Spectral Analysis of Snow in Bansko, Pirin Mountain, in Different Ranges of the Electromagnetic Spectrum
Abstract
Highlights
- Satellite data (optical and radar) allowed demonstrating the effectiveness of optical data for monitoring hard-packed and powder snow and of radar data for wet snow.
- The use of different spectral indices (such as Tasseled Cap Transformation with wetness component (TCW) and land surface temperature) and the application of Regression analysis proved specific characteristics for each snow type and structure.
- The applied integrated methodology can support better-informed decisions in management, disaster preparedness (e.g., avalanches), and climate change adaptation efforts in these critical ecosystems in Bansko.
- The results of the analysis proved that combining satellite and field data provides a reliable and comprehensive picture of snow conditions in high mountain regions for powder, hard-packed and wet snow.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Data Processing
2.2.1. SAR Data
2.2.2. Data from Sentinel 2 MSI
2.2.3. Data from Sentinel-3 SLSTR
2.2.4. High-Resolution Data from PlanetScope
2.2.5. Field Data
2.2.6. Open Data
2.3. Methods
Verification of Snow Conditions Through In Situ Data
3. Results
3.1. Snow Validation Using SAR Data
3.2. Snow Validation Using Optical Indices
3.3. Snow Validation Using NDVI by Different Satellites
3.4. Verification of In Situ Data by Mobile Thermal Camera and Sentinel-3 (Sea and Land Surface Temperature Radiometer) SLSTR Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Band | Name | Central Wavelength [nm] | Spatial Resolution [m] |
---|---|---|---|
1 | Coastal aerosol | 443 | 60 |
2 | Blue | 490 | 10 |
3 | Green | 560 | 10 |
4 | Red | 665 | 10 |
5 | Vegetation Red Edge | 705 | 20 |
6 | Vegetation Red Edge | 740 | 20 |
7 | Vegetation Red Edge | 783 | 20 |
8 | NIR | 842 | 10 |
8a | Vegetation Red Edge | 865 | 20 |
9 | Water Vapor | 945 | 60 |
10 | SWIR Cirrus | 1375 | 60 |
11 | SWIR | 1610 | 20 |
12 | SWIR | 2190 | 20 |
Point | Type Snow | Altitude | asc_VVdb 30 December 2024 | asc_VHdb 30 December 2024 | desc_VVdb 5 January 2025 | desc_VHdb 5 January 2025 |
---|---|---|---|---|---|---|
1 | powder snow | 2405.6 | −8.97 | −14.57 | −11.27 | −17.79 |
2 | powder snow | 1638.1 | −7.37 | −15.24 | −14.1 | −34.04 |
3 | powder snow | 1849.4 | −9.73 | −17.14 | −7.73 | −18.38 |
4 | powder snow | 1532.9 | −11.84 | −20.15 | −10.52 | −15.08 |
5 | powder snow | 1542.1 | −11.84 | −20.15 | −10.52 | −15.08 |
6 | powder snow | 1545 | −7.9 | −16.22 | −14.02 | −20.94 |
7 | powder snow | 1575.3 | −12.71 | −19.43 | −7.76 | −16.11 |
8 | wet snow | 1581 | −11.04 | −18.22 | −10.82 | −20.5 |
9 | wet snow | 1581 | −11.04 | −18.22 | −10.82 | −20.5 |
10 | powder snow | 1839.7 | −7.1 | −16.43 | −13.35 | −18.2 |
11 | powder snow | 1829.3 | −9.02 | −16.6 | −13.1 | −20.48 |
12 | powder snow | 2406 | −10.8 | −15.5 | −11.05 | −15.62 |
13 | powder snow | 2403.8 | −10.8 | −15.5 | −11.05 | −16.22 |
14 | hard-packed snow | 2403 | −8.88 | −13.45 | −9.7 | −15.11 |
15 | hard-packed snow | 2088 | −8.88 | −13.45 | −9.7 | −15.11 |
16 | powder snow | 2088.8 | −8.43 | −12.84 | −10.78 | −15.79 |
17 | powder snow | 2077.5 | −9.01 | −13.57 | −7.2 | −14.25 |
18 | powder snow | 2031.1 | −9.86 | −14.75 | −12.53 | −15.76 |
19 | powder snow | 1996.2 | −8.91 | −14.64 | −9.15 | −13.95 |
20 | powder snow | 1957.1 | −8.24 | −13.59 | −10.51 | −16.83 |
21 | powder snow | 1906.2 | −11.85 | −14.52 | −10.61 | −17.58 |
22 | powder snow | 1887.1 | −10.99 | −18.35 | −8.08 | −15.64 |
23 | powder snow | 1848.4 | −10.18 | −15.74 | −11.91 | −17.49 |
24 | hard-packed snow | 1910 | −5.42 | −12.01 | −12.42 | −19.85 |
25 | hard-packed snow | 2471.4 | −12.16 | −19.24 | −9.34 | −16.68 |
26 | hard-packed snow | 2420.5 | −10.56 | −22.51 | −9.2 | −19.17 |
27 | hard-packed snow | 2364.2 | −10.03 | −19.61 | −7.6 | −18.09 |
28 | hard-packed snow | 2338.1 | −11.28 | −19.44 | −8.35 | −19.96 |
29 | hard-packed snow | 2287.6 | −12.75 | −16.13 | −10.64 | −19 |
30 | hard-packed snow | 2270.5 | −12.6 | −19.67 | −9.47 | −15.82 |
31 | hard-packed snow | 2238.6 | −9.76 | −19.25 | −13.53 | −17.39 |
32 | hard-packed snow | 2224.6 | −8.46 | −19.36 | −9.43 | −17.4 |
33 | hard-packed snow | 2204 | −15.39 | −17.03 | −12.2 | −17.99 |
34 | hard-packed snow | 2109.8 | −8.6 | −15.49 | −6.61 | −16.45 |
