LiDAR-Based Road Cracking Detection: Machine Learning Comparison, Intensity Normalization, and Open-Source WebGIS for Infrastructure Maintenance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition Systems
2.2. Study Areas
2.3. Proposed Methodology
3. Results
3.1. Comparative Analysis of DBSCAN and Random Forest with and Without Intensity Normalization
- -
- Man Made Terrain and Road: Primarily consisting of the road surface itself;
- -
- Natural Terrain and Vegetation: Areas covered by natural elements such as grass, soil, and trees;
- -
- Remaining Hardscape, Scanning Artifacts, and Bridge Components: Additional hard surfaces, including sidewalks, curbs, bridge structures, and scanning-related artifacts;
- -
- Longitudinal Cracking: Cracks running parallel to the road’s direction;
- -
- Transverse Cracking: Cracks oriented perpendicular to the road’s direction.
3.2. Crack Detection Analysis in LiDAR Point Cloud Data
- -
- Minor cracks: 0.5–2 m2 of cracks per 100 m of road;
- -
- Obvious cracks: 2–10 m2 per 100 m;
- -
- Severely damaged roads: More than 10 m2 per 100 m.
4. Discussion
4.1. Open-Source 3D WebGIS for Crack Visualization and Management
- -
- Visualization of georeferenced crack detection results overlaid on road network data;
- -
- Prioritization of maintenance interventions based on severity and spatial distribution of cracks;
- -
- Integration with national and international road maintenance guidelines, such as INDOT (Indiana Department of Transportation), to support data-driven decision-making;
- -
- User-friendly filtering and querying of spatial data, enabling targeted analysis by crack type, location, or risk level;
- -
- Scalability for global applications, such as road pavement monitoring, is a critical issue worldwide.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AG | Above Ground |
BE | Bare Earth |
CC | CloudCompare |
CNN | Convolutional neural network |
CS | Cloth simulation |
CSF | Cloth Simulation Filtering |
DBSCAN | Density-Based Spatial Clustering of Applications with Noise |
DTM | Digital Terrain Model |
FN | False negative |
FP | False positive |
GNSS | Global Navigation Satellite System |
GNN | Graph neural network |
IMU | Inertial Measurement Unit |
IN | Intensity normalization |
INDOT | Indiana Department of Transportation |
INS | Inertial Navigation System |
LiDAR | Light Detection and Ranging |
LUT | Look-up table |
MMS | Mobile Mapping System |
MLS | Mobile Laser Scanning |
NDT | Non-Destructive Testing |
OA | Overall Accuracy |
RF | Random Forest |
ROI | Region of Interest |
TP | True positive |
WebGIS | Web Geographic Information Systems |
References
- Pascucci, N.; Shin, S.-Y.; Hodaei, M.; Dominici, D.; Habib, A. Comparative analysis of morphological (MCSS) and learning-based (SPG) strategies for detecting signage occlusions along transportation corridors. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 48, 1651–1658. [Google Scholar] [CrossRef]
- Alicandro, M.; Dominici, D.; Pascucci, N.; Quaresima, R.; Zollini, S. Enhanced algorithms to extract decay forms of concrete infrastructures from UAV photogrammetric data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 48, 9–15. [Google Scholar] [CrossRef]
- Alsheyab, M.A.; Khasawneh, M.A.; Abualia, A.; Sawalha, A. A critical review of fatigue cracking in asphalt concrete pavement: A challenge to pavement durability. Innov. Infrastruct. Solut. 2024, 9, 386. [Google Scholar] [CrossRef]
- Ministry of Infrastructure and Transport—MIT. Linee Guida per la Classificazione e Gestione del Rischio, la Valutazione Della Sicurezza ed il Monitoraggio dei Ponti Esistenti. 2020. Available online: https://www.mit.gov.it/sites/default/files/media/notizia/2020-05/1_Testo_Linee_Guida_ponti.pdf (accessed on 21 April 2025).
