Satellite Views of Long-Term Variations in pCO2 on the Changjiang River Estuary and the Adjacent East China Sea (1998–2024)
Highlights
- Over the past 27 years, the carbon sink capacity of the Changjiang River Estuary has increased approximately fivefold, accompanied by a sustained enhancement in air-sea CO2 uptake.
- After 2014, a marked shift in carbon sink control mechanisms was identified, revealing that complex biogeochemical regulation underscores the influence of river discharge on pCO2_sea.
- The long-term intensification of the carbon sink underscores the growing importance of the Changjiang River Estuary in regional coastal carbon budgets under ongoing climate change.
- The recently discharge-dominated, dynamically regulated system implies increased vulnerability of the coastal carbon sink to extreme hydrological events, complicating the prediction of carbon sink variability under future climate change.
Abstract
1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Satellite Data
2.3. Generalized Additive Model
3. Results
3.1. Spatial and Seasonal Patterns of pCO2 and Air–Sea CO2 Flux in the Changjiang River Estuary and the Adjacent East China Sea
3.2. Continued Enhancement of Air–Sea Carbon Sink over the Past 27 Years
4. Discussion
4.1. Spatial-Seasonal Variability and Controls of the Coastal Carbon Sink
4.2. The Impact of Changjiang Discharge on pCO2_Sea in the Last Decade (2014–2024) Has Increased by over 50% Compared to Historical Periods
4.3. Extension of the Relationship Between Discharge and NpCO2 in the Changjiang River Estuary and the Adjacent East China Sea
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laruelle, G.G.; Cai, W.-J.; Hu, X.; Gruber, N.; Mackenzie, F.T.; Regnier, P. Continental shelves as a variable but increasing global sink for atmospheric carbon dioxide. Nat. Commun. 2018, 9, 454. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Sutherland, S.C.; Wanninkhof, R.; Sweeney, C.; Feely, R.A.; Chipman, D.W.; Hales, B.; Friederich, G.; Chavez, F.; Sabine, C. Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2009, 56, 554–577. [Google Scholar] [CrossRef]
- Chen, C.T.A.; Huang, T.H.; Chen, Y.C.; Bai, Y.; He, X.; Kang, Y. Air-sea exchanges of CO2 in the world’s coastal seas. Biogeosciences 2013, 10, 6509–6544. [Google Scholar] [CrossRef]
- Dai, M.; Cao, Z.; Guo, X.; Zhai, W.; Liu, Z.; Yin, Z.; Xu, Y.; Gan, J.; Hu, J.; Du, C. Why are some marginal seas sources of atmospheric CO2? Geophys. Res. Lett. 2013, 40, 2154–2158. [Google Scholar] [CrossRef]
- Burdige, D.J. Preservation of organic matter in marine sediments: Controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem. Rev. 2007, 107, 467–485. [Google Scholar] [CrossRef]
- DeVries, T. The ocean carbon cycle. Annu. Rev. Environ. Resour. 2022, 47, 317–341. [Google Scholar] [CrossRef]
- Bourgeois, T.; Orr, J.C.; Resplandy, L.; Terhaar, J.; Ethé, C.; Gehlen, M.; Bopp, L. Coastal-ocean uptake of anthropogenic carbon. Biogeosciences 2016, 13, 4167–4185. [Google Scholar] [CrossRef]
- Laruelle, G.G.; Lauerwald, R.; Pfeil, B.; Regnier, P. Regionalized global budget of the CO2 exchange at the air-water interface in continental shelf seas. Glob. Biogeochem. Cycles 2014, 28, 1199–1214. [Google Scholar] [CrossRef]
- Liu, Q.; Guo, X.; Yin, Z.; Zhou, K.; Roberts, E.G.; Dai, M. Carbon fluxes in the China Seas: An overview and perspective. Sci. China Earth Sci. 2018, 61, 1564–1582. [Google Scholar] [CrossRef]