35 | hard-packed snow | 2100 | −8.6 | −15.49 | −6.61 | −16.45 |
36 | hard-packed snow | 1591.9 | −8.6 | −15.49 | −6.61 | −16.45 |
37 | hard-packed snow | 2165 | −10.55 | −16.44 | −9.29 | −18.15 |
38 | hard-packed snow | 2167.7 | −12 | −17.71 | −9.29 | −18.15 |
39 | hard-packed snow | 2167 | −2.91 | −13 | −6.91 | −12.88 |
40 | wet snow | 2194.5 | −2.91 | −13 | −6.91 | −12.88 |
41 | wet snow | 2195 | −2.91 | −13 | −5.78 | −11.58 |
42 | wet snow | 2203.3 | −11.69 | −19.81 | −9.51 | −14.82 |
43 | powder snow | 2468 | −13.83 | −20.64 | −9.3 | −17.83 |
44 | hard-packed snow | 2468 | −13.83 | −20.64 | −9.3 | −17.83 |
45 | hard-packed snow | 2509 | −11.09 | −16.57 | −7.48 | −13.95 |
46 | hard-packed snow | 2510.9 | −11.09 | −16.57 | −7.48 | −13.95 |
STDEV.S | 2.67 | 2.61 | 2.16 | 3.35 |
Type Snow | asc_VVdb 30 December 2024 | asc_VHdb 30 December 2024 | desc_VVdb 5 January 2025 | desc_VHdb 5 January 2025 |
---|---|---|---|---|
powder snow | ||||
max | −7.10 | −12.84 | −7.20 | −13.95 |
min | −13.83 | −20.64 | −14.10 | −34.04 |
mean | −9.97 | −16.28 | −10.73 | −17.65 |
hard-packed snow | ||||
max | −2.91 | −12.01 | −6.61 | −12.88 |
min | −15.39 | −22.51 | −13.53 | −19.96 |
mean | −10.16 | −17.07 | −9.10 | −16.94 |
wet snow | ||||
max | −2.91 | −13 | −5.78 | −11.58 |
min | −11.69 | −19.81 | −10.82 | −20.50 |
mean | −7.92 | −16.45 | −8.77 | −16.06 |
Type of Snow | NDSI (Sentinel 2) 2 January 2025 | NDFSI (Sentinel 2) 2 January 2025 | NDVI (Sentinel 2) 2 January 2025 | TCW (Sentinel 2) 2 January 2025 | NDSII (PlanetScope) 30 December 2024 | NDVI (PlanetScope) 30 December 2024 |
---|---|---|---|---|---|---|
powder snow | ||||||
max | 0.680 | 0.700 | 0.340 | 41.28 | 0.210 | 0.580 |
min | 0.190 | 0.140 | −0.080 | 3.620 | −0.400 | −0.080 |
mean | 0.400 | 0.392 | 0.043 | 11.906 | −0.085 | 0.181 |
hard-packed snow | ||||||
max | 0.680 | 0.700 | 0.230 | 41.28 | 0.030 | 0.510 |
min | 0.140 | 0.190 | −0.200 | 3.450 | −0.520 | −0.030 |
mean | 0.566 | 0.582 | 0.010 | 26.61 | −0.035 | 0.047 |
wet snow | ||||||
max | 0.620 | 0.650 | 0.500 | 29.56 | 0.040 | 0.01 |
min | 0.550 | 0.580 | 0.000 | 21.57 | −0.080 | −0.040 |
mean | 0.596 | 0.632 | 0.012 | 24.58 | −0.004 | −0.026 |
References
- Ralph, K. Analysis of Snow Bidirectional Reflectance from ARCTAS Spring-2008 Campaign. Atmos. Chem. Phys. 2010, 10, 4359–4375. [Google Scholar]
- Available online: https://www.esa.int/Applications/Observing_the_Earth/Reflecting_on_Earth_s_albedo (accessed on 24 September 2025).
- Available online: https://dendrochronologybg.net/forests-and-avalanches-in-pirin-bulgaria (accessed on 11 June 2023).
- Niittynen, P.; Heikkinen, R.K.; Luoto, M. Snow cover is a neglected driver of Arctic biodiversity loss. Nat. Clim. Change 2018, 8, 997–1001. [Google Scholar] [CrossRef]
- Siljamo, N. Empirical Approach to Satellite Snow Detection; Finnish Meteorological Institute Helsinki: Helsinki, Finland, 2020. [Google Scholar] [CrossRef]
- Warren, S.G. Optical properties of snow. Rev. Geophy. Space Phys. 1982, 20, 67–89. [Google Scholar] [CrossRef]
- Dozier, J.; Warren, S. Effect of viewing angle on the infrared brightness temperature of snow. Water Resour. Res. 1982, 18, 1424–1434. [Google Scholar] [CrossRef]
- Key, J.R.; Collins, J.B.; Fowler, C.; Stone, R.S. High-latitude surface temperature estimates from thermal satellite data. Remote Sens. Environ. 1997, 61, 302–309. [Google Scholar] [CrossRef]
- Dozier, J.; Painter, T.H. Multispectral and hyperspectral remote sensing of alpine snow properties. Annu. Rev. Earth Planet. Sci. 2004, 32, 465–494. [Google Scholar] [CrossRef]
- Hori, M.; Aoki, T.; Tanikawa, T.; Kuchiki, K.; Niwano, M.; Yamaguchi, S.; Matoba, S. Dependence of thermal infrared emissive behaviors of snow cover on the surface snow type. Bull. Glaciol. Res. 2014, 32, 33–45. [Google Scholar] [CrossRef]
- Meier, M.F. Remote sensing of snow and ice/La télédétection de neige et de glace. Hydrol. Sci. Bull. 1980, 25, 307–330. [Google Scholar] [CrossRef]
- Dozier, J. Remote sensing of snow characteristics in the southern Sierra Nevada. In Large Scale Effects of Seasonal Snow Cover, Proceedings of the Vancouver SyrnPosium, Vancouver, Canada, 9–22 August 1987; International Association of Hydrological Sciences: Roorkee, India, 1987; pp. 305–314. Available online: https://www.academia.edu/27605022/Large_Scale_Effects_of_Seasonal_Snow_Cover (accessed on 24 September 2025).
