Skywave Ionosphere Communication Channel Characteristics for Hypersonic Vehicles at a Typical Frequency of 14 MHz
Abstract
:1. Introduction
2. Skywave Ionosphere Channel for Hypersonic Vehicles
3. Results and Discussion
3.1. Simulation Analysis of the Skywave OTH Channel Characteristics at 00:00 AM
3.2. Simulation Analysis of the Skywave OTH Channel Characteristics at 12:00 PM
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, C.Q. Technological innovation and development prospect of aerospace vehicle. J. Astronaut. 2021, 42, 807–819. [Google Scholar]
- Zhang, X.H.; Xie, C.L.; Liu, S.W.; Yan, M.; Xing, S.Y. Development needs and difficulty analysis for smart morphing aircraft. Acta. Aeronaut. Astronaut. Sin. 2023, 44, 529302. [Google Scholar]
- Bao, W.M. A review of reusable launch vehicle technology development. Acta. Aeronaut. Astronaut. Sin. 2023, 44, 629555. [Google Scholar]
- Spearman, M.L. Some NASA wind-tunnel studies related to the aerodynamics of hypersonic vehicles. In Proceedings of the 12th AIAA International Space Planes and Hypersonic Systems & Technologies, Norfolk, Virginia, 15–19 December 2003. [Google Scholar]
- Sidnyaev, N.I. The aerodynamics of hypersonic flight vehicles under a surface mass transfer. Math. Models Comput. Simul. 2008, 20, 23–34. [Google Scholar]
- Chun, H.T.; Xin, L.L. Safety evaluation on materials and technics of aviation engine. Failure Anal. Prevent 2007, 11, 26–34. [Google Scholar]
- Zhang, C.; Wang, K.M.; Zhao, P.R. Signal diagnosis of aircraft engine rotor vibration fault. Appl. Mech. Mater. 2014, 696, 99–104. [Google Scholar] [CrossRef]
- Lehnert, R.; Rosenbaum, B. Plasma Effects on Apollo Re-Entry Communication; NASA Technical Reports Server (NTRS): Cambridge, MA, USA, 1965.
- Anderson, D. Hypersonic and High Temperature Gas Dynamics; McGraw-Hill: New York, NY, USA, 1989. [Google Scholar]
- Ouyang, W.; Ding, C.; Liu, Q.; Lu, Q.; Wu, Z. Influence analysis of uncertainty of chemical reaction rate under different reentry heights on the plasma sheath and terahertz transmission characteristics. Results Phys. 2023, 53, 106983. [Google Scholar] [CrossRef]
- Wang, K.; Li, J. Analyses of Multiphysical Model of Electromagnetic and Fluid in Thermodynamic Equilibrium and Chemical Nonequilibrium State. IEEE Trans. Microw. Theory Tech. 2021, 69, 5228–5240. [Google Scholar] [CrossRef]
- Shi, L.; Liu, Z.Y.; Bao, W.M.; Yao, B.; Wang, Y.F.; Li, X.P.; Liu, Y.M.; Li, F.Y. Nonstationary channel model of reentry plasma sheath for spacecraft: Overview, parameter estimation, and perspective. Chin. J. Aeronaut. 2024, 37, 26–49. [Google Scholar] [CrossRef]
- Cheng, J.; Jin, K.; Zheng, X. An electromagnetic method for removing the communication blackout with a space vehicle upon re-entry into the atmosphere. J. Appl. Phys. 2017, 121, 093301. [Google Scholar] [CrossRef]
- Mehra, N.; Singh, R.K.; Bera, S.C. Mitigation of communication blackout during re-entry using static magnetic field. Prog. Electromag. Res. B 2015, 63, 161–172. [Google Scholar] [CrossRef]
- Nazarenko, S.V.; Newell, A.C.; Zakharov, V.E. Communication through plasma sheaths via Raman (three-wave) scattering process. Phys. Plasmas 1994, 1, 827–834. [Google Scholar] [CrossRef]
- Luo, C.; Zhang, J.; Liu, Y.; Wei, Q.; Liu, X.; Lin, M. Simulation for the Effects of Aerodynamic Actuation on the Reentry Vehicle Plasma Sheath. IEEE Trans. Plasma Sci. 2023, 51, 2969–2982. [Google Scholar] [CrossRef]
- Schroeder, L.C.; Russo, F.P. Flight investigation and analysis of alleviation of communications blackout by water injection during Gemini 3 reentry 1968. Chinsese Sci. 2013, 43, 1242–1249. [Google Scholar]
- Aisenberg, S.; Hu, P.N. The removal of free electrons in a thermal plasma by means of rapidly evaporating liqiud additives. NASA Spec. Publ. 1970, 1, 252. [Google Scholar]