- Roobaert, A.; Laruelle, G.G.; Landschützer, P.; Gruber, N.; Chou, L.; Regnier, P. The spatiotemporal dynamics of the sources and sinks of CO2 in the global coastal ocean. Glob. Biogeochem. Cycles 2019, 33, 1693–1714. [Google Scholar] [CrossRef]
- Jiao, N.; Liang, Y.; Zhang, Y.; Liu, J.; Zhang, Y.; Zhang, R.; Zhao, M.; Dai, M.; Zhai, W.; Gao, K. Carbon pools and fluxes in the China Seas and adjacent oceans. Sci. China Earth Sci. 2018, 61, 1535–1563. [Google Scholar] [CrossRef]
- Chou, W.C.; Gong, G.C.; Sheu, D.D.; Jan, S.; Hung, C.C.; Chen, C.C. Reconciling the paradox that the heterotrophic waters of the east China Sea shelf act as a significant CO2 sink during the summertime: Evidence and implications. Geophys. Res. Lett. 2009, 36, L15607. [Google Scholar] [CrossRef]
- Zhai, W.; Dai, M. On the seasonal variation of air–sea CO2 fluxes in the outer Changjiang (Yangtze River) estuary, east China Sea. Mar. Chem. 2009, 117, 2–10. [Google Scholar] [CrossRef]
- Tseng, C.M.; Liu, K.K.; Gong, G.C.; Shen, P.Y.; Cai, W.J. CO2 uptake in the east China Sea relying on Changjiang runoff is prone to change. Geophys. Res. Lett. 2011, 38, L24609. [Google Scholar] [CrossRef]
- Kim, D.; Choi, S.-H.; Shim, J.; Kim, K.-H.; Kim, C.-H. Revisiting the seasonal variations of sea-air CO2 fluxes in the northern east China Sea. Terr. Atmos. Ocean. Sci. 2013, 24, 409–419. [Google Scholar] [CrossRef]
- Chou, W.-C.; Gong, G.-C.; Hung, C.-C.; Wu, Y.-H. Carbonate mineral saturation states in the east China Sea: Present conditions and future scenarios. Biogeosciences 2013, 10, 6453–6467. [Google Scholar] [CrossRef]
- Tseng, C.-M.; Shen, P.-Y.; Liu, K.-K. Synthesis of observed air–sea CO2 exchange fluxes in the river-dominated east China Sea and improved estimates of annual and seasonal net mean fluxes. Biogeosciences 2014, 11, 3855–3870. [Google Scholar] [CrossRef]
- Guo, X.-H.; Zhai, W.-D.; Dai, M.-H.; Zhang, C.; Bai, Y.; Xu, Y.; Li, Q.; Wang, G.-Z. Air–sea CO2 fluxes in the east China Sea based on multiple-year underway observations. Biogeosciences 2015, 12, 5495–5514. [Google Scholar] [CrossRef]
- Yu, S.; Wang, Z.; Jiang, Z.; Li, T.; Ding, X.; Wei, X.; Liu, D. Marine heatwave and terrestrial drought reduced CO2 uptake in the east China Sea in 2022. Remote Sens. 2024, 16, 849. [Google Scholar] [CrossRef]
- Xu, Y.; Bu, D.; Guo, X.; Lei, S.; Yang, Y.; Zhou, K. The 2023 summer drought and high temperatures turned the east China Sea off the Changjiang estuary from a CO2 sink to a CO2 source. Sci. China Earth Sci. 2025, 68, 2217–2225. [Google Scholar] [CrossRef]
- Ran, L.; Lu, X.X.; Liu, S. Dynamics of riverine CO2 in the Yangtze River fluvial network and their implications for carbon evasion. Biogeosciences 2017, 14, 2183–2198. [Google Scholar] [CrossRef]
- Song, S.; Bellerby, R.; Liu, J.; Guo, W.; Yu, P.; Ge, J.; Li, D. Impacts of an extreme Changjiang flood on variations in carbon cycle components in the Changjiang estuary and adjacent east China Sea. Cont. Shelf Res. 2023, 269, 105137. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, X.; Zhang, C.; Jin, Y.; Hu, X.; Zhou, X.; Zhuang, T.; Ning, J.; Zeng, J.; Yu, P. Seasonal variability of sea surface pCO2 and air-sea CO2 flux in a high turbidity coastal ocean in the vicinity of the east China Sea. Front. Mar. Sci. 2025, 12, 1580318. [Google Scholar] [CrossRef]
- Zhong, X.; Liu, J.; Shi, M.; Liu, X.; Lv, Z.; Ran, X. Nutrient dynamics in the east China Sea: Seasonal changes, budget, and ecological impacts. Prog. Oceanogr. 2025, 234, 103463. [Google Scholar] [CrossRef]