- Dozier, J. Spectral Signature of Alpine Snow Cover from the Landsat Thematic Mapper. Remote Sens. Environ. 1989, 28, 9–22. [Google Scholar] [CrossRef]
- Nolin, A.W. Recent Advances in Remote Sensing of Seasonal Snow. J. Glaciol. 2010, 56, 1141–1150. [Google Scholar] [CrossRef]
- Hiltbrunner, D.; Strozzi, T.; Standley, A. Identification of Electromagnetic Signatures and Data Gaps of Snow Related to Microwave and Optical Measurements. 29 January 1997. pp. 1–53. Available online: https://www.researchgate.net/publication/228386437_Identification_of_electromagnetic_signatures_and_data_gaps_of_snow_related_to_microwave_and_optical_measurements#fullTextFileContent (accessed on 24 September 2025).
- Valovcin, F.R. Snow/Cloud Discrimination; AFGL-TR-76-0174, ADA 032385; Air Force Geophysics Laboratory: Hanscom Air Force Base, MA, USA, 1976. [Google Scholar]
- Spasova, T.; Avetisyan, D.; Stoyanov, A. Snow Cover Mapping Based on a Multi-Index Technique in Vitosha, Pirin and Rila mountains. In Proceedings of the SPIE 13197, Earth Resources and Environmental Remote Sensing/GIS Applications XV, 131971B, Edinburgh, UK, 16–20 September 2024. [Google Scholar] [CrossRef]
- Wang, Y.; Hess, L.L.; Filoso, S.; Melack, J.M. Understanding the radar backscattering from flooded and nonflooded Amazonian forests: Results from canopy backscatter modeling. Remote Sens. Environ. 1995, 54, 324–332. [Google Scholar] [CrossRef]
- Wang, X.Y.; Wang, J.; Jiang, Z.Y.; Li, H.; Hao, X.H. An effective method for snow-cover mapping of dense coniferous forests in the upper Heihe river basin using landsat operational land imager data. Remote Sens. 2015, 7, 17246–17257. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Che, T.; Huang, X.; Hao, X.; Li, H. Snow Cover Mapping for Complex Mountainous Forested Environments Based on a Multi-Index Technique. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1433–1441. [Google Scholar] [CrossRef]
- Avetisyan, D.; Spasova, T. Copernicus data utilization for polar research and monitoring purposes. In Proceedings of the 3rd National Workshop with International Participation Under the EU Copernicus Programme, Online, 31 December 2023; pp. 28–38. [Google Scholar] [CrossRef]
- Sansosti, E.; Berardino, P.; Bonano, M.; Calò, F.; Castaldo, R.; Casu, F.; Manunta, M.; Manzo, M.; Pepe, A.; Pepe, S.; et al. How Second Generation Sar Systems are Impacting the Analysis of Ground Deformation; National Research Council (CNR) of Italy—Istituto per il Rilevamento Elettromagnetico dell’Ambiente (IREA): Napoli, Italy, 2013; Volume 328, p. 80124. [Google Scholar]
- Nirupama; Simonovic, S.S. Role of Remote Sensing in Disaster Management; Insitute of Catastrophic Loss Reduction: Toronto, Ontario, 2002; Available online: https://www.researchgate.net/publication/209804877_Role_of_remote_sensing_in_disaster_management (accessed on 24 September 2025).
- Stoyanov, A.; Spasova, T.; Avetisyan, D. An Analysis of Powder, Hard-Packed, and Wet Snow in High Mountain Areas Based on SAR, Optical Data, and In Situ Data. Remote Sens. 2025, 17, 1649. [Google Scholar] [CrossRef]
- Spasova, T.; Avetisyan, D. Remote Sensing in Polar Regions Antarctic Part I, for Space Research and Technology Institute; Bulgarian Academy of Sciences: Sofia, Bulgaria, 2024; ISBN 978-619-7490-19-0/978-619-7490-14-5 (pdf). [Google Scholar]
- Spasova, T. Monitoring of short-lived snow coverage by SAR data around Livingston Island, South Shetland Islands in Antarctica. In Proceedings of the Adaptation Futures 2018—5th International Climate Change Adaptation Conference, EMG, Cape Town, South Africa, 18–21 June 2018; pp. 170–173. [Google Scholar]
- Available online: https://www.oruxmaps.com/cs/en/ (accessed on 24 September 2025).
- Ht-19 Thermal Camera Manual. Available online: https://hti-instrument.com/pages/ht-19-manual (accessed on 24 September 2025).
- Osborne, J. Regression & Linear Modeling; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2017. [Google Scholar] [CrossRef]
- Helsel, D.R.; Hirsch, R.M.; Ryberg, K.R.; Archfield, S.A.; Gilroy, E.J. Statistical Methods in Water Resources: U.S. Geological Survey Techniques and Methods; [Supersedes USGS Techniques of Water-Resources Investigations, Book 4, Chap. A3, Version 1.1.]; U.S. Geological Survey: Reston, VA, USA, 2020; Volume 4, p. 458. [Google Scholar] [CrossRef]
- Moore, D.S.; McCabe, G.P.; Craig, B.A. Introduction to the Practice of Statistics, 9th ed.; W. H. Freeman: New York, NY, USA, 2017. [Google Scholar]
- Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Montgomery, D.; Runger, G. Applied Statistics and Probability for Engineers; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Available online: https://www.meteoswiss.admin.ch/weather/weather-and-climate-from-a-to-z/snow/types-of-snow.html (accessed on 24 September 2025).
- Available online: https://compuweather.com/the-important-difference-between-wet-snow-and-dry-snow/ (accessed on 24 September 2025).
- Available online: https://www.acurite.com/blogs/weather-101/types-of-snow?srsltid=AfmBOoowqd602gFqNOlIskJSchC5jnfhAd7LRCCtBn0Iw_6elXYd1gG9 (accessed on 24 September 2025).
