A New Method for Detecting Automated Mapping Anomalies in Himalayan Glacial Lakes from Satellite Images
Highlights
- The proposed Evolutionary Feature Gaussian Process (EF-GP) can effectively identify anomalous observations arising from deviations in glacial lake boundary recognition caused by the interference of clouds, snow, and terrain shadows in remote sensing imagery, while preserving the genuine evolutionary processes of the glacial lakes.
- The ‘EF-GP’ proposed in this study substantially enhances the quality of automated remote-sensing mapping of glacial lakes, enabling the development of high-quality, long-term glacial-lake datasets and providing reliable support for large-scale monitoring.
Abstract
1. Introduction
2. Study Area and Data
2.1. Case Study Area
2.2. Data
3. Methods
3.1. Automated Mapping of Glacial Lakes Using Remote Sensing
3.2. Gaussian Process Modeling and Confidence Interval Construction
3.2.1. Gaussian Process Modeling
- (1)
- Kernel function:where is the signal variance, and is the length scale.
- (2)
- Covariance matrix structure:where is the noise variance, and represents the identity matrix.
- (3)
- Hyperparameter estimation:
- (4)
- Prediction computation:
3.2.2. Creating Confidence Intervals
3.3. Criteria for Detecting Anomaly Values
- (1)
- Constraint on dramatic fluctuations in glacial lake area during outbursts
- (2)
- Constraint on prolonged glacial lake shrinking after outburst
- (3)
- Constraint on the stability of glacial lakes after outburst
3.4. Parameter Tuning and Performance Assessment
4. Results
4.1. Model Training Accuracy
4.2. Model Validation and Application
4.3. Comparison of Accuracy Among Different Models
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, Q.; Zhang, G.; Yao, T.; Wieland, M.; Liu, L.; Kaushik, S. Automatic extraction of glacial lakes from Landsat imagery using deep learning across the Third Pole region. Remote Sens. Environ. 2024, 315, 114413. [Google Scholar] [CrossRef]
- Mir, R.A.; Jain, S.K.; Lohani, A.K.; Saraf, A.K. Glacier recession and glacial lake outburst flood studies in Zanskar basin, western Himalaya. J. Hydrol. 2018, 564, 376–396. [Google Scholar] [CrossRef]
- Shrestha, F.; Steiner, J.F.; Shrestha, R.; Dhungel, Y.; Joshi, S.P.; Inglis, S.; Ashraf, A.; Wali, S.; Walizada, K.M.; Zhang, T. A comprehensive and version-controlled database of glacial lake outburst floods in High Mountain Asia. Earth Syst. Sci. Data 2023, 15, 3941–3961. [Google Scholar] [CrossRef]
- Nie, Y.; Sheng, Y.; Liu, Q.; Liu, L.; Liu, S.; Zhang, Y.; Song, C. A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015. Remote Sens. Environ. 2017, 189, 1–13. [Google Scholar] [CrossRef]
- Ke, L.; Ding, X.; Ning, Y.; Liao, Y.; Song, C. Annual trajectory of global glacial lake variations and the interactions with glacier mass balance during 2013–2022. Catena 2024, 245, 108280. [Google Scholar] [CrossRef]
- Chen, M.; Chen, Y.; Fang, G.; Zheng, G.; Li, Z.; Li, Y.; Zhu, Z. Risk assessment of glacial lake outburst flood in the Central Asian Tienshan Mountains. npj Clim. Atmos. Sci. 2024, 7, 209. [Google Scholar] [CrossRef]
- Song, C.; Huang, B.; Richards, K.; Ke, L.; Hien Phan, V. Accelerated lake expansion on the Tibetan Plateau in the 2000s: Induced by glacial melting or other processes? Water Resour. Res. 2014, 50, 3170–3186. [Google Scholar] [CrossRef]