- Liu, K.-K.; Yan, W.; Lee, H.-J.; Chao, S.-Y.; Gong, G.-C.; Yeh, T.-Y. Impacts of increasing dissolved inorganic nitrogen discharged from Changjiang on primary production and seafloor oxygen demand in the east China Sea from 1970 to 2002. J. Mar. Syst. 2015, 141, 200–217. [Google Scholar] [CrossRef]
- Chen, C.C.; Gong, G.C.; Chiang, K.P.; Shiah, F.K.; Chung, C.C.; Hung, C.C. Scaling effects of a eutrophic river plume on organic carbon consumption. Limnol. Oceanogr. 2021, 66, 1867–1881. [Google Scholar] [CrossRef]
- Shim, J.; Kim, D.; Kang, Y.C.; Lee, J.H.; Jang, S.-T.; Kim, C.-H. Seasonal variations in pCO2 and its controlling factors in surface seawater of the northern east China Sea. Cont. Shelf Res. 2007, 27, 2623–2636. [Google Scholar] [CrossRef]
- Zhai, W.-D.; Dai, M.-H.; Chen, B.-S.; Guo, X.-H.; Li, Q.; Shang, S.-L.; Zhang, C.-Y.; Cai, W.-J.; Wang, D.-X. Seasonal variations of sea–air CO2 fluxes in the largest tropical marginal sea (south China Sea) based on multiple-year underway measurements. Biogeosciences 2013, 10, 7775–7791. [Google Scholar] [CrossRef]
- Chou, W.-C.; Gong, G.-C.; Tseng, C.-M.; Sheu, D.D.; Hung, C.-C.; Chang, L.-P.; Wang, L.-W. The carbonate system in the east China Sea in winter. Mar. Chem. 2011, 123, 44–55. [Google Scholar] [CrossRef]
- Yu, S.; Song, Z.; Bai, Y.; Guo, X.; He, X.; Zhai, W.; Zhao, H.; Dai, M. Satellite-estimated air-sea CO2 fluxes in the Bohai Sea, yellow sea, and east China Sea: Patterns and variations during 2003–2019. Sci. Total Environ. 2023, 904, 166804. [Google Scholar] [CrossRef]
- Zhai, W.D.; Chen, J.F.; Jin, H.Y.; Li, H.L.; Liu, J.W.; He, X.Q.; Bai, Y. Spring carbonate chemistry dynamics of surface waters in the northern east China Sea: Water mixing, biological uptake of CO2, and chemical buffering capacity. J. Geophys. Res. Ocean. 2014, 119, 5638–5653. [Google Scholar] [CrossRef]
- Rodgers, K.B.; Schwinger, J.; Fassbender, A.J.; Landschützer, P.; Yamaguchi, R.; Frenzel, H.; Stein, K.; Müller, J.D.; Goris, N.; Sharma, S. Seasonal variability of the surface ocean carbon cycle: A synthesis. Glob. Biogeochem. Cycles 2023, 37, e2023GB007798. [Google Scholar] [CrossRef]
- Deng, X.; Zhang, G.-L.; Xin, M.; Liu, C.-Y.; Cai, W.-J. Carbonate chemistry variability in the southern yellow sea and east China Sea during spring of 2017 and summer of 2018. Sci. Total Environ. 2021, 779, 146376. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Li, D.; Wang, B.; Xu, Z.; Miao, Y.; Lin, H.; Jin, H.; Jiang, Z.; Zeng, J.; Zhou, F. Massive nutrients offshore transport off the Changjiang estuary in flooding summer of 2020. Front. Mar. Sci. 2023, 10, 1076336. [Google Scholar] [CrossRef]
- Yao, A.; Gao, L.; Ming, Y. Influences of catastrophic floods on the biogeochemistry of organic matter and nutrients in the Changjiang River estuary. J. Mar. Syst. 2024, 241, 103922. [Google Scholar] [CrossRef]
- Song, Z.; Yu, S.; Bai, Y.; Guo, X.; He, X.; Zhai, W.; Dai, M. Construction of a high spatiotemporal resolution dataset of satellite-derived pCO2 and air–sea CO2 flux in the south China Sea (2003–2019). IEEE Trans. Geosci. Remote Sens. 2023, 61, 4207015. [Google Scholar] [CrossRef]
- Tsunogai, S.; Watanabe, S.; Nakamura, J.; Ono, T.; Sato, T. A preliminary study of carbon system in the east China Sea. J. Oceanogr. 1997, 53, 9–17. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, D.; Wang, K.; Xue, B. Contribution of biological effects to the carbon sources/sinks and the trophic status of the ecosystem in the Changjiang (Yangtze) River estuary plume in summer as indicated by net ecosystem production variations. Water 2019, 11, 1264. [Google Scholar] [CrossRef]
