PICT-Net: A Transformer-Based Network with Prior Information Correction for Hyperspectral Image Unmixing
Abstract
:1. Introduction
- A dual-branch network incorporating a Transformer with prior information correction is proposed. It improves the accuracy of the network in a more reliable and generalizable way.
- A hyperspectral feature extraction module that combines CNN and pooling operations to avoid losing important features and details during the dimensionality reduction process is designed.
- A weight-sharing strategy based on Transformer was designed. The query vector () was selected for sharing to ensure the reasonableness of the strategy.
2. Materials and Methods
2.1. Upper Branch Network Structure
2.1.1. Extraction of Pseudo-Pure Pixel Blocks
2.1.2. Hyperspectral Feature Extraction with Pooling
2.1.3. Transformer Encoder
2.2. Weight Sharing Strategy
2.3. Lower-End Flow Network Structure
2.3.1. Transformer Encoder
2.3.2. Decoder
2.3.3. Loss and Optimization Functions
3. Experiments
3.1. Description of Datasets
3.1.1. Samson Dataset
3.1.2. Apex Dataset
3.1.3. Houston Dataset
3.1.4. Muffle Dataset
3.2. Hyperparameter Setting
3.2.1. Samson Hyperspectral Dataset
3.2.2. Apex Hyperspectral Dataset
3.2.3. Houston Hyperspectral Dataset
3.2.4. Muffle Hyperspectral Dataset
3.3. Evaluation Metrics
3.4. Results
3.5. Ablation Study
3.5.1. Transformer Structure
3.5.2. Hyperspectral Feature Extraction Block
3.5.3. Prior Knowledge
- 1.
- Remove prior knowledge
- 2.
- Modifying the quality of prior knowledge
4. Conclusions
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, J.; Lan, J.; Zeng, Y. GL-Pooling: Global–Local Pooling for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2023, 20, 5509305. [Google Scholar] [CrossRef]
- Hong, D.; Gao, L.; Yao, J.; Yokoya, N.; Chanussot, J.; Heiden, U.; Zhang, B. Endmember-Guided Unmixing Network (EGU-Net): A General Deep Learning Framework for Self-Supervised Hyperspectral Unmixing. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 6518–6531. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Li, J.; Plaza, A.; Marinoni, A.; Gamba, P.; Chakravortty, S. DAEN: Deep Autoencoder Networks for Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4309–4321. [Google Scholar] [CrossRef]
- Ozkan, S.; Kaya, B.; Akar, G.B. EndNet: Sparse AutoEncoder Network for Endmember Extraction and Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2019, 57, 482–496. [Google Scholar] [CrossRef]
- Palsson, B.; Ulfarsson, M.O.; Sveinsson, J.R. Convolutional Autoencoder for Spectral–Spatial Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2021, 59, 535–549. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, M.; Chen, J.; Rahardja, S. Nonlinear Unmixing of Hyperspectral Data via Deep Autoencoder Networks. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1467–1471. [Google Scholar] [CrossRef]
- Gao, L.; Han, Z.; Hong, D.; Zhang, B.; Chanussot, J. CyCU-Net: Cycle-Consistency Unmixing Network by Learning Cascaded Autoencoders. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5503914. [Google Scholar] [CrossRef]
- Deshpande, V.S.; Bhatt, J.S. A Practical Approach for Hyperspectral Unmixing Using Deep Learning. IEEE Geosci. Remote Sens. Lett. 2022, 19, 5511505. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. arXiv 2017. [Google Scholar] [CrossRef]