- Nie, Y.; Pritchard, H.D.; Liu, Q.; Hennig, T.; Wang, W.; Wang, X.; Liu, S.; Nepal, S.; Samyn, D.; Hewitt, K.; et al. Glacial change and hydrological implications in the Himalaya and Karakoram. Nat. Rev. Earth Environ. 2021, 2, 91–106. [Google Scholar] [CrossRef]
- Liu, W.; Carling, P.A.; Hu, K.; Wang, H.; Zhou, Z.; Zhou, L.; Liu, D.; Lai, Z.; Zhang, X. Outburst floods in China: A review. Earth-Sci. Rev. 2019, 197, 102895. [Google Scholar] [CrossRef]
- Wang, W.; Nie, Y.; Zhang, H.; Wang, J.; Deng, Q.; Liu, L.; Liu, F.; Zhang, S.; Lyu, Q.; Zhang, L. A generic framework for glacial lake outburst flood investigation: A case study of Zalai Tsho, Southeast Tibet. Catena 2024, 234, 107614. [Google Scholar] [CrossRef]
- Yan, W.; Liu, J.; Zhang, M.; Hu, L.; Chen, J. Outburst flood forecasting by monitoring glacier-dammed lake using satellite images of Karakoram Mountains, China. Quat. Int. 2017, 453, 24–36. [Google Scholar] [CrossRef]
- Veh, G.; Korup, O.; von Specht, S.; Roessner, S.; Walz, A. Unchanged frequency of moraine-dammed glacial lake outburst floods in the Himalaya. Nat. Clim. Change 2019, 9, 379–383. [Google Scholar] [CrossRef]
- Prakash, C.; Nagarajan, R. Glacial Lake Inventory and Evolution in Northwestern Indian Himalaya. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2017, 10, 5284–5294. [Google Scholar] [CrossRef]
- Jiang, D.; Li, S.; Hajnsek, I.; Siddique, M.A.; Hong, W.; Wu, Y. Glacial lake mapping using remote sensing Geo-Foundation Model. Int. J. Appl. Earth Obs. Geoinf. 2025, 136, 104371. [Google Scholar] [CrossRef]
- Manu, T.; Yuchang, J.; Emmanuel, B.; Konrad, S. Learning a Joint Embedding of Multiple Satellite Sensors: A Case Study for Lake Ice Monitoring. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4306315. [Google Scholar] [CrossRef]
- Medeu, A.R.; Popov, N.V.; Blagovechshenskiy, V.P.; Askarova, M.A.; Medeu, A.A.; Ranova, S.U.; Kamalbekova, A.; Bolch, T. Moraine-dammed glacial lakes and threat of glacial debris flows in South-East Kazakhstan. Earth-Sci. Rev. 2022, 229, 103999. [Google Scholar] [CrossRef]
- Williamson, A.G.; Banwell, A.F.; Willis, I.C.; Arnold, N.S. Dual-satellite (Sentinel-2 and Landsat 8) remote sensing of supraglacial lakes in Greenland. Cryosphere 2018, 12, 3045–3065. [Google Scholar] [CrossRef]
- Lesi, M.; Nie, Y.; Shugar, D.H.; Wang, J.; Deng, Q.; Chen, H.; Fan, J. Landsat- and Sentinel-derived glacial lake dataset in the China–Pakistan Economic Corridor from 1990 to 2020. Earth Syst. Sci. Data 2022, 14, 5489–5512. [Google Scholar] [CrossRef]
- Wang, J.; Chen, F.; Zhang, M.; Yu, B. ACFNet: A Feature Fusion Network for Glacial Lake Extraction Based on Optical and Synthetic Aperture Radar Images. Remote Sens. 2021, 13, 5091. [Google Scholar] [CrossRef]
- Wu, R.; Liu, G.; Zhang, R.; Wang, X.; Li, Y.; Zhang, B.; Cai, J.; Xiang, W. A Deep Learning Method for Mapping Glacial Lakes from the Combined Use of Synthetic-Aperture Radar and Optical Satellite Images. Remote Sens. 2020, 12, 4020. [Google Scholar] [CrossRef]
- Cheng, X.; Shangguan, D.; Yang, C.; Li, W.; Zhou, Z.; Liu, X.; Li, D.; Zhang, X.; Ding, H.; Liu, Z.; et al. Temporal and spatial changes of glacial lakes in the central Himalayas and their response to climate change based on multi-source remote sensing data. Glob. Planet. Change 2025, 245, 104675. [Google Scholar] [CrossRef]