- Sifferman, S.D.; Sallee, B.; Noster, R. Plasma Windowing for Hypersonic Radio Communications. In Proceedings of the 2023 IEEE/MTT-S International Microwave Symposium—IMS 2023, San Diego, CA, USA, 11–16 June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 811–814. [Google Scholar]
- Poniaev, S.A.; Kurakin, Y.A.; Schmidt, A.A.; Bobashev, S.V.; Steffens, L.; Esser, B.; Gulhan, A. Blackout mitigation in a plasma layer near a high-speed body in E×B fields. J. Phys. Conf. Ser. 2013, 572, 012061. [Google Scholar] [CrossRef]
- Han, M.; Li, Z.; Zhou, H.; Li, Z.; Liu, G.; Xu, Z. Research on the Attenuation of Electromagnetic Waves Suppressed by Traveling Magnetic Fields in Plasma. IEEE Trans. Plasma Sci. 2024, 52, 259–268. [Google Scholar] [CrossRef]
- Chen, K.; Xu, D.; Li, J.; Geng, X.; Zhong, K.; Yao, J. Propagation characteristics of terahertz wave in hypersonic plasma sheath considering high temperature air chemical reactions. Optik 2020, 208, 164090. [Google Scholar] [CrossRef]
- Mitran, R.; Stanic, M.; Bechet, P. Evaluation of analytical based HF propagation predictions in mid-latitude areas. In Proceedings of the 2017 International Conference on Military Technologies (ICMT), Brno, Czech Republic, 31 May–2 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 397–401. [Google Scholar]
- Geng, X.; Xu, D.; Li, J.; Chen, K.; Zhong, K.; Yao, J. Terahertz wave propagation characteristics in plasma sheath around a hypersonic blunt cone. Optik 2020, 206, 163633. [Google Scholar] [CrossRef]
- Ouyang, W.; Jin, T.; Wu, Z.; Deng, W. Study of Terahertz Wave Propagation in Realistic Plasma Sheath for the Whole Reentry Process. IEEE Trans. Plasma Sci. 2021, 49, 460–465. [Google Scholar] [CrossRef]
- Ouyang, W.; Liu, Q.; Wu, Z. Difference analysis in terahertz wave propagation in thermochemical nonequilibrium plasma sheath under different hypersonic vehicle shapes. Chin. J. Aeronaut. 2023, 36, 137–151. [Google Scholar] [CrossRef]
- Liu, D.L.; Li, X.P.; Xie, K.; Liu, Z.W. The propagation characteristics of electromagnetic waves through plasma in the near-field region of low-frequency loop antenna. Phys. Plasmas 2015, 22, 102106. [Google Scholar] [CrossRef]
- Liu, D.L.; Li, X.P.; Liu, Y.M.; Xie, K.; Bai, B.W. Attenuation of low-frequency electromagnetic wave in the thin sheath enveloping a high-speed vehicle upon re-entry. J. Appl. Phys. 2017, 121, 074903. [Google Scholar] [CrossRef]
- Uysal, M.; Heidarpour, M.R. Cooperative Communication Techniques for Future-Generation HF Radios. IEEE Commun. Mag. 2012, 50, 56–63. [Google Scholar] [CrossRef]
- Ma, X.; Guo, P.; Yang, D.; Wu, M.J.; Yue, H.Y. Impact of Plasma Bubbles on OTHR Shortwave Propagation in Different Backgrounds. Remote Sens. 2024, 16, 2494. [Google Scholar] [CrossRef]
- Waterston, C.C. Experimental confirmation of an HF channel model. IEEE Trans. Commun. Technol. 1970, 18, 792–803. [Google Scholar] [CrossRef]
- CCIR (International Radio Consultative Committee). Use of high frequency ionospheric channel simulators. In Proceedings of the 25th Plenary Assembly, New York, NY, USA, 21 October 1970; ITU: Dubrovnik, Croatia, 1986; pp. 57–58. [Google Scholar]
- Shaver, H.N.; Tupper, B.C.; Lomax, J.B. Evaluation of a Gaussian HF Channel Model. IEEE Trans. Commun. Technol. 1967, 15, 79–88. [Google Scholar] [CrossRef]
- David, F.; Franco, A.; Sherman, H.; Shucavage, L. Correlation Measurements on an HF Transmission Link. IEEE Trans. Commun. Technol. 1969, 17, 245–256. [Google Scholar] [CrossRef]
- Le Roux, Y.M.; Niberon, M.; Fleury, R.; Menard, J.; Jolivet, J.P. In Proceedings of the HF Channel Modelling and Simulation 1989 Fifth International Conference on Radio Receivers and Associated Systems, Cambridge, UK, 23–27 July 1989; IET: Stevenage, UK, 1990; pp. 72–76.