- Hama, T.; Shin, K.; Handa, N. Spatial variability in the primary productivity in the east China Sea and its adjacent waters. J. Oceanogr. 1997, 53, 41–51. [Google Scholar] [CrossRef]
- Liu, K.-K.; Chao, S.-Y.; Lee, H.-J.; Gong, G.-C.; Teng, Y.-C. Seasonal variation of primary productivity in the east China Sea: A numerical study based on coupled physical-biogeochemical model. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2010, 57, 1762–1782. [Google Scholar] [CrossRef]
- Guo, S.; Feng, Y.; Wang, L.; Dai, M.; Liu, Z.; Bai, Y.; Sun, J. Seasonal variation in the phytoplankton community of a continental-shelf sea: The east China Sea. Mar. Ecol. Prog. Ser. 2014, 516, 103–126. [Google Scholar] [CrossRef]
- Liu, X.; Xiao, W.; Landry, M.R.; Chiang, K.-P.; Wang, L.; Huang, B. Responses of phytoplankton communities to environmental variability in the east China Sea. Ecosystems 2016, 19, 832–849. [Google Scholar] [CrossRef]
- Zhai, W.-D.; Yan, X.-L.; Qi, D. Biogeochemical generation of dissolved inorganic carbon and nitrogen in the north branch of inner Changjiang estuary in a dry season. Estuar. Coast. Shelf Sci. 2017, 197, 136–149. [Google Scholar] [CrossRef]
- Hasegawa, T.; Kitajima, S.; Kiyomoto, Y. Phytoplankton distribution in the Kuroshio region of the southern east China Sea in early spring. In Kuroshio Current: Physical, Biogeochemical, and Ecosystem Dynamics; American Geophysical Union: Washington, DC, USA, 2019; pp. 189–205. [Google Scholar]
- Dai, A.; Trenberth, K.E. Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. Hydrometeorol. 2002, 3, 660–687. [Google Scholar] [CrossRef]
- Chen, C.-T.A.; Zhai, W.; Dai, M. Riverine input and air–sea CO2 exchanges near the Changjiang (Yangtze River) estuary: Status quo and implication on possible future changes in metabolic status. Cont. Shelf Res. 2008, 28, 1476–1482. [Google Scholar] [CrossRef]
- Lee, H.-J.; Chao, S.-Y. A climatological description of circulation in and around the east China Sea. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2003, 50, 1065–1084. [Google Scholar] [CrossRef]
- Su, Y.; Weng, X. Water masses in China Seas. Oceanol. China Seas 1994, 1, 3–16. [Google Scholar]
- Chen, C.-T.A. Chemical and physical fronts in the Bohai, yellow and east China Seas. J. Mar. Syst. 2009, 78, 394–410. [Google Scholar] [CrossRef]
- Chen, C.; Ruo, R.; Paid, S.; Liu, C.; Wong, G. Exchange of water masses between the east China Sea and the Kuroshio off northeastern Taiwan. Cont. Shelf Res. 1995, 15, 19–39. [Google Scholar] [CrossRef]
- Chen, C.-T.A. Rare northward flow in the Taiwan strait in winter: A note. Cont. Shelf Res. 2003, 23, 387–391. [Google Scholar] [CrossRef]
- Guan, B.-x. Patterns and structures of the currents in Bohai, Huanghai and East China Seas. In Oceanology of China Seas; Springer: Berlin/Heidelberg, Germany, 1994; pp. 17–26. [Google Scholar]
- Lie, H.J.; Cho, C.H.; Lee, J.H.; Lee, S.; Tang, Y.; Zou, E. Does the yellow sea warm current really exist as a persistent mean flow? J. Geophys. Res. Ocean. 2001, 106, 22199–22210. [Google Scholar] [CrossRef]