- Xu, X.; Liu, L.; Huang, L.; Hu, Y. Combined use of multi-source satellite imagery and deep learning for automated mapping of glacial lakes in the Bhutan Himalaya. Sci. Remote Sens. 2024, 10, 100157. [Google Scholar] [CrossRef]
- Allen, S.K.; Rastner, P.; Arora, M.; Huggel, C.; Stoffel, M. Lake outburst and debris flow disaster at Kedarnath, June 2013: Hydrometeorological triggering and topographic predisposition. Landslides 2016, 13, 1479–1491. [Google Scholar] [CrossRef]
- Veh, G.; Korup, O.; Roessner, S.; Walz, A. Detecting Himalayan glacial lake outburst floods from Landsat time series. Remote Sens. Environ. 2018, 207, 84–97. [Google Scholar] [CrossRef]
- Song, C.; Fan, C.; Ma, J.; Zhan, P.; Deng, X. A spatially constrained remote sensing-based inventory of glacial lakes worldwide. Sci. Data 2025, 12, 464. [Google Scholar] [CrossRef]
- Shi, H.; Guo, J.; Deng, Y.; Qin, Z. Machine learning-based anomaly detection of groundwater microdynamics: Case study of Chengdu, China. Sci. Rep. 2023, 13, 14718. [Google Scholar] [CrossRef]
- Goldstein, M.; Uchida, S. A Comparative Evaluation of Unsupervised Anomaly Detection Algorithms for Multivariate Data. PLoS ONE 2016, 11, e152173. [Google Scholar] [CrossRef]
- Filho, J.A.P.; Neves, C.F.; Lopes, W.T.A.; Carvalho, J.C. Anomaly detection in hydrological network time series via multiresolution analysis. J. Hydrol. 2024, 640, 131667. [Google Scholar] [CrossRef]
- Hampel, F.R. The Influence Curve and its Role in Robust Estimation. J. Am. Stat. Assoc. 1974, 69, 383–393. [Google Scholar] [CrossRef]
- Jeong, J.; Park, E.; Han, W.S.; Kim, K.; Choung, S.; Chung, I.M. Identifying outliers of non-Gaussian groundwater state data based on ensemble estimation for long-term trends. J. Hydrol. 2017, 548, 135–144. [Google Scholar] [CrossRef]
- Chang, L.; Cheng, L.; Zhang, L.; Han, D.; Zhang, J.; Liu, P. Remote sensing-based high-resolution reservoir drought index for identifying the occurrence and propagation of hydrological droughts in a large river basin. Remote Sens. Environ. 2025, 328, 114859. [Google Scholar] [CrossRef]
- Dømgaard, M.; Kjeldsen, K.; How, P.; Bjørk, A. Altimetry-based ice-marginal lake water level changes in Greenland. Commun. Earth Environ. 2024, 5, 365. [Google Scholar] [CrossRef]
- Berendrecht, W.; van Vliet, M.; Griffioen, J. Combining statistical methods for detecting potential outliers in groundwater quality time series. Environ. Monit. Assess. 2022, 195, 85. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Tao, T. Unsupervised anomaly detection in hourly water demand data using an asymmetric encoder–decoder model. J. Hydrol. 2022, 613, 128389. [Google Scholar] [CrossRef]
- Mishra, A.; Sriharsha, R.; Zhong, S. OnlineSTL: Scaling time series decomposition by 100x. Proc. VLDB Endow. 2022, 15, 1417–1425. [Google Scholar] [CrossRef]
- Leigh, C.; Alsibai, O.; Hyndman, R.J.; Kandanaarachchi, S.; King, O.C.; McGree, J.M.; Neelamraju, C.; Strauss, J.; Talagala, P.D.; Turner, R.D.R.; et al. A framework for automated anomaly detection in high frequency water-quality data from in situ sensors. Sci. Total Environ. 2019, 664, 885–898. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, Z.; Liu, Q.; Wang, Z. Hydrologic Time Series Anomaly Detection Based on Flink. Math. Probl. Eng. 2020, 2020, 3187697. [Google Scholar] [CrossRef]