- Assenov, A. Biogeography and Natural Capital of Bulgaria; University Press St. Kliment Ohridski: Sofia, Bulgaria, 2021. (In Bulgarian) [Google Scholar]
- Available online: https://infospravka.com/2024/09/15/pirin-planina (accessed on 24 September 2025).
- Draft Management Plan for Pirin National Park for the Period 2014–2023. Implementation of Contract No. UR-051/29. 01. 2014. Available online: https://www.pirin.bg/ (accessed on 24 September 2025).
- The Copernicus Data Space Ecosystem. 2024. Available online: https://dataspace.copernicus.eu/ (accessed on 24 September 2025).
- Available online: https://browser.stac.dataspace.copernicus.eu/collections/sentinel-1-grd?.language=en (accessed on 24 September 2025).
- Available online: https://sentinels.copernicus.eu/documents/247904/685211/Sentinel-2_User_Handbook (accessed on 24 September 2025).
- Sentinel-3 SLSTR User Guide. 2024. Available online: https://sentinels.copernicus.eu/documents/247904/1848151/Sentinel-3_SLSTR_Data_Access_and_Products.pdf (accessed on 24 September 2025).
- Available online: https://developers.planet.com/docs/data/planetscope/ (accessed on 24 September 2025).
- Available online: https://www.esa.int/Applications/Observing_the_Earth/Copernicus/The_Sentinel_missions (accessed on 24 September 2025).
- Spasova, T. Differentiated Approach to Monitoring Flooded Areas, Surface Water Bodies and Wet Snow Cover Based on Remote Sensing Methods and GIS. Ph.D. Thesis, SRTI-BAS, Sofia, Bulgaria, 2019. [Google Scholar]
- Singh, G.; Yamaguchi, Y.; Park, S.E.; Venkataraman, G. Identification of Snow using SAR Polarimetry techniques. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, 38 Pt 8, 146–149. [Google Scholar]
- Martini, A. Télédétection d’un Couvert Neigeux en Milieux Alpins à Partir de Données SAR Polarimétriques Mul-ti-Fréquentielles et Multitemporelles. Ph.D. Thesis, Universite de Rennes, Rennes, France, 2005. [Google Scholar]
- Magagi, R.; Bernier, M. Optimal conditions for wet snow detection using RADARSAT SAR data. Remote Sens. Environ. 2003, 84, 221–233. [Google Scholar] [CrossRef]
- Marin, C.; Bertoldi, G.; Premier, V.; Callegari, M.; Brida, C.; Hürkamp, K.; Tschiersch, J.; Zebisch, M.; Notarnicola, C. Use of Sentinel-1 radar observations to evaluate snowmelt dynamics in alpine regions. Cryosphere 2020, 14, 935–956. [Google Scholar] [CrossRef]
- Spasova, T.; Nedkov, R. Monitoring of Short-Lived Snow Coverage by Radar and Optical Data from Sentinel-1 and Sentinel-2 Satellites. Ecol. Eng. Environ. Prot. 2017, 2, 13–19. [Google Scholar] [CrossRef]
- Available online: https://step.esa.int/main/download/snap-download (accessed on 24 September 2025).
- Available online: https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview (accessed on 24 September 2025).
- Yommy, A.S.; Liu, R.; Wu, S. SAR Image Despeckling Using Refined Lee Filter. In Proceedings of the 2015 7th International Conference on Intelligent Hu-man-Machine Systems and Cybernetics, Hangzhou, China, 26 August 2015; pp. 209–213. [Google Scholar]
- Available online: https://step.esa.int/main/doc/tutorials/ (accessed on 24 September 2025).
- Available online: https://www.esa.int/Enabling_Support/Operations/Sentinel-2_operations (accessed on 24 September 2025).
- Spasova, T.; Avetisyan, D.; Dancheva, A.; Ivanova, I.; Tsvetkov, M.Y. Spectral analysis and mapping of unregulated landfills in Varna, North-East planning region of Bulgaria. In Proceedings of the SPIE 13212, Tenth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2024), 132121L, Paphos, Cyprus, 13 September 2024. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the Third Earth Resources Technology Satellite—1 Symposium, Washington, DC, USA, 1 January 1974; pp. 301–317. [Google Scholar]
- Yanakieva, N.; Avetisyan, D. Testing Optical Spectral Indices for Assessment of Surface Changes Due to Permafrost Melting on Livingston Island, Antarctica. Aerosp. Res. Bulg. 2024, 36, 79–93. [Google Scholar] [CrossRef]
- Valovcin, F.R. Spectral Radiance of Snow and Clouds in the Near Infrared Spectral Region; AFGL-TR-78-0289, ADA 063761; Air Force Geophysics Laboratory, Air Force Systems Command, United States Air Force: Hanscom Air Force Base, MA, USA, 1978. [Google Scholar]
- Kauth, R.J.; Thomas, G.S. The Tasselled cap—A graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. In Proceedings of the Symposium on Machine Processing of Remotely Sensed Data, West Lafayette, IN, USA, 29 June–1 July 1976; pp. 41–51. [Google Scholar]
- Crist, E.; Cicone, R. A physicaly-based transformation of Thematic Mapper data—The TM Tasseled Cap. IEEE. Trans. Geosci. Remote Sens. 1984, 22, 256–263. [Google Scholar] [CrossRef]
- Nedkov, R. Orthogonal transformation of segmented images from the satellite Sentinel-2. Comptes Rendus L’acad´Emie Bulg. Sci. 2017, 70, 687–692. [Google Scholar]
- Ivanova, I.; Nedkov, R.; Borisova, D.; Stankova, N. Using SAR and optical data from Sentinel satellites for precise modeling of seasonal floating reed islands dynamics in Srebarna Lake. In Proceedings of the SPIE 10790, Earth Resources and Environmental Remote Sensing/GIS Applications IX, 107900E, Berlin, Germany, 9 October 2018. [Google Scholar] [CrossRef]
- Stankova, N.; Nedkov, R. Research model of monitoring the recovery of an ecosystem after fire based on satellite and GPS data. Ecol. Eng. Environ. Prot. 2016, 1, 5–11. [Google Scholar]
- Stankova, N.; Avetisyan, D. Postfire Forest Regrowth Algorithm Using Tasseled-Cap-Retrieved Indices. Application of Remote Sensing in Forest Fire. Remote Sens. 2024, 16, 597. [Google Scholar] [CrossRef]
- Available online: https://sentiwiki.copernicus.eu/web/s3-slstr-instrument (accessed on 24 September 2025).