- He, X.; Bai, Y.; Pan, D.; Chen, C.T.A.; Cheng, Q.; Wang, D.; Gong, F. Satellite views of the seasonal and interannual variability of phytoplankton blooms in the eastern China Seas over the past 14 yr (1998–2011). Biogeosciences 2013, 10, 4721–4739. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; Falkowski, P.G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 1997, 42, 1–20. [Google Scholar] [CrossRef]
- Laws, E.A.; D’Sa, E.; Naik, P. Simple equations to estimate ratios of new or export production to total production from satellite-derived estimates of sea surface temperature and primary production. Limnol. Oceanogr. Methods 2011, 9, 593–601. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, B.; Chen, B.; Qiu, G.; Wang, H.; Huang, B. Net community production in the south China Sea basin estimated from in situ o2 measurements on an argo profiling float. Deep Sea Res. Part I Oceanogr. Res. Pap. 2018, 131, 54–61. [Google Scholar] [CrossRef]
- Zhang, Y.; Bai, Y.; He, X.; Li, T.; Jiang, Z.; Gong, F. Three stages in the variation of the depth of hypoxia in the California current system 2003–2020 by satellite estimation. Sci. Total Environ. 2023, 874, 162398. [Google Scholar] [CrossRef] [PubMed]
- Ryan-Keogh, T.J.; Thomalla, S.J.; Chang, N.; Moalusi, T. A new global oceanic multi-model net primary productivity data product. Earth Syst. Sci. Data 2023, 15, 4829–4848. [Google Scholar] [CrossRef]
- Gómez-Ocampo, E.; Durazo, R.; Gaxiola-Castro, G.; De la Cruz-Orozco, M.; Sosa-Ávalos, R. Effects of the interannual variability of water column stratification on phytoplankton production and biomass in the northern zone off Baja California. Cienc. Mar. 2017, 43, 109–122. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025. [Google Scholar]
- Chou, W.-C.; Gong, G.-C.; Cai, W.-J.; Tseng, C.-M. Seasonality of CO2 in coastal oceans altered by increasing anthropogenic nutrient delivery from large rivers: Evidence from the Changjiang–east China Sea system. Biogeosciences 2013, 10, 3889–3899. [Google Scholar] [CrossRef]
- Liu, J.; Bellerby, R.G.; Zhu, Q.; Ge, J. Estimation of sea surface pCO2 and air–sea CO2 flux in the east China Sea using in-situ and satellite data over the period 2000–2016. Cont. Shelf Res. 2023, 254, 104879. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, J.; Beardsley, R.C.; Franks, P.J. Physical-biological sources for dense algal blooms near the Changjiang River. Geophys. Res. Lett. 2003, 30, 1515. [Google Scholar] [CrossRef]
- Wu, J.; Liu, J.T.; Wang, X. Sediment trapping of turbidity maxima in the Changjiang estuary. Mar. Geol. 2012, 303, 14–25. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, H.; Lin, J.; Zhu, J.; Zhang, W.; Li, C. Phytoplankton blooms off a high turbidity estuary: A case study in the Changjiang River estuary. J. Geophys. Res. Ocean. 2019, 124, 8036–8059. [Google Scholar] [CrossRef]
- Lin, Q.; Feng, Z.; Wang, Y.; Wang, X.; Bian, Z.; Zhang, F.; Cao, F.; Wu, H.; Wang, Y.P. Light attenuation parameterization in a highly turbid mega estuary and its impact on the coastal planktonic ecosystem. Front. Mar. Sci. 2024, 11, 1486261. [Google Scholar] [CrossRef]
- Xiong, T.Q.; Liu, P.F.; Zhai, W.D.; Bai, Y.; Liu, D.; Qi, D.; Zheng, N.; Liu, J.W.; Guo, X.H.; Cheng, T.Y.; et al. Export flux, biogeochemical effects, and the fate of a terrestrial carbonate system: From Changjiang (Yangtze River) estuary to the east China Sea. Earth Space Sci. 2019, 6, 2115–2141. [Google Scholar] [CrossRef]
- Jiang, Z.; Liu, J.; Chen, J.; Chen, Q.; Yan, X.; Xuan, J.; Zeng, J. Responses of summer phytoplankton community to drastic environmental changes in the Changjiang (Yangtze River) estuary during the past 50 years. Water Res. 2014, 54, 1–11. [Google Scholar] [CrossRef]