- Ghosh, P.; Roy, S.K.; Koirala, B.; Rasti, B.; Scheunders, P. Hyperspectral Unmixing Using Transformer Network. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5535116. [Google Scholar] [CrossRef]
- Duan, S.; Li, J.; Song, R.; Li, Y.; Du, Q. Unmixing-Guided Convolutional Transformer for Spectral Reconstruction. Remote Sens. 2023, 15, 2619. [Google Scholar] [CrossRef]
- Kong, F.; Zheng, Y.; Li, D.; Li, Y.; Chen, M. Window Transformer Convolutional Autoencoder for Hyperspectral Sparse Unmixing. IEEE Geosci. Remote Sens. Lett. 2023, 20, 5508305. [Google Scholar] [CrossRef]
- Duan, Y.; Xu, X.; Li, T.; Pan, B.; Shi, Z. UnDAT: Double-Aware Transformer for Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5522012. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, M.; Liu, S.; Sheng, H.; Wan, J. UST-Net: A U-Shaped Transformer Network Using Shifted Windows for Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5528815. [Google Scholar] [CrossRef]
- Hadi, F.; Yang, J.; Farooque, G.; Xiao, L. Deep convolutional Transformer network for hyperspectral unmixing. Eur. J. Remote Sens. 2023, 56, 2268820. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, S.; Chen, J. Efficient Blind Hyperspectral Unmixing with Non-Local Spatial Information Based on Swin Transformer. In Proceedings of the IGARSS 2023—2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 5898–5901. [Google Scholar]
- Wang, L.; Zhang, X.; Zhang, J.; Dong, H.; Meng, H.; Jiao, L. Pixel-to-Abundance Translation: Conditional Generative Adversarial Networks Based on Patch Transformer for Hyperspectral Unmixing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 5734–5749. [Google Scholar] [CrossRef]
- Bhakthan, S.M.; Loganathan, A. A hyperspectral unmixing model using convolutional vision transformer. Earth Sci. Inf. 2024, 17, 2255–2273. [Google Scholar] [CrossRef]
- Chen, J.; Yang, C.; Zhang, L.; Yang, L.; Bian, L.; Luo, Z.; Wang, J. TCCU-Net: Transformer and CNN Collaborative Unmixing Network for Hyperspectral Image. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 8073–8089. [Google Scholar] [CrossRef]
- Xu, C.; Ye, F.; Kong, F.; Li, Y.; Lv, Z. MSCC-ViT: A Multiscale Visual-Transformer Network Using Convolution Crossing Attention for Hyperspectral Unmixing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 18070–18082. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Y.; Liu, T. CDCTA: Cascaded dual-constrained transformer autoencoder for hyperspectral unmixing with endmember variability and spectral geometry. J. Appl. Remote Sens. 2024, 18, 026502. [Google Scholar] [CrossRef]
- Ge, Y.; Han, L.; Paoletti, M.E.; Haut, J.M.; Qu, G. Transformer-Enhanced CNN Based on Intensive Feature for Hyperspectral Unmixing. IEEE Geosci. Remote Sens. Lett. 2024, 21, 5510605. [Google Scholar] [CrossRef]
- Wang, P.; Liu, R.; Zhang, L. MAT-Net: Multiscale Aggregation Transformer Network for Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5538115. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, B.; Li, X.; Tian, J.; Song, X. Unsupervised hyperspectral unmixing based on robust nonnegative dictionary learning. J. Syst. Eng. Electron. 2022, 33, 294–304. [Google Scholar] [CrossRef]
- Meng, F.; Sun, H.; Li, J.; Xu, T. CTNet: An efficient coupled transformer network for robust hyperspectral unmixing. Int. J. Remote Sens. 2024, 45, 5679–5712. [Google Scholar] [CrossRef]