- Cantisani, G.; Borrelli, C.C.; Del Serrone, G.; Peluso, P. Optimizing Road Safety Inspections on Rural Roads. Infrastructures 2023, 8, 30. [Google Scholar] [CrossRef]
- European Commission. EU Road Safety Policy Framework 2021–2030-Next Steps Towards “Vision Zero”. 2019. Available online: https://www.europarl.europa.eu/doceo/document/A-9-2021-0211_EN.html#_section2 (accessed on 28 December 2024).
- Sinha, K.C.; McCullouch, B.G.; Bullock, D.M.; Konduri, S.; Fricker, J.D.; Labi, S. An Evaluation of the Hyperfix Project for the Reconstruction of I-65/I-70 in Downtown Indianapolis; Final Report No. FHWA/IN/JTRP-2004/2; School of Civil Engineering, Purdue University: West Lafayette, IN, USA, 2003. [Google Scholar]
- Luo, S.; Bai, T.; Guo, M.; Wei, Y.; Ma, W. Impact of Freeze–Thaw Cycles on the Long-Term Performance of Concrete Pavement and Related Improvement Measures: A Review. Materials 2022, 15, 4568. [Google Scholar] [CrossRef]
- Leal Filho, W.; Abeldaño Zuñiga, R.A.; Sierra, J.; Dinis, M.A.P.; Corazza, L.; Nagy, G.J.; Aina, Y.A. An assessment of priorities in handling climate change impacts on infrastructures. Sci. Rep. 2024, 14, 14147. [Google Scholar] [CrossRef]
- Javanmardi, M.; Javanmardi, E.; Gu, Y.; Kamijo, S. Towards High-Definition 3D Urban Mapping: Road Feature-Based Registration of Mobile Mapping Systems and Aerial Imagery. Remote Sens. 2017, 9, 975. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Manish, R.; Bullock, D.; Habib, A. Comparative Analysis of Different Mobile LiDAR Mapping Systems for Ditch Line Characterization. Remote Sens. 2021, 13, 2485. [Google Scholar] [CrossRef]
- Ravi, R.; Bullock, D.; Habib, A. Pavement Distress and Debris Detection using a Mobile Mapping System with 2D Profiler LiDAR. Transp. Res. Rec. 2021, 2675, 428–438. [Google Scholar] [CrossRef]
- Wong, K.; Gu, Y.; Kamijo, S. Mapping for autonomous driving: Opportunities and challenges. IEEE Intell. Transp. Syst. Mag. 2021, 13, 91–106. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, X.; Hou, F.; Wu, J. Review of Intelligent Road Defects Detection Technology. Sustainability 2022, 14, 6306. [Google Scholar] [CrossRef]
- Elhashash, M.; Albanwan, H.; Qin, R. A Review of Mobile Mapping Systems: From Sensors to Applications. Sensors 2022, 22, 4262. [Google Scholar] [CrossRef]
- Zhong, M.; Sui, L.; Wang, Z.; Hu, D. Pavement Crack Detection from Mobile Laser Scanning Point Clouds Using a Time Grid. Sensors 2020, 20, 4198. [Google Scholar] [CrossRef]
- Yan, Y.; Mao, Z.; Wu, J.; Padir, T.; Hajjar, J.F. Towards automated detection and quantification of concrete cracks using integrated images and lidar data from unmanned aerial vehicles. Struct. Control Health Monit. 2021, 28, e2757. [Google Scholar] [CrossRef]
- Munawar, H.S.; Hammad, A.W.A.; Haddad, A.; Soares, C.A.P.; Waller, S.T. Image-Based Crack Detection Methods: A Review. Infrastructures 2021, 6, 115. [Google Scholar] [CrossRef]
- Yu, J.; Jiang, J.; Fichera, S.; Paoletti, P.; Layzell, L.; Mehta, D.; Luo, S. Road Surface Defect Detection—From Image-Based to Non-Image-Based: A Survey. IEEE Trans. Intell. Transp. Syst. 2024, 25, 10581–10603. [Google Scholar] [CrossRef]
- Yuan, Q.; Shi, Y.; Li, M. A Review of Computer Vision-Based Crack Detection Methods in Civil Infrastructure: Progress and Challenges. Remote Sens. 2024, 16, 2910. [Google Scholar] [CrossRef]