- Christopher, A.N.; Bello, P.A. Measured channel parameters for the disturbed wide-bandwidth HF channel. Radio Sci. 2003, 38, 1023–1029. [Google Scholar]
- Mastrangelo, J.F.; Lemmon, J.L.; Vogler, L.E.; Hoffmeyer, J.A.; Pratt, L.E.; Behm, C.J. A New Wideband High Frequency Channel Simulation System. IEEE Trans. Commun. 1997, 45, 26–34. [Google Scholar] [CrossRef]
- Wang, H.G.; Zhang, L.J.; Sun, F.; Li, J.R.; Xu, B. Numerical simulation of ionospheric propagation loss at HF based on parabolic equation. Chin. J. Radio Sci. 2019, 34, 545–551. [Google Scholar] [CrossRef]
- Maslin, N.M. HF Communications: A Systems Approach; Taylor & Francis eLibrary: London, UK, 2005. [Google Scholar]
- IT.P.525-3; Calculation of Free-Space Attenuation. National Car Rental: St. Louis, MO, USA, 2016.
- IT.P.533-13; Method for the Prediction of the Performance of HF Circuits. National Car Rental: St. Louis, MO, USA, 2015.
- Wang, S.X.; Chen, X.R.; Xin, Y.X.; Li, F.L.; Wu, Z.K. Study on Multi Hop Propagation Model of Sky Wave. Appl. Math Model. 2018, 7, 49–57. [Google Scholar]
- Heald, M.A.; Wharton, C.B.; Furth, H.P. Plasma diagnostics with microwaves. Phys. Today 1965, 18, 72. [Google Scholar] [CrossRef]
- Ginzburg, V.L. The Propagation of Electromagnetic Waves in Plasmas, International Series of Monographs on Electromagnetic Waves; Pergamon Press: Oxford, UK, 1970; Volume 7. [Google Scholar]
- Jiang, X.; Li, H.; Guo, L. Influence of the Inhomogeneous Ionosphere on the Radio Wave Propagation Path. In Proceedings of the 2021 13th International Symposium on Antennas, Propagation and EM Theory (ISAPE), Zhuhai, China, 1–4 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–3. [Google Scholar] [CrossRef]
- Xue, Y.H.; Chai, Y.; Liu, N.; Guan, J. Sky-wave OTHR ionospheric channel modeling. Chin. J. Radio Sci. 2013, 28, 864–870. [Google Scholar]
- Jiang, X.L.; Li, H.M.; Guo, L.X.; Ye, D.L.; Yang, K.H.; Li, J.W. Research on the Ionospheric Delay of Long-Range Short-Wave Propagation Based on a Regression Analysis. Remote Sens. 2024, 16, 553. [Google Scholar] [CrossRef]
- Nagarajoo, K. Ray tracing in realistic 3D ionospheric model. In Proceedings of the 2015 International Conference on Space Science and Communication (IconSpace), Langkawi, Malaysia, 10–12 August 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 267–272. [Google Scholar] [CrossRef]
- Lv, L.; Ma, G.; Che, H.; Dang, X.; Li, Q. Study on Multi-Mode Propagation Characteristics of High-Power High-Frequency Heating Waves. In Proceedings of the 2024 14th ISAPE, Hefei, China, 23–26 October 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–4. [Google Scholar]
- Olivadese, D.; Berizzi, F.; Cacciamano, A.; Capria, A. A Radar-Oriented Ionospheric Channel Model Based on Ray-Tracing Theory. In Proceedings of the 7th European Radar Conference, Paris, France, 30 September–1 October 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 105–108. [Google Scholar]