- Breunig, M.M.; Kriegel, H.; Ng, R.T.; Sander, J. LOF: Identifying density-based local outliers. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, Dallas, TX, USA, 15–18 May 2000; Association for Computing Machinery: New York, NY, USA, 2000; pp. 93–104. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Mokua, N.; Maina, C.W.; Kiragu, H. Anomaly detection for raw water quality—A comparative analysis of the local outlier factor algorithm and the random forest algorithms. Int. J. Comput. Appl. 2021, 174, 47–54. [Google Scholar] [CrossRef]
- Arathy Nair, G.R.; Adarsh, S. Anomaly Detection of Streamflow Time Series Using LSTM Autoencoder. AIJR Proc. 2023, 112–119. [Google Scholar] [CrossRef]
- Choi, K.; Yi, J.; Park, C.; Yoon, S. Deep Learning for Anomaly Detection in Time-Series Data: Review, Analysis, and Guidelines. IEEE Access 2021, 9, 120043–120065. [Google Scholar] [CrossRef]
- De la Fuente, L.A.; Ehsani, M.R.; Gupta, H.V.; Condon, L.E. Toward interpretable LSTM-based modeling of hydrological systems. Hydrol. Earth Syst. Sci. 2024, 28, 945–971. [Google Scholar] [CrossRef]
- Nie, Y.; Liu, Q.; Wang, J.; Zhang, Y.; Sheng, Y.; Liu, S. An inventory of historical glacial lake outburst floods in the Himalayas based on remote sensing observations and geomorphological analysis. Geomorphology 2018, 308, 91–106. [Google Scholar] [CrossRef]
- Yu, Y.; Li, B.; Li, Y.; Jiang, W. Retrospective Analysis of Glacial Lake Outburst Flood (GLOF) Using AI Earth InSAR and Optical Images: A Case Study of South Lhonak Lake, Sikkim. Remote Sens. 2024, 16, 2307. [Google Scholar] [CrossRef]
- Jiang, D.; Li, X.; Zhang, K.; Marinsek, S.; Hong, W.; Wu, Y. Automatic Supraglacial Lake Extraction in Greenland Using Sentinel-1 SAR Images and Attention-Based U-Net. Remote Sens. 2022, 14, 4998. [Google Scholar] [CrossRef]
- Sharma, A.; Prakash, C.; Thakur, D. Glacier lakes detection utilizing remote sensing integration with satellite imagery and advanced deep learning method. Appl. Geomat. 2024, 16, 829–850. [Google Scholar] [CrossRef]
- Zhang, H.; Nie, Y.; Liu, L.; Han, L.; Lyu, Q.; Wang, W. An advanced deep learning framework for mapping glacial lakes and its application in the Hindu Kush-Karakoram-Himalaya region. J. Hydrol. 2026, 664, 134507. [Google Scholar] [CrossRef]
- Wang, J.; Sheng, Y.; Tong, T.S.D. Monitoring decadal lake dynamics across the Yangtze Basin downstream of Three Gorges Dam. Remote Sens. Environ. 2014, 152, 251–269. [Google Scholar] [CrossRef]
- Rasmussen, C.E. Gaussian processes in machine learning. In Summer School on Machine Learning; Springer: Berlin/Heidelberg, Germany, 2003; pp. 63–71. [Google Scholar]
- Deisenroth, M.P.; Turner, R.D.; Huber, M.F.; Hanebeck, U.D.; Rasmussen, C.E. Robust Filtering and Smoothing with Gaussian Processes. IEEE Trans. Autom. Control. 2012, 57, 1865–1871. [Google Scholar] [CrossRef]
- Oh, G.L.; Austin, P.H. Quantifying the oscillatory evolution of simulated boundary-layer cloud fields using Gaussian process regression. Geosci. Model Dev. 2025, 18, 3921–3940. [Google Scholar] [CrossRef]