- Deng, J.; Singh, A.; Zhou, Y.; Lu YLee, V.C.S. Review on computer vision-based crack detection and quantification methodologies for civil structures. Constr. Build. Mater. 2022, 356, 129238. [Google Scholar] [CrossRef]
- Gallwey, J.; Eyre MCoggan, J. A machine learning approach for the detection of supporting rock bolts from laser scan data in an underground mine. Tunn. Undergr. Space Technol. 2021, 107, 103656. [Google Scholar] [CrossRef]
- Xin, H.; Ye, Y.; Na, X.; Hu, H.; Wang, G.; Wu, C.; Hu, S. Sustainable Road Pothole Detection: A Crowdsourcing Based Multi-Sensors Fusion Approach. Sustainability 2023, 15, 6610. [Google Scholar] [CrossRef]
- Singh, N.A.; Kishore, K.; Deo, R.N.; Lu, Y.; Kodikara, J. Automated Segmentation Framework for Asphalt Layer Thickness from GPR Data Using a Cascaded k-Means—DBSCAN Algorithm. J. Environ. Eng. Geophys. 2022, 27, 179–189. [Google Scholar] [CrossRef]
- Wang, H.; Barone, G.; Smith, A. Current and future role of data fusion and machine learning in infrastructure health monitoring. Struct. Infrastruct. Eng. 2023, 20, 1853–1882. [Google Scholar] [CrossRef]
- Sheridan, K.; Puranik, T.G.; Mangortey, E.; Pinon-Fischer, O.J.; Kirby, M.; Mavris, D.N. An application of dbscan clustering for flight anomaly detection during the approach phase. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020; p. 1851. [Google Scholar] [CrossRef]
- Paul, A.; Mukherjee, D.P.; Das, P.; Gangopadhyay, A.; Chintha, A.R.; Kundu, S. Improved Random Forest for Classification. IEEE Trans. Image Process 2018, 27, 4012–4024. [Google Scholar] [CrossRef]
- Genuer, R.; Poggi, J.M. Random Forests. In Random Forests with R. Use R! Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- del Río-Barral, P.; Soilán, M.; González-Collazo, S.M.; Arias, P. Pavement Crack Detection and Clustering via Region-Growing Algorithm from 3D MLS Point Clouds. Remote Sens. 2022, 14, 5866. [Google Scholar] [CrossRef]
- Wang, Q.; Nguyen, T.T.; Huang, J.Z.; Nguyen, T.T. An efficient random forests algorithm for high dimensional data classification. Adv. Data Anal. Classif. 2018, 12, 953–972. [Google Scholar] [CrossRef]
- Belloni, V.; Sjölander, A.; Ravanelli, R.; Crespi, M.; Nascetti, A. Tack project: Tunnel and bridge automatic crack monitoring using deep learning and photogrammetry. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 741–745. [Google Scholar] [CrossRef]
- Pascucci, N.; Alicandro, M.; Zollini, S.; Dominici, D. Improving Infrastructure Monitoring: UAV-Based Photogrammetry for Crack Pattern Inspection. In Proceedings of the Future Technologies Conference (FTC) 2024, Volume 1; FTC 2024. Lecture Notes in Networks and Systems. Arai, K., Ed.; Springer: Cham, Switzerland, 2024; Volume 1154. [Google Scholar] [CrossRef]
- Alicandro, M.; Zollini, S.; Oxoli, D.; Pascucci, N.; Dominici, D.; Brescia, D. Design and implementation of an open-source web-GIS to manage the public works of Abruzzo Region: An example towards the digitalization of the management process of public administrations. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 48, 21–26. [Google Scholar] [CrossRef]
- Riegl, VUX-1HA Datasheet. Available online: http://www.riegl.com/uploads/tx_pxpriegldownloads/DataSheet_VUX-1HA__2015-10-06.pdf (accessed on 14 December 2024).