- Available online: https://sentiwiki.copernicus.eu/web/slstr-applications (accessed on 24 September 2025).
- Available online: https://desktop.arcgis.com/en/arcmap/latest/get-started/setup/arcgis-desktop-system-requirements.htm (accessed on 24 September 2025).
- Available online: https://cds.climate.copernicus.eu/datasets/satellite-albedo?tab=overview (accessed on 24 September 2025).
- Dancheva, A. Methods for identification and visualization of municipal waste disposal sites using aerospace data. Ecol. Eng. Environ. Prot. 2021, 2, 56–60. [Google Scholar] [CrossRef]
- Dancheva, A. Differential estimation of temperature changes in landfills through the use of satellite data. In Proceedings of the SPIE 11534, Earth Resources and Environmental Remote Sensing/GIS Applications XI, 115340J, Online, 20 September 2020. [Google Scholar] [CrossRef]
- Dancheva, A.; Asenovski, S. Study of waste disposal thermal radiation using satellite data and considering solar influence. Aerosp. Res. Bulg. 2018, 30, 16–25. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens. Environ. 1995, 54, 127–140. [Google Scholar] [CrossRef]
- Available online: https://hexagon.com/products/erdas-imagine (accessed on 24 September 2025).
- Available online: https://sdi.eea.europa.eu/catalogue/copernicus/api/records/71c95a07-e296-44fc-b22b-415f42acfdf0?language=all (accessed on 24 September 2025).
- Available online: https://land.copernicus.eu/en/map-viewer?dataset=0407d497d3c44bcd93ce8fd5bf78596a (accessed on 24 September 2025).
- Mätzler, C. Applications of the interaction of microwaves with the natural snow cover. Remote Sens. Rev. 1987, 2, 259–387. [Google Scholar] [CrossRef]
- Rignot, E.; Echelmeyer, K.; Krabill, W. Penetration depth of interferometric synthetic-aperture radar signals in snow and ice. Geophys. Res. Lett. 2001, 28, 3501–3504. [Google Scholar] [CrossRef]
- Langley, K.; Hamran, S.-E.; Hogda, K.A.; Storvold, R.; Brandt, O.; Hagen, J.O.; Kohler, J. Use of C-Band Ground Penetrating Radar to Determine Backscatter Sources Within Glaciers. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1236–1246. [Google Scholar] [CrossRef]
- Shi, J.; Dozier, J. Inferring snow wetness using C-band data from SIR-C’s polarimetric synthetic aperture radar. IEEE Trans. Geosci. Remote Sens. 1995, 33, 905–914. [Google Scholar]
- Mätzler, C.; Schanda, E. Snow mapping with active microwave sensors. Int. J. Remote Sens. 1984, 5, 409–422. [Google Scholar] [CrossRef]
- Mardirosyan, G. Fundamentals of Remote Aerospace Technologies; New Bulgarian University: Sofia, Bulgaria, 2015; p. 238. ISBN 978-954-535-882-1. [Google Scholar]
- Avetisyan, D.; Cvetanova, G. Assessment of drought impact on phenological development of selected sunflower hybrids based on vegetation indices and orthogonalization of multispectral satellite data. Bulg. J. Agric. Sci. 2022, 28, 1006–1026. [Google Scholar]
Satellite | Date | Spectral Band, Wavelength | Band | GSD *, m |
---|---|---|---|---|
Sentinel-1A | 30 December 2024 | λ = 5.6 cm, | C | 10 × 10 * |
5 January 2025 | Polarization: VH, VV | |||
Sentinel-2B | 2 January 2025 | 0.56 µm | 3 | 10 |
0.665 µm | 4 | 10 | ||
0.842 µm | 8 | 10 | ||
0.865 µm | 8a | 20 | ||
1.61 µm | 11 | 20 | ||
2.19 µm | 12 | 20 | ||
Sentinel-3A Sentinel-3B | 30 December 2024 | 3.74 μm | S7 | 1000 |
10.85 μm, | S8 | 1000 | ||
12 μm | S9 | 1000 | ||
PlanetScope | 29 December 2024 30 December 2024 | 443 nm | Coastal Blue | 3 |
490 nm | Blue | 3 | ||
531 nm | Green | 3 | ||
565 nm | Green I | 3 | ||
610 nm | Yellow | 3 | ||
665 nm | Red | 3 | ||
705 nm | Red edge | 3 | ||
865 nm | NIR | 3 | ||
Thermal camera HT-19 | 30 December 2024 | 8 to 14 μm | Infrared | 320 × 240 Pixels |
Index | Formula | Bands, References |
---|---|---|