- Pascual-Venteo, A.B.; Garcia, J.L.; Berger, K.; Estévez, J.; Vicent, J.; Pérez-Suay, A.; Van Wittenberghe, S.; Verrelst, J. Gaussian Process Regression Hybrid Models for the Top-of-Atmosphere Retrieval of Vegetation Traits Applied to PRISMA and EnMAP Imagery. Remote Sens. 2024, 16, 1211. [Google Scholar] [CrossRef]
- Susiluoto, J.; Spantini, A.; Haario, H.; Härkönen, T.; Marzouk, Y. Efficient multi-scale Gaussian process regression for massive remote sensing data with satGP v0.1.2. Geosci. Model Dev. 2020, 13, 3439–3463. [Google Scholar] [CrossRef]
- Mukangango, J.; Muyskens, A.; Priest, B.W. A robust approach to Gaussian process implementation. Adv. Stat. Clim. Meteorol. Oceanogr. 2024, 10, 143–158. [Google Scholar] [CrossRef]
- Hanshaw, M.N.; Bookhagen, B. Glacial areas, lake areas, and snow lines from 1975 to 2012: Status of the Cordillera Vilcanota, including the Quelccaya Ice Cap, northern central Andes, Peru. Cryosphere 2014, 8, 359–376. [Google Scholar] [CrossRef]
- Pehlivan, H. A novel outlier detection method based on Bayesian change point analysis and Hampel identifier for GNSS coordinate time series. EURASIP J. Adv. Signal Process. 2024, 2024, 44. [Google Scholar] [CrossRef]
- Zhang, G.P. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 2003, 50, 159–175. [Google Scholar] [CrossRef]
- Fox, E.B.; Dunson, D.B. Multiresolution Gaussian processes. In Proceedings of the 26th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; Curran Associates Inc.: Red Hook, NY, USA, 2012; Volume 1, pp. 737–745. [Google Scholar]
- Siabi, N.; Sanaeinejad, S.H.; Ghahraman, B. Effective method for filling gaps in time series of environmental remote sensing data: An example on evapotranspiration and land surface temperature images. Comput. Electron. Agric. 2022, 193, 106619. [Google Scholar] [CrossRef]
- Emmer, A.; Wood, J.L.; Cook, S.J.; Harrison, S.; Wilson, R.; Diaz-Moreno, A.; Reynolds, J.M.; Torres, J.C.; Yarleque, C.; Mergili, M.; et al. 160 glacial lake outburst floods (GLOFs) across the Tropical Andes since the Little Ice Age. Glob. Planet. Change 2022, 208, 103722. [Google Scholar] [CrossRef]
- Viana, C.M.; Girão, I.; Rocha, J. Long-Term Satellite Image Time-Series for Land Use/Land Cover Change Detection Using Refined Open Source Data in a Rural Region. Remote Sens. 2019, 11, 1104. [Google Scholar] [CrossRef]
- Paun, I.; Husmeier, D.; Torney, C.J. Stochastic variational inference for scalable non-stationary Gaussian process regression. Stat. Comput. 2023, 33, 44. [Google Scholar] [CrossRef]
- Zeng-Guang, Z.; Ping, T. Improving time series anomaly detection based on exponentially weighted moving average (EWMA) of season-trend model residuals. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 3414–3417. [Google Scholar]
- Pipia, L.; Muñoz-Marí, J.; Amin, E.; Belda, S.; Camps-Valls, G.; Verrelst, J. Fusing optical and SAR time series for LAI gap filling with multioutput Gaussian processes. Remote Sens. Environ. 2019, 235, 111452. [Google Scholar] [CrossRef] [PubMed]







| Name | Lake Type | Area in 2024 (km2) | Status |
|---|---|---|---|
| Longbasaba Lake | Glacier-contact | 1.75 | Expanding |
| South Lhonak Lake | Glacier-contact | 1.42 | Expanding and outburst |
| Khangchung Tsho | Glacier-contact | 1.91 | Expanding |
| EUG Lake | Glacier-contact | 1.34 | Slightly increase |
| Bangdangcuo | Glacier-contact | 1.03 | Slightly increase |
| Cuolang | Glacier-contact | 0.60 | Stable |