- Jiang, Z.; Chen, J.; Zhou, F.; Shou, L.; Chen, Q.; Tao, B.; Yan, X.; Wang, K. Controlling factors of summer phytoplankton community in the Changjiang (Yangtze River) estuary and adjacent east China Sea shelf. Cont. Shelf Res. 2015, 101, 71–84. [Google Scholar] [CrossRef]
- Dang, H.; Jiao, N. Perspectives on the microbial carbon pump with special reference to microbial respiration and ecosystem efficiency in large estuarine systems. Biogeosciences 2014, 11, 3887–3898. [Google Scholar] [CrossRef]
- Regnier, P.; Resplandy, L.; Najjar, R.G.; Ciais, P. The land-to-ocean loops of the global carbon cycle. Nature 2022, 603, 401–410. [Google Scholar] [CrossRef]
- Zhai, W.D.; Zhao, H.D.; Su, J.L.; Liu, P.F.; Li, Y.W.; Zheng, N. Emergence of summertime hypoxia and concurrent carbonate mineral suppression in the central Bohai Sea, China. J. Geophys. Res. Biogeosci. 2019, 124, 2768–2785. [Google Scholar] [CrossRef]
- Li, B.-H.; Zhao, H.-L.; Gong, J.-C.; Wu, X.; Liu, C.-Y.; Hu, J.-W.; Yang, G.-P. Emission of CO2 and its related carbonate system dynamics in a hotspot area during winter and summer: The Changjiang River estuary. Mar. Environ. Res. 2024, 198, 106496. [Google Scholar] [CrossRef]
- Ge, J.; Shi, S.; Liu, J.; Xu, Y.; Chen, C.; Bellerby, R.; Ding, P. Interannual variabilities of nutrients and phytoplankton off the Changjiang estuary in response to changing river inputs. J. Geophys. Res. Ocean. 2020, 125, e2019JC015595. [Google Scholar] [CrossRef]
- Li, D.; Ni, X.; Wang, K.; Zeng, D.; Wang, B.; Jin, H.; Li, H.; Zhou, F.; Huang, D.; Chen, J. Biological CO2 uptake and upwelling regulate the air-sea CO2 flux in the Changjiang plume under south winds in summer. Front. Mar. Sci. 2021, 8, 709783. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, D.; Noh, J.H.; Kang, D.-J. Contribution of Changjiang river discharge to CO2 uptake capacity of the northern east China Sea in august 2016. Cont. Shelf Res. 2021, 215, 104336. [Google Scholar] [CrossRef]
- Chen, C.C.; Shiah, F.K.; Chiang, K.P.; Gong, G.C.; Kemp, W.M. Effects of the Changjiang (Yangtze) river discharge on planktonic community respiration in the east China Sea. J. Geophys. Res. Ocean. 2009, 114, C03005. [Google Scholar] [CrossRef]
- Chen, C.-C.; Meng, P.-J.; Hsieh, C.-h.; Jan, S. Plankton community respiration and particulate organic carbon in the kuroshio east of taiwan. Plants 2022, 11, 2909. [Google Scholar] [CrossRef]
- Tsao, S.-E.; Shen, P.-Y.; Tseng, C.-M. Rapid increase of pCO2 and seawater acidification along kuroshio at the east edge of the east China Sea. Mar. Pollut. Bull. 2023, 186, 114471. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.J.; Cai, W.J.; Wang, Y.; Lohrenz, S.E.; Murrell, M.C. The carbon dioxide system on the Mississippi river-dominated continental shelf in the northern Gulf of Mexico: 1. Distribution and air-sea CO2 flux. J. Geophys. Res. Ocean. 2015, 120, 1429–1445. [Google Scholar] [CrossRef]
- Zhang, R.; Cheng, Y.; Wang, X. Classification of marine heatwaves in the south China Sea and their thermodynamic features. Atmos. Ocean. Sci. Lett. 2025, 100662. [Google Scholar] [CrossRef]
- Zhang, R.; Guo, W.; Zhou, F.; Yin, J.; Huang, J.; Wang, X. The chinese air-sea heat flux (casflux) gridded dataset: Description and validation. Big Earth Data 2025, 9, 1191–1209. [Google Scholar] [CrossRef]