- Z+F, Profiler 9012. Available online: https://www.zofre.de/en/laser-scanners/2d-laser-scanner/z-fprofilerr-9012 (accessed on 14 December 2024).
- Novatel, IMU-ISA-100C. Available online: https://docs.novatel.com/OEM7/Content/Technical_Specs_IMU/ISA_100C_Performance.htm (accessed on 14 December 2024).
- Ravi, R.; Bullock, D.; Habib, A. Highway and airport runway pavement inspection using mobile LiDAR. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 349–354. [Google Scholar] [CrossRef]
- Previtali, M.; Brumana, R.; Banfi, F. Existing infrastructure cost effective informative modelling with multisource sensed data: TLS, MMS and photogrammetry. Appl. Geomat. 2022, 14 (Suppl. S1), 21–40. [Google Scholar] [CrossRef]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Lin, Y.C.; Habib, A. Quality control and crop characterization framework for multi-temporal UAV LiDAR data over mechanized agricultural fields. Remote Sens. Environ. 2021, 256, 112299. [Google Scholar] [CrossRef]
- Parajuli, A.; Celenk, M.; Riley, H. Robust Lane Detection in Shadows and Low Illumination Conditions using Local Gradient Features. Open J. Appl. Sci. 2013, 3, 68–74. [Google Scholar] [CrossRef]
- Cheng, Y.-T.; Patel, A.; Wen, C.; Bullock, D.; Habib, A. Intensity Thresholding and Deep Learning Based Lane Marking Extraction and Lane Width Estimation from Mobile Light Detection and Ranging (LiDAR) Point Clouds. Remote Sens. 2020, 12, 1379. [Google Scholar] [CrossRef]
- Cheng, Y.-T.; Lin, Y.-C.; Habib, A. Generalized LiDAR Intensity Normalization and Its Positive Impact on Geometric and Learning-Based Lane Marking Detection. Remote Sens. 2022, 14, 4393. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A Densitybased Algorithm for Discovering Clusters in Large Spatial Databases with Noise; KDD: Tokyo, Japan, 1996; Volume 96, pp. 226–231. [Google Scholar]
- Civera, M.; Sibille, L.; Fragonara, L.Z.; Ceravolo, R. A DBSCAN-Based Automated Operational Modal Analysis Algorithm for Bridge Monitoring. Measurement 2023, 208, 112451. [Google Scholar] [CrossRef]
- del Río-Barral, P.; Grandío, J.; Riveiro, B.; Arias, P. Identification of relevant point cloud geometric features for the detection of pavement cracks using MLS data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 48, 107–112. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Ghose, M.K.; Pradhan RGhose, S.S. Decision tree classification of remotely sensed satellite data using spectral separability matrix. Int. J. Adv. Comput. Sci. Appl. 2010, 1. [Google Scholar] [CrossRef]
- Shokirov, S.; Schaefer, M.; Levick, S.R.; Jucker, T.; Borevitz, J.; Abdurahmanov, I.; Youngentob, K. Multi-platform LiDAR approach for detecting coarse woody debris in a landscape with varied ground cover. Int. J. Remote Sens. 2021, 42, 93249350. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Goutte, C.; Gaussier, E. A Probabilistic Interpretation of Precision, Recall and F-Score, with Implication for Evaluation. In Advances in Information Retrieval; ECIR 2005 Lecture Notes in Computer Science; Losada, D.E., Fernández-Luna, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3408. [Google Scholar] [CrossRef]
- Jaccard, P. Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bull. Société Vaudoise Des. Sci. Nat. 1901, 37, 547–579. [Google Scholar]
- Jaccard, P. The Distribution of the Flora of the Alpine Zone. New Phytol. 1912, 11, 37–50. [Google Scholar] [CrossRef]
- Coetzee, S.; Ivánová, I.; Mitasova, H.; Brovelli, M.A. Open Geospatial Software and Data: A Review of the Current State and A Perspective into the Future. ISPRS Int. J. Geo-Inf. 2020, 9, 90. [Google Scholar] [CrossRef]
- Open Geospatial Consortium. Available online: https://www.opengeospatial.org/standards (accessed on 21 February 2025).