| Gurudongmar Lake | Glacier-non-contact | 1.13 | Stable |
| Tso Lhamo Lake | Glacier-non-contact | 1.07 | Stable |
| Yarecuo | Glacier-non-contact | 0.42 | Stable |
| Mo Gulongcuo | Glacier-non-contact | 0.56 | Stable |
| Name | Number of Valid Samples | Total Observations | Percentage of Valid Observations |
|---|---|---|---|
| Longbasaba Lake | 67 | 89 | 75.28% |
| South Lhonak Lake | 58 | 89 | 65.17% |
| Khangchung Tsho | 66 | 89 | 74.16% |
| EUG Lake | 59 | 89 | 66.29% |
| Bangdangcuo | 72 | 89 | 80.90% |
| Cuolang | 49 | 89 | 55.06% |
| Gurudongmar Lake | 69 | 89 | 77.53% |
| Tso Lhamo Lake | 65 | 89 | 73.03% |
| Yarecuo | 72 | 89 | 80.90% |
| Mo Gulongcuo | 71 | 89 | 79.78% |
| Parameters | Predefined Ranges |
|---|---|
| Threshold for dramatic fluctuations in glacial lake area () | [1, 2, 3, 4, 5] |
| Threshold for prolonged glacial lake shrinkage () | [0.05, 0.1, 0.15, 0.2, 0.25] |
| Threshold for the stability of glacial lakes () | [0.05, 0.1, 0.15, 0.2, 0.25] |
| Parameters | Optimal Threshold |
|---|---|
| Threshold for dramatic fluctuations in glacial lake area () | 3.0 |
| Threshold for prolonged glacial lake shrinkage () | 0.1 |
| Threshold for the stability of glacial lakes () | 0.1 |
| Glacial Lake Name | Precision | Recall | F1-Score |
|---|---|---|---|
| Longbasaba Lake | 0.97 | 0.92 | 0.94 |
| Mo Gulongcuo | 0.98 | 0.93 | 0.95 |
| Yarecuo | 0.98 | 0.95 | 0.96 |
| Tso Lhamo Lake | 1.00 | 0.92 | 0.96 |
| Bangdangcuo | 0.93 | 0.98 | 0.96 |
| Gurudongmar Lake | 0.92 | 1.00 | 0.96 |
| Glacial Lake Name | Model | Precision | Recall | F1-Score | 95% CI (F1-Score) |
|---|---|---|---|---|---|
| Cuolang | EF-GP | 1.00 | 0.92 | 0.95 | (0.9062, 1.0000) |
| Hampel | 0.88 | 1.00 | 0.94 | (0.8767, 0.9880) | |
| ARIMA | 0.86 | 1.00 | 0.93 | (0.7907, 0.9375) | |
| EUG Lake | EF-GP | 0.97 | 0.95 | 0.96 | (0.9231, 1.0000) |
| Hampel | 0.82 | 1.00 | 0.90 | (0.8367, 0.9600) | |
| ARIMA | 0.83 | 0.96 | 0.87 | (0.8172, 0.9505) | |
| Khangchung Tsho | EF-GP | 0.98 | 1.00 | 0.99 | (0.9684, 1.0000) |
| Hampel | 0.98 | 1.00 | 0.99 | (0.9684, 1.0000) | |
| ARIMA | 0.91 | 0.98 | 0.94 | (0.8932, 0.9818) | |
| South Lhonak Lake | EF-GP | 0.92 | 0.94 | 0.93 | (0.8750, 0.9867) |
| Hampel | 0.80 | 1.00 | 0.89 | (0.8089, 0.9474) | |
| ARIMA | 0.79 | 0.97 | 0.87 | (0.7907, 0.9375) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Jiang, X.; Gu, C.; Nie, Y.; Hu, M.; Lyu, Q.; Wang, W. A New Method for Detecting Automated Mapping Anomalies in Himalayan Glacial Lakes from Satellite Images. Remote Sens. 2026, 18, 61. https://doi.org/10.3390/rs18010061
Jiang X, Gu C, Nie Y, Hu M, Lyu Q, Wang W. A New Method for Detecting Automated Mapping Anomalies in Himalayan Glacial Lakes from Satellite Images. Remote Sensing. 2026; 18(1):61. https://doi.org/10.3390/rs18010061
Chicago/Turabian StyleJiang, Xulei, Changjun Gu, Yong Nie, Mingcheng Hu, Qiyuan Lyu, and Wen Wang. 2026. "A New Method for Detecting Automated Mapping Anomalies in Himalayan Glacial Lakes from Satellite Images" Remote Sensing 18, no. 1: 61. https://doi.org/10.3390/rs18010061
APA StyleJiang, X., Gu, C., Nie, Y., Hu, M., Lyu, Q., & Wang, W. (2026). A New Method for Detecting Automated Mapping Anomalies in Himalayan Glacial Lakes from Satellite Images. Remote Sensing, 18(1), 61. https://doi.org/10.3390/rs18010061