- Wang, W.; Qian, Y.; Liu, H. Multiple Clustering Guided Nonnegative Matrix Factorization for Hyperspectral Unmixing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5162–5179. [Google Scholar] [CrossRef]
- Li, E.; Zhu, S.; Zhou, X.; Yu, W. The development and comparison of endmember extraction algorithms using hyperspectral imagery. J. Remote Sens. 2011, 15, 659–679. [Google Scholar] [CrossRef]
- Rasti, B.; Hong, D.; Hang, R.; Ghamisi, P.; Kang, X.; Chanussot, J.; Benediktsson, J.A. Feature Extraction for Hyperspectral Imagery: The Evolution From Shallow to Deep: Overview and Toolbox. IEEE Geosci. Remote Sens. Mag. 2020, 8, 60–88. [Google Scholar] [CrossRef]
Dataset | Pixels | Bands | M | C | Patch Size | ||
---|---|---|---|---|---|---|---|
Samson | 95 × 95 | 156 | 3 | 24 | () | 6.5 × 104 | 9 × 10−3 |
Apex | 110 × 110 | 285 | 4 | 32 | () | 5 × 103 | 4 × 10−2 |
Houston | 170 × 170 | 144 | 4 | 8 | () | 7 × 103 | 7 × 10−2 |
muffle | 90 × 90 | 64 | 5 | 40 | () | 7.5 × 103 | 6 × 10−2 |
Dataset | CyCU-Net | EGU | DeepTrans | Swin-HU | Proposed |
---|---|---|---|---|---|
Samson | 0.2222 | 0.2010 | 0.0716 | 0.0812 | 0.0531 |
Apex | 0.2046 | 0.2132 | 0.1264 | 0.1204 | 0.1136 |
Houston | 0.3862 | 0.3882 | 0.3427 | 0.2977 | 0.1500 |
muffle | 0.2852 | 0.3024 | 0.2524 | 0.2601 | 0.2457 |
Dataset | CyCU-Net | EGU | DeepTrans | Swin-HU | Proposed |
---|---|---|---|---|---|
Samson | 0.1581 | 0.2357 | 0.0545 | 0.0998 | 0.0371 |
Apex | 0.3228 | 0.4058 | 0.0867 | 0.2217 | 0.0836 |
Houston | 0.2574 | 0.3011 | 0.1969 | 0.2212 | 0.1203 |
muffle | 0.1100 | 0.1523 | 0.0622 | 0.0849 | 0.0613 |
Dataset | Architecture | RMSE | aSAD |
---|---|---|---|
Samson | encoder-decoder | 0.1908 | 0.2266 |
The proposed | 0.0531 | 0.0371 | |
Apex | encoder-decoder | 0.2035 | 0.4012 |
The proposed | 0.1136 | 0.0836 | |
Houston | encoder-decoder | 0.3776 | 0.3021 |
The proposed | 0.1500 | 0.1203 | |
muffle | encoder-decoder | 0.3021 | 0.3513 |
The proposed | 0.2457 | 0.2600 |
Dataset | Method | RMSE | aSAD |
---|---|---|---|
Samson | Three-layer convolution | 0.0686 | 0.0596 |
The proposed model | 0.0531 | 0.0371 | |
Apex | Three-layer convolution | 0.1305 | 0.0911 |
The proposed model | 0.1136 | 0.0836 | |
Houston | Three-layer convolution | 0.3410 | 0.1996 |
The proposed | 0.1500 | 0.1203 | |
muffle | Three-layer convolution | 0.2913 | 0.2758 |
The proposed model | 0.2457 | 0.2600 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Y.; Meng, N.; Zou, J.; Liu, W. PICT-Net: A Transformer-Based Network with Prior Information Correction for Hyperspectral Image Unmixing. Remote Sens. 2025, 17, 869. https://doi.org/10.3390/rs17050869
Zeng Y, Meng N, Zou J, Liu W. PICT-Net: A Transformer-Based Network with Prior Information Correction for Hyperspectral Image Unmixing. Remote Sensing. 2025; 17(5):869. https://doi.org/10.3390/rs17050869
Chicago/Turabian StyleZeng, Yiliang, Na Meng, Jinlin Zou, and Wenbin Liu. 2025. "PICT-Net: A Transformer-Based Network with Prior Information Correction for Hyperspectral Image Unmixing" Remote Sensing 17, no. 5: 869. https://doi.org/10.3390/rs17050869
APA StyleZeng, Y., Meng, N., Zou, J., & Liu, W. (2025). PICT-Net: A Transformer-Based Network with Prior Information Correction for Hyperspectral Image Unmixing. Remote Sensing, 17(5), 869. https://doi.org/10.3390/rs17050869