NDVI (Sentinel 2) NDVI (PlanetScope) Normalized Difference Vegetation Index | (1) | The bands used by Sentinel 2MSI are Band 8 and Band 4. Rouse et al. (1973) [58] The index can be indicative of the dynamics of snow cover (0–0.2) [59], vegetation and water bodies. Its values range from −1 to +1 (one). The bands used by PlanetScope are Band 8 and Band 6. |
NDFSI (Sentinel 2) Normalized Difference Forest Snow Index | (2) | The Sentinel 2MSI bands used are Band8 and Band 3. Wang, X.Y., Wang, J., Jiang, Z.Y. (2015) [19], Wang, Xiao-Yan (2018) [20] NDFSI can be used in forested regions together with a land cover classification map of the area, and the accuracy of snow detection can reach over 93.92%. |
NDSI (Sentinel 2) Normalized Difference Snow Index | (3) | The Sentinel 2MSI bands used are Band3 and Band11. Valovcin, F.R., 1976 [16,17,60] Its values range from 0 to 1 (one). |
NDSII and NDSII-2 (PlanetScope) Normalized Diference Snow and Ice Index | (4) | Bands with wavelengths of 865nm (Green) and 565nm (NIR) by PlanetScope were used. |
TCT (Sentinel 2) Tasseled Cap Transformation Kauth-Thomas Transformation | Brightness (Br), Greenness (Gr), Wetness (W) (5) (6) (7) | All Sentinel 2MSI bands are used for TCT needs. Kauth and Thomas (1976) [61]; Crist and Cicone (1984) [62] Nedkov (2017) [63] |
Point | Name | Altitude [m] | S3A_LST, 30 December 2024 (08:16:25 a.m.) | S3A_LST, 30 December 2024 (19:36:20 p.m.) | S3A_LST, Air Temperature (20:09:23 p.m.) | S3A_LST, Snow Albedo (20:09:23 p.m.) |
---|---|---|---|---|---|---|
1 | powder snow | 2405.6 | −3.79 | −13.22 | −1.69 | 0.710067 |
2 | powder snow | 1638.1 | 0.62 | −11.32 | −1.73 | 0.711348 |
3 | powder snow | 1849.4 | 0.62 | −11.32 | −1.73 | 0.711348 |
4 | powder snow | 1532.9 | 0.62 | −6.23 | −1.85 | 0.711794 |
5 | powder snow | 1542.1 | 0.62 | −6.23 | −1.85 | 0.711794 |
6 | powder snow | 1545 | 0.62 | −6.23 | −1.73 | 0.710067 |
7 | powder snow | 1575.3 | 0.62 | −11.32 | −1.73 | 0.711348 |
8 | wet snow | 1581 | 0.62 | −11.32 | −1.73 | 0.711348 |
9 | wet snow | 1581 | 0.62 | −11.32 | −1.73 | 0.711348 |
10 | powder snow | 1839.7 | −1.20 | −7.35 | −1.80 | 0.709259 |
11 | powder snow | 1829.3 | −1.20 | −7.35 | −1.80 | 0.710067 |
12 | powder snow | 2406 | −2.20 | −13.22 | −1.69 | 0.710067 |
13 | powder snow | 2403.8 | −2.20 | −10.40 | −1.69 | 0.710708 |
14 | hard-packed snow | 2403 | −2.20 | −10.40 | −1.71 | 0.710708 |
15 | hard-packed snow | 2088 | −2.20 | −10.40 | −1.71 | 0.710708 |
16 | powder snow | 2088.8 | −2.20 | −10.40 | −1.71 | 0.710708 |
17 | powder snow | 2077.5 | −2.20 | −10.40 | −1.71 | 0.710708 |
18 | powder snow | 2031.1 | −2.20 | −10.40 | −1.71 | 0.710708 |
19 | powder snow | 1996.2 | −2.20 | −10.40 | −1.71 | 0.710708 |
20 | powder snow | 1957.1 | −2.20 | −10.40 | −1.71 | 0.710708 |
21 | powder snow | 1906.2 | −2.20 | −10.40 | −1.71 | 0.710708 |
22 | powder snow | 1887.1 | −2.20 | −11.32 | −1.71 | 0.709259 |
23 | powder snow | 1848.4 | −2.20 | −11.32 | −1.80 | 0.709259 |
24 | hard-packed snow | 1910 | −1.20 | −7.35 | −1.80 | 0.710067 |
25 | hard-packed snow | 2471.4 | −2.20 | −13.22 | −1.69 | 0.710067 |
26 | hard-packed snow | 2420.5 | −2.20 | −13.22 | −1.69 | 0.710067 |
27 | hard-packed snow | 2364.2 | −2.20 | −13.22 | −1.69 | 0.710067 |
28 | hard-packed snow | 2338.1 | −2.20 | −13.22 | −1.69 | 0.710067 |
29 | hard-packed snow | 2287.6 | −2.20 | −13.22 | −1.69 | 0.710067 |
30 | hard-packed snow | 2270.5 | −2.20 | −13.22 | −1.69 | 0.708414 |
31 | hard-packed snow | 2238.6 | −2.20 | −13.22 | −1.79 | 0.708414 |
32 | hard-packed snow | 2224.6 | −2.20 | −12.78 | −1.79 | 0.708414 |
33 | hard-packed snow | 2204 | −2.20 | −12.78 | −1.79 | 0.711348 |
34 | hard-packed snow | 2109.8 | 0.62 | −11.32 | −1.73 | 0.711348 |
35 | hard-packed snow | 2100 | 0.62 | −6.80 | −1.73 | 0.711348 |
36 | hard-packed snow | 1591.9 | 0.62 | −6.80 | −1.73 | 0.708414 |
