 0.762 |
| Cascade R-CNN | Swin-large | CE | 241 M | 0.547 | 0.473 | 0.769 | 0.798 | 0.775 |
| Cascade R-CNN | Swin-large | FL | 238 M | 0.734 | 0.546 | 0.828 | 0.901 | 0.842 |
| Deformable DETR | ResNet-101 | CE | 59 M | 0.572 | 0.390 | 0.676 | 0.795 | 0.697 |
| Deformable DETR | ResNeXt-101 | CE | 54 M | 0.528 | 0.315 | 0.538 | 0.795 | 0.575 |
| Deformable DETR | PVT-v2 | CE | 94 M | 0.628 | 0.351 | 0.705 | 0.805 | 0.723 |
| Deformable DETR | Swin-small | CE | 40 M | 0.599 | 0.312 | 0.615 | 0.833 | 0.649 |
| Deformable DETR | Swin-large | CE | 208 M | 0.606 | 0.327 | 0.635 | 0.849 | 0.669 |
| Deformable DETR | Swin-large | FL | 205 M | 0.643 | 0.418 | 0.719 | 0.914 | 0.751 |
| DINO | ResNet-101 | CE | 67 M | 0.688 | 0.447 | 0.734 | 0.836 | 0.752 |
| DINO | ResNeXt-101 | CE | 66 M | 0.631 | 0.395 | 0.796 | 0.671 | 0.767 |
| DINO | PVT-v2 | CE | 100 M | 0.653 | 0.434 | 0.736 | 0.823 | 0.752 |
| DINO | Swin-small | CE | 48 M | 0.682 | 0.493 | 0.751 | 0.830 | 0.766 |
| DINO | Swin-large | CE | 218 M | 0.688 | 0.516 | 0.758 | 0.831 | 0.772 |
| DINO | Swin-large | FL | 215 M | 0.788 | 0.583 | 0.825 | 0.867 | 0.833 |
| DDQ | ResNet-101 | CE | 67 M | 0.696 | 0.480 | 0.746 | 0.853 | 0.765 |
| DDQ | ResNeXt-101 | CE | 62 M | 0.687 | 0.435 | 0.736 | 0.814 | 0.750 |
| DDQ | PVT-v2 | CE | 101 M | 0.698 | 0.475 | 0.733 | 0.843 | 0.753 |
| DDQ | Swin-small | CE | 47 M | 0.699 | 0.503 | 0.705 | 0.873 | 0.733 |
| DDQ | Swin-large | CE | 219 M | 0.701 | 0.523 | 0.826 | 0.804 | 0.822 |
| DDQ | Swin-large | FL | 217 M | 0.804 | 0.681 | 0.858 | 0.917 | 0.869 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Chen, F.; Jin, L.; Bourgeois, J.; Zuo, X.; Van de Voorde, T.; Gheyle, W.; Balz, T.; Caspari, G. Ancient Burial Mounds Detection in the Altai Mountains with High-Resolution Satellite Images. Remote Sens. 2026, 18, 185. https://doi.org/10.3390/rs18020185
Chen F, Jin L, Bourgeois J, Zuo X, Van de Voorde T, Gheyle W, Balz T, Caspari G. Ancient Burial Mounds Detection in the Altai Mountains with High-Resolution Satellite Images. Remote Sensing. 2026; 18(2):185. https://doi.org/10.3390/rs18020185
Chicago/Turabian StyleChen, Fen, Lu Jin, Jean Bourgeois, Xiangguo Zuo, Tim Van de Voorde, Wouter Gheyle, Timo Balz, and Gino Caspari. 2026. "Ancient Burial Mounds Detection in the Altai Mountains with High-Resolution Satellite Images" Remote Sensing 18, no. 2: 185. https://doi.org/10.3390/rs18020185
APA StyleChen, F., Jin, L., Bourgeois, J., Zuo, X., Van de Voorde, T., Gheyle, W., Balz, T., & Caspari, G. (2026). Ancient Burial Mounds Detection in the Altai Mountains with High-Resolution Satellite Images. Remote Sensing, 18(2), 185. https://doi.org/10.3390/rs18020185