- Xuan, J.; Li, H.; Bai, Y.; Meng, Q.; Jin, H.; Pan, Y.; Li, Q.; Zhang, J.; He, Y.; Ma, Y. Trend of air-sea CO2 flux in the frontal zone of the east China Sea investigated by a remote-sensing data assimilation model. J. Geophys. Res. Ocean. 2025, 130, e2025JC022423. [Google Scholar] [CrossRef]
- Ma, W.; Xiu, P.; Yu, Y.; Zheng, Y.; Chai, F. Production of dissolved organic carbon in the south China Sea: A modeling study. Sci. China Earth Sci. 2022, 65, 351–364. [Google Scholar] [CrossRef]
- Meng, Q.; Pan, Y.; Xuan, J.; Zhou, F.; Fan, W.; Di, Y.; Jiang, Z.-P.; Xiao, C.; Zhang, W.; Daewel, U. Leveraging artificial oxygenation efficacy for coastal hypoxia by taking advantage of local hydrodynamics. Environ. Sci. Technol. 2024, 58, 21629–21640. [Google Scholar] [CrossRef] [PubMed]







| Parameter | Rate | Number | Significant Level |
|---|---|---|---|
| Sea surface temperature (SST) | 0.02 | 27 | 0.15 |
| Changjiang River discharge (Discharge) | −0.07 | 27 | 0.48 |
| Net community production (NCP) | −0.04 | 27 | 0.16 |
| pCO2_air | 2.47 | 27 | <0.05 |
| pCO2_sea | 0.18 | 27 | 0.25 |
| Air–sea CO2 flux | −0.24 | 27 | <0.05 |
| Stage | Model Formula | VIF 1 | edf | Adjusted R2 | DE | Significant Level |
|---|---|---|---|---|---|---|
| 1998–2013 (n = 192) | pCO2_sea~s(SST) | 2.270 | 8.647 | 0.319 | 35.00% | <0.001 |
| pCO2_sea~s(NCP) | 1.272 | 6.331 | 0.336 | 35.80% | <0.001 | |
| pCO2_sea~s(discharge) | 2.307 | 1.000 | 0.004 | 0.90% | 0.191 | |
| 2014–2024 (n = 132) | pCO2_sea~s(SST) | 2.254 | 1.685 | 0.080 | 9.21% | 0.004 |
| pCO2_sea~s(NCP) | 1.527 | 7.127 | 0.397 | 43.00% | <0.001 | |
| pCO2_sea~s(discharge) | 1.844 | 2.257 | 0.180 | 19.40% | <0.001 |
| Stage | Adjusted R2 | DE | Model Factors | edf | F 1 | Significant Level |
|---|---|---|---|---|---|---|
| Model Formula: pCO2_sea~s(SST) + s(NCP) + s(discharge) | ||||||
| 1998–2013 (n = 192) | 0.683 | 71.10% | SST | 7.472 | 24.65 | <0.001 |
| NCP | 5.613 | 7.851 | <0.001 | |||
| discharge | 3.486 | 11.689 | <0.001 | |||
| 2014–2024 (n = 132) | 0.707 | 73.60% | SST | 6.132 | 17.929 | <0.001 |
| NCP | 4.561 | 9.379 | <0.001 | |||
| discharge | 2.096 | 17.950 | <0.001 | |||
| Fitting Relationship | Performance (period/n/R2) | Reference |
|---|---|---|
| NpCO2(25 °C) = −2.71 × discharge + 427 | 1998–2011/6/0.93 | [17] |
| NpCO2(25 °C) = −5.20 × discharge + 588 | 1998–2024/324/0.565 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhang, Y.; Bai, Y.; Jiang, Z.; He, X.; Li, T.; Jin, X.; Gong, F.; Zhang, C. Satellite Views of Long-Term Variations in pCO2 on the Changjiang River Estuary and the Adjacent East China Sea (1998–2024). Remote Sens. 2026, 18, 86. https://doi.org/10.3390/rs18010086
Zhang Y, Bai Y, Jiang Z, He X, Li T, Jin X, Gong F, Zhang C. Satellite Views of Long-Term Variations in pCO2 on the Changjiang River Estuary and the Adjacent East China Sea (1998–2024). Remote Sensing. 2026; 18(1):86. https://doi.org/10.3390/rs18010086
Chicago/Turabian StyleZhang, Yifan, Yan Bai, Zhiting Jiang, Xianqiang He, Teng Li, Xuchen Jin, Fang Gong, and Chunfang Zhang. 2026. "Satellite Views of Long-Term Variations in pCO2 on the Changjiang River Estuary and the Adjacent East China Sea (1998–2024)" Remote Sensing 18, no. 1: 86. https://doi.org/10.3390/rs18010086
APA StyleZhang, Y., Bai, Y., Jiang, Z., He, X., Li, T., Jin, X., Gong, F., & Zhang, C. (2026). Satellite Views of Long-Term Variations in pCO2 on the Changjiang River Estuary and the Adjacent East China Sea (1998–2024). Remote Sensing, 18(1), 86. https://doi.org/10.3390/rs18010086