37 | hard-packed snow | 2165 | −2.20 | −6.80 | −1.79 | 0.710067 |
38 | hard-packed snow | 2167.7 | −2.20 | −6.80 | −1.79 | 0.710067 |
39 | hard-packed snow | 2167 | −2.20 | −6.80 | −1.79 | 0.710067 |
40 | wet snow | 2194.5 | −2.20 | −6.80 | −1.79 | 0.708414 |
41 | wet snow | 2195 | −2.20 | −6.80 | −1.79 | 0.708414 |
42 | wet snow | 2203.3 | −2.20 | −6.80 | −1.79 | 0.710067 |
43 | powder snow | 2468 | −2.20 | −13.22 | −1.69 | 0.710067 |
44 | hard-packed snow | 2468 | −2.20 | −13.22 | −1.69 | 0.710067 |
45 | hard-packed snow | 2509 | −2.20 | −13.22 | −1.69 | 0.710067 |
46 | hard-packed snow | 2510.9 | −2.20 | −13.22 | −1.69 | 0.710067 |
Snow Type | asc_VVdb-asc_VHdb 30 December 2024 | desc_VVdb-desc_VHdb 5 January 2025 |
---|---|---|
powder snow R | 0.68 | 0.57 |
hard-packed snow R | 0.59 | 0.46 |
wet snow R | 0.99 | 0.94 |
Total R | 0.664 | 0.442 |
powder snow R2 | 0.46 | 0.33 |
hard-packed snow R2 | 0.35 | 0.21 |
wet snow R2 | 0.98 | 0.88 |
Total R2 | 0.567 | 0.321 |
Points | Name | Amsl | NDSI Sentinel-2 | NDFSI Sentinel-2 | NDVI Sentinel-2 | TCW Sentinel-2 | NDSII PlanetScope | NDVI PlanetScope |
---|---|---|---|---|---|---|---|---|
1 | powder snow | 2405.6 | 0.47 | 0.35 | −0.08 | 10.29 | 0.17 | −0.08 |
2 | powder snow | 1638.1 | 0.34 | 0.25 | −0.01 | 5.8 | 0.11 | 0.08 |
3 | powder snow | 1849.4 | 0.37 | 0.22 | −0.06 | 6.5 | 0.21 | 0.01 |
4 | powder snow | 1532.9 | 0.66 | 0.68 | 0.02 | 26.7 | −0.03 | 0.02 |
5 | powder snow | 1542.1 | 0.66 | 0.68 | 0.02 | 26.7 | −0.03 | 0.01 |
6 | powder snow | 1545 | 0.25 | 0.21 | 0.05 | 5.12 | −0.15 | 0.28 |
7 | powder snow | 1575.3 | 0.53 | 0.53 | 0 | 11.42 | −0.02 | 0.02 |
8 | wet snow | 1581 | 0.62 | 0.65 | 0 | 24.79 | 0.03 | −0.04 |
9 | wet snow | 1581 | 0.62 | 0.65 | 0 | 24.79 | 0.03 | −0.04 |
10 | powder snow | 1839.7 | 0.47 | 0.56 | 0.12 | 11.48 | −0.12 | 0.19 |
11 | powder snow | 1829.3 | 0.47 | 0.56 | 0.12 | 11.48 | −0.15 | 0.23 |
12 | powder snow | 2406 | 0.61 | 0.61 | −0.01 | 24.04 | 0.04 | −0.03 |
13 | powder snow | 2403.8 | 0.61 | 0.62 | −0.01 | 24.42 | 0.04 | −0.04 |
14 | hard-packed snow | 2403 | 0.25 | 0.19 | 0.01 | 4.34 | −0.21 | 0.31 |
15 | hard-packed snow | 2088 | 0.25 | 0.19 | 0.01 | 4.34 | −0.21 | 0.31 |
16 | powder snow | 2088.8 | 0.23 | 0.2 | 0.05 | 4 | −0.22 | 0.36 |
17 | powder snow | 2077.5 | 0.3 | 0.21 | 0 | 4.86 | −0.2 | 0.36 |
18 | powder snow | 2031.1 | 0.26 | 0.5 | 0.34 | 4.64 | −0.33 | 0.51 |
19 | powder snow | 1996.2 | 0.22 | 0.15 | 0.02 | 3.68 | −0.4 | 0.58 |
20 | powder snow | 1957.1 | 0.24 | 0.14 | −0.01 | 3.96 | −0.19 | 0.37 |
21 | powder snow | 1906.2 | 0.19 | 0.18 | 0.08 | 3.62 | −0.13 | 0.25 |
22 | powder snow | 1887.1 | 0.22 | 0.29 | 0.17 | 4.08 | −0.23 | 0.32 |
23 | powder snow | 1848.4 | 0.23 | 0.2 | 0.06 | 4.06 | −0.09 | 0.22 |
24 | hard-packed snow | 1910 | 0.14 | 0.3 | 0.23 | 3.45 | −0.52 | 0.51 |
25 | hard-packed snow | 2471.4 | 0.65 | 0.67 | −0.01 | 34.78 | 0.02 | −0.03 |
26 | hard-packed snow | 2420.5 | 0.67 | 0.68 | −0.01 | 35.62 | 0.02 | −0.02 |
27 | hard-packed snow | 2364.2 | 0.64 | 0.66 | 0 | 32.11 | 0.01 | −0.02 |
28 | hard-packed snow | 2338.1 | 0.66 | 0.69 | −0.01 | 36.59 | 0.01 | −0.01 |
29 | hard-packed snow | 2287.6 | 0.63 | 0.64 | −0.01 | 32.78 | 0.01 | −0.01 |
30 | hard-packed snow | 2270.5 | 0.64 | 0.65 | −0.01 | 32.32 | 0.01 | −0.02 |
31 | hard-packed snow | 2238.6 | 0.61 | 0.61 | −0.01 | 28.18 | 0.03 | −0.01 |
32 | hard-packed snow | 2224.6 | 0.61 | 0.61 | −0.02 | 25.63 | 0.02 | −0.01 |
33 | hard-packed snow | 2204 | 0.63 | 0.64 | −0.01 | 27.84 | 0.03 | −0.03 |
34 | hard-packed snow | 2109.8 | 0.56 | 0.57 | 0.01 | 20.34 | 0.01 | 0.02 |
35 | hard-packed snow | 2100 | 0.56 | 0.57 | 0.01 | 20.34 | 0.01 | 0.02 |
36 | hard-packed snow | 1591.9 | 0.56 | 0.57 | 0.01 | 20.34 | 0.01 | 0.02 |
37 | hard-packed snow | 2165 | 0.61 | 0.64 | 0.02 | 25.93 | −0.02 | 0.05 |