- Xue, R.; Wang, Y. An Improved High-Latitude HF Channel Model Based on Ray Tracing. In Proceedings of the IEEE ICCC, Foshan, China, 11–13 August 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 36–40. [Google Scholar]
- Cai, C.; Yang, G.; Liu, T.; Jiang, C. A Frequency Selecting Method for High-Frequency Communication. Remote Sens. 2024, 16, 4095. [Google Scholar] [CrossRef]
- Edwards, D.J.; Cervera, M.A.; MacKinnon, A.D. High-Frequency Land Backscatter Coefficients Over Northern Australia. IEEE Trans. Antennas Propag. 2022, 70, 7. [Google Scholar] [CrossRef]
- Cervera, M.A.; Francis, D.B.; Frazer, G.J. Climatological Model of Over-the-Horizon Radar. Radio Sci. 2018, 53, 988–1001. [Google Scholar] [CrossRef]
- Peter, B. Collision frequencies and energy transfer electrons. Planet. Space Sci. 1966, 14, 1085–1103. [Google Scholar]
- Akey, N.D.; Cross, A.E. Radio Blackout Alleviation and Plasma Diagnostic Results from A 25000 Foot Per Second Blunt Body Reentry 1970; Report No.: TND-5615; NASA: Washington, DC, USA, 1970.
- Grantham, W.L. Flight Results of A 25000-Foot-Per-Second Reentry Experiment Using Microwave Reflectometers to Measure Plasma Electron Density and Standoff Distance 1970; Report No.: TND-6062; NASA: Washington, DC, USA, 1970.
- Jones; Cross, A.E. Electrostatic-Probe Measurements of Plasma Parameters for Two Reentry Flight Experiments at 25000 Feet Per Second 1972; Report No.: TND-6617; NASA: Washington, DC, USA, 1972.
- Weaver, W.L.; Bowen, J.T. Entry Trajectory, Entry Environment, and Analysis of Spacecraft Motion for the RAM C-3 Flight Experiment 1972; Report No.: TMX-2562; NASA: Washington, DC, USA, 1972.
- NASA. The Entry Plasma Sheath and Its Effects on Space Vehicle Electromagnetic Systems; NASA: Washington, DC, USA, 1995; Volume 1.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Shi, L.; Yao, B.; Teng, Z.; Wang, Y.; Li, F.; Chen, Z. Skywave Ionosphere Communication Channel Characteristics for Hypersonic Vehicles at a Typical Frequency of 14 MHz. Remote Sens. 2025, 17, 909. https://doi.org/10.3390/rs17050909
Liu Z, Shi L, Yao B, Teng Z, Wang Y, Li F, Chen Z. Skywave Ionosphere Communication Channel Characteristics for Hypersonic Vehicles at a Typical Frequency of 14 MHz. Remote Sensing. 2025; 17(5):909. https://doi.org/10.3390/rs17050909
Chicago/Turabian StyleLiu, Zongyuan, Lei Shi, Bo Yao, Zijian Teng, Yifan Wang, Fangyan Li, and Zhiyi Chen. 2025. "Skywave Ionosphere Communication Channel Characteristics for Hypersonic Vehicles at a Typical Frequency of 14 MHz" Remote Sensing 17, no. 5: 909. https://doi.org/10.3390/rs17050909
APA StyleLiu, Z., Shi, L., Yao, B., Teng, Z., Wang, Y., Li, F., & Chen, Z. (2025). Skywave Ionosphere Communication Channel Characteristics for Hypersonic Vehicles at a Typical Frequency of 14 MHz. Remote Sensing, 17(5), 909. https://doi.org/10.3390/rs17050909