- Rosas-Chavoya, M.; Gallardo-Salazar, J.L.; López-Serrano, P.M.; Alcántara-Concepción, P.C.; León-Miranda, A.K. QGIS a constantly growing free and open-source geospatial software contributing to scientific development. Cuad. De Investig. Geográfica 2022, 48, 197–213. Available online: https://publicaciones.unirioja.es/ojs/index.php/cig/article/view/5143 (accessed on 24 February 2025). [CrossRef]
- Fatmawati, T.; Syaifudin, Y.W.; Rahmadani, A.; Rosandy, M.; Kyaw HH, S. Optimizing Irrigation Infrastructure Management with Web-Based Technologies and OpenStreetMap. Integr. J. Front. Technol. Eng. 2024, 3, 54–68. [Google Scholar]
- Piccoli, F.; Locatelli, S.G.; Schettini, R.; Napoletano, P. An Open-Source Platform for GIS Data Management and Analytics. Sensors 2023, 23, 3788. [Google Scholar] [CrossRef]
- Ong, G.; Nantung, T.E.; Sinha, K.C. Indiana Pavement Preservation Program; Publication FHWA/IN/JTRP-2010/14; Joint Transportation Research Program, Indiana Department of Transportation and Purdue University: West Lafayette, IN, USA, 2010. [Google Scholar] [CrossRef]
- Indiana LTAP. Indiana Local Road and Bridge Conditions. Indiana Local Technical Assistance Program (LTAP) Publications. Paper 111; 2016. Available online: https://docs.lib.purdue.edu/inltappubs/111 (accessed on 21 April 2025).
- Eltouny, K.; Gomaa, M.; Liang, X. Unsupervised Learning Methods for Data-Driven Vibration-Based Structural Health Monitoring: A Review. Sensors 2023, 23, 3290. [Google Scholar] [CrossRef]
- Ju, S.; Li, D.; Jia, J. Machine-learning-based methods for crack classification using acoustic emission technique. Mech. Syst. Signal Process. 2022, 178, 109253. [Google Scholar] [CrossRef]
- Yao, Y.; Tung, S.-T.E.; Glisic, B. Crack detection and characterization techniques—An overview. Struct. Control Health Monit. 2014, 21, 1387–1413. [Google Scholar] [CrossRef]
- Khlifati, O.; Baba, K.; Tayeh, B.A. Survey of automated crack detection methods for asphalt and concrete structures. Innov. Infrastruct. Solut. 2024, 9, 438. [Google Scholar] [CrossRef]
TP | FP | FN | Precision | Recall | F1-Score | |
---|---|---|---|---|---|---|
Man made Terrain and Road | 0 | 0 | 2652 | NaN | 0.000 | NaN |
Natural Terrain and Vegetation | 1140 | 899 | 3847 | 0.559 | 0.228 | 0.324 |
Remaining Hardscape and Scanning Artifacts | 58 | 135 | 324 | 0.300 | 0.151 | 0.0201 |
Longitudinal Cracking | 781 | 477 | 550 | 0.620 | 0.586 | 0.603 |
Transversal Cracking | 16 | 4 | 33 | 0.800 | 0.326 | 0.463 |
Overall Accuracy | 68% |
TP | FP | FN | Precision | Recall | F1-Score | |
---|---|---|---|---|---|---|
Man made Terrain and Road | 859 | 2300 | 1796 | 0.271 | 0.323 | 0.295 |