38 | hard-packed snow | 2167.7 | 0.61 | 0.64 | 0.02 | 25.93 | 0.01 | 0.01 |
39 | hard-packed snow | 2167 | 0.61 | 0.65 | 0.01 | 29.56 | −0.04 | −0.02 |
40 | wet snow | 2194.5 | 0.61 | 0.65 | 0.01 | 29.56 | −0.04 | −0.02 |
41 | wet snow | 2195 | 0.55 | 0.58 | 0 | 22.2 | −0.08 | 0.01 |
42 | wet snow | 2203.3 | 0.58 | 0.63 | 0.05 | 21.57 | 0.04 | −0.04 |
43 | powder snow | 2468 | 0.68 | 0.7 | 0 | 41.28 | 0.02 | −0.03 |
44 | hard-packed snow | 2468 | 0.68 | 0.7 | 0 | 41.28 | 0.02 | −0.03 |
45 | hard-packed snow | 2509 | 0.67 | 0.69 | −0.01 | 39.7 | 0.02 | −0.03 |
46 | hard-packed snow | 2510.9 | 0.65 | 0.67 | −0.01 | 37.4 | 0.02 | −0.02 |
Stdev.S | 0.175 | 0.197 | 0.0713 | 12.55 | 0.138 | 0.177 |
Optical Satellites | Correlation [R] | R2 | RMSE |
---|---|---|---|
NDSI (Sentinel-2)-NDFSI (Sentinel-2) | +0.945 | 0.892 | 0.065 |
powder snow | +0.905 ↓ | 0.820 ↓ | |
hard-packed snow | +0.964 ↑ | 0.929 ↑ | |
wet snow | +0.957 ↑ | 0.915 ↑ | |
NDFSI(Sentinel-2)-TCW(Sentinel-2) | +0.900 | 0.810 | 23.02 |
powder snow | +0.849 ↓ | 0.720 ↓ | |
hard-packed snow | +0.932 ↑ | 0.869 ↑ | |
wet snow | +0.594 ↓ | 0.353 ↓ | |
NDVI (Sentinel-2)-NDSI(Sentinel-2) | −0.50 | 0.243 | 0.520 |
powder snow | −0.380 ↓ | 0.114 ↓ | |
hard-packed snow | −0.699 ↑ | 0.489 ↑ | |
wet snow | −0.250 ↓ | 0.06 ↓ | |
NDSI(Sentinel-2)-TCW(Sentinel-2) | +0.931 | 0.866 | 23.03 |
powder snow | +0.912 ↓ | 0.832 ↓ | |
hard-packed snow | +0.932 ↑ | 0.869 ↑ | |
wet snow | +0.619 ↓ | 0.383 ↓ | |
NDSII (PlanetScope)-NDVI (PlanetScope) | −0.917 | 0.842 | 0.342 |
powder snow | −0.924 ↑ | 0.854 ↑ | |
hard-packed snow | −0.971 ↑ | 0.943 ↑ | |
wet snow | −0.970 ↑ | 0.940 ↓ | |
NDVI (PlanetScope) -NDVI(Sentinel-2) | +0.649 | 0.421 | 0.158 |
powder snow | +0.580 ↓ | 0.336 ↓ | |
hard-packed snow | +0.784 ↑ | 0.615 ↑ | |
wet snow | +0.337 ↓ | 0.113 ↓ | |
NDSII2(PlanetScope) -NDSI(Sentinel-2) | +0.713 | 0.508 | 0.564 |
powder snow | +0.565 ↓ | 0.319 ↓ | |
hard-packed snow | +0.926 ↑ | 0.857 ↑ | |
wet snow | +0.604 ↓ | 0.365 ↓ | |
SAR | correlation [r] | R2 | RMSE |
VVas–VHasc | +0.664 | 0.442 ↓ | 7.15 |
VVdes-VHdes | +0.567 | 0.321 ↓ | 7.88 |
Sentinel-3LST | correlation [r] | R2 | RMSE |
LSTnight—air tempreture | −0.676 | 0.457 | 9.01 |
powder snow | −0.749 ↓ | 0.561 ↑ | |
hard-packed snow | −0.561 ↑ | 0.315 ↓ | |
wet snow | −1 ↓ | 1 ↑ | |
LSTday—air tempreture | −0.26 | 0.07 | 1.27 |
powder snow | −0.54 ↓ | 0.29 ↓ | |
hard-packed snow | −0.06 ↓ | 0.004 ↑ | |
wet snow | +1 ↑ | 1 ↑ | |
LSTday—altitude | −0.768 | 0.589 | 2101 |
powder snow | −0.810 ↓ | 0.656 ↑ | |
hard-packed snow | −0.659 ↑ | 0.434 ↓ | |
wet snow | −0.999 ↓ | 0.999 ↑ | |
LSTnight-altitude | −0.511 | 0.261 | 2109 |
powder snow | −0.690 ↓ | 0.476 ↑ | |
hard-packed snow | −0.703 ↓ | 0.494 ↑ | |
wet snow | +0.999 ↑ | 0.999 ↑ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spasova, T.; Stoyanov, A.; Dancheva, A.; Avetisyan, D. Spectral Analysis of Snow in Bansko, Pirin Mountain, in Different Ranges of the Electromagnetic Spectrum. Remote Sens. 2025, 17, 3326. https://doi.org/10.3390/rs17193326
Spasova T, Stoyanov A, Dancheva A, Avetisyan D. Spectral Analysis of Snow in Bansko, Pirin Mountain, in Different Ranges of the Electromagnetic Spectrum. Remote Sensing. 2025; 17(19):3326. https://doi.org/10.3390/rs17193326
Chicago/Turabian StyleSpasova, Temenuzhka, Andrey Stoyanov, Adlin Dancheva, and Daniela Avetisyan. 2025. "Spectral Analysis of Snow in Bansko, Pirin Mountain, in Different Ranges of the Electromagnetic Spectrum" Remote Sensing 17, no. 19: 3326. https://doi.org/10.3390/rs17193326
APA StyleSpasova, T., Stoyanov, A., Dancheva, A., & Avetisyan, D. (2025). Spectral Analysis of Snow in Bansko, Pirin Mountain, in Different Ranges of the Electromagnetic Spectrum. Remote Sensing, 17(19), 3326. https://doi.org/10.3390/rs17193326