Natural Terrain and Vegetation | 3315 | 3466 | 1635 | 0.488 | 0.669 | 0.565 |
Remaining Hardscape and Scanning Artifacts | 0 | 0 | 398 | NaN | 0.000 | NaN |
Longitudinal Cracking | 0 | 0 | 1332 | NaN | 0.000 | NaN |
Transversal Cracking | 0 | 0 | 49 | NaN | 0.000 | NaN |
Overall Accuracy | 75% |
TP | FP | FN | Precision | Recall | F1-Score | |
---|---|---|---|---|---|---|
Man made Terrain and Road | 1920 | 9 | 1418 | 0.995 | 0.720 | 0.836 |
Natural Terrain and Vegetation | 4590 | 600 | 376 | 0.884 | 0.924 | 0.903 |
Remaining Hardscape and Scanning Artifacts | 352 | 480 | 33 | 0.423 | 0.914 | 0.578 |
Longitudinal Cracking | 1319 | 82 | 5 | 0.941 | 0.996 | 0.968 |
Transversal Cracking | 49 | 6 | 1 | 0.890 | 0.989 | 0.933 |
Overall Accuracy | 94% |
TP | FP | FN | Precision | Recall | F1-Score | |
---|---|---|---|---|---|---|
Man made Terrain and Road | 1866 | 25 | 798 | 0.986 | 0.700 | 0.819 |
Natural Terrain and Vegetation | 4483 | 704 | 483 | 0.864 | 0.902 | 0.883 |
Remaining Hardscape and Scanning Artifacts | 349 | 563 | 36 | 0.382 | 0.906 | 0.538 |
Longitudinal Cracking | 1318 | 92 | 6 | 0.934 | 0.995 | 0.964 |
Transversal Cracking | 49 | 6 | 1 | 0.890 | 0.980 | 0.933 |
Overall Accuracy | 93% |
Type of Cracking | TP | FP | FN | Jaccard Index | |
---|---|---|---|---|---|
DBSCAN No IN | Longitudinal | 781 | 477 | 550 | 43% |
Transversal | 16 | 4 | 33 | 30% | |
DBSCAN IN | Longitudinal | 0 | 0 | 702 | 0% |
Transversal | 0 | 0 | 169 | 0% | |
RF No IN | Longitudinal | 1319 | 82 | 5 | 94% |
Transversal | 49 | 6 | 1 | 88% | |
RF IN | Longitudinal | 1318 | 92 | 6 | 93% |
Transversal | 49 | 6 | 1 | 88% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pascucci, N.; Dominici, D.; Habib, A. LiDAR-Based Road Cracking Detection: Machine Learning Comparison, Intensity Normalization, and Open-Source WebGIS for Infrastructure Maintenance. Remote Sens. 2025, 17, 1543. https://doi.org/10.3390/rs17091543
Pascucci N, Dominici D, Habib A. LiDAR-Based Road Cracking Detection: Machine Learning Comparison, Intensity Normalization, and Open-Source WebGIS for Infrastructure Maintenance. Remote Sensing. 2025; 17(9):1543. https://doi.org/10.3390/rs17091543
Chicago/Turabian StylePascucci, Nicole, Donatella Dominici, and Ayman Habib. 2025. "LiDAR-Based Road Cracking Detection: Machine Learning Comparison, Intensity Normalization, and Open-Source WebGIS for Infrastructure Maintenance" Remote Sensing 17, no. 9: 1543. https://doi.org/10.3390/rs17091543
APA StylePascucci, N., Dominici, D., & Habib, A. (2025). LiDAR-Based Road Cracking Detection: Machine Learning Comparison, Intensity Normalization, and Open-Source WebGIS for Infrastructure Maintenance. Remote Sensing, 17(9), 1543. https://doi.org/10.3390/rs17091543