Deep Learning-Based Prediction of Multi-Species Leaf Pigment Content Using Hyperspectral Reflectance
Abstract
Highlights
- CNN models combined with genetic algorithm–based spectral band selection achieved high-accuracy estimation of leaf pigment content across tree species.
- The 2D CNN outperformed the 1D CNN, with optimal results obtained using 3–4 convolutional layers.
- The study provides a non-destructive and robust approach for monitoring leaf pigments across different tree species.
- The CNN-based approach improved remote sensing applications in vegetation health assessment and forest ecosystem management.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Field Collection
2.2. Spectra and Leaf Pigment Content Measurements
2.3. Model Development
2.3.1. Data Preparation
2.3.2. Design CNN Architecture
2.3.3. Spectral Bands Selection Using Genetic Algorithm
2.4. Accuracy Assessment
3. Results
3.1. The Distribution of Leaf Pigment Content and Spectral Variation
3.2. Importance Bands for Estimating Leaf Pigments
3.3. Model Performance for the Prediction of Leaf Pigment Content
4. Discussion
4.1. The CNN Model Performance on Leaf Pigment Content
4.2. Influence of Pigment Distribution
4.3. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Tree Species | 1D-CNNf | 1D-CNNGA | 2D-CNNf | 2D-CNNGA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cab | Car | Canth | Cab | Car | Canth | Cab | Car | Canth | Cab | Car | Canth | |
Osmanthus fragrans | 9.77 | 12.83 | 56.55 | 12.71 | 12.21 | 55.95 | 9.71 | 13.56 | 36.43 | 11.67 | 11.89 | 26.42 |
Diospyros oleifera | 13.91 | 15.00 | 77.57 | 11.37 | 14.71 | 71.85 | 14.53 | 11.10 | 69.20 | 11.96 | 11.11 | 50.70 |
Sapindus mukorossi | 12.29 | 11.45 | 40.07 | 10.87 | 11.82 | 45.35 | 11.69 | 9.70 | 46.03 | 12.79 | 9.06 | 36.12 |
Phoebe sheareri | 15.43 | 11.63 | 55.61 | 18.90 | 12.14 | 61.06 | 13.79 | 9.13 | 45.56 | 15.44 | 9.47 | 44.67 |
Ginkgo biloba | 12.22 | 15.07 | 45.48 | 11.84 | 13.92 | 47.29 | 9.84 | 10.89 | 27.21 | 10.38 | 12.94 | 25.87 |
Glochidion puberum | 10.79 | 18.10 | 47.67 | 12.45 | 15.90 | 59.52 | 11.02 | 15.05 | 41.07 | 11.92 | 13.65 | 28.81 |
Ilex chinensis | 12.02 | 14.02 | 66.66 | 11.96 | 12.73 | 56.75 | 12.45 | 9.75 | 54.75 | 9.91 | 13.90 | 47.11 |
Carya illinoinensis | 18.71 | 14.61 | 79.00 | 14.42 | 13.40 | 91.82 | 14.93 | 13.31 | 64.85 | 13.66 | 11.29 | 43.03 |
Quercus glauca | 11.56 | 18.85 | 39.89 | 12.16 | 18.55 | 51.23 | 12.07 | 8.74 | 45.12 | 10.27 | 15.79 | 29.62 |
Acer buergerianum Miq. | 11.11 | 16.36 | 52.12 | 10.23 | 15.97 | 52.79 | 9.88 | 14.32 | 35.03 | 8.88 | 14.15 | 24.80 |
Ligustrum lucidum | 10.35 | 13.08 | 40.86 | 8.89 | 13.07 | 50.21 | 12.68 | 12.17 | 23.70 | 9.57 | 9.90 | 17.53 |
Cinnamomum camphora | 11.79 | 14.45 | 53.66 | 12.75 | 14.18 | 52.80 | 10.65 | 14.85 | 70.31 | 10.64 | 9.44 | 52.19 |
Ailanthus altissima | 13.44 | 16.00 | 63.12 | 12.97 | 14.64 | 65.46 | 15.68 | 18.19 | 48.20 | 12.99 | 11.42 | 48.58 |
Viburnum macrocephalum | 11.00 | 17.94 | 83.19 | 9.77 | 15.62 | 52.77 | 12.50 | 11.29 | 29.35 | 9.89 | 12.20 | 26.78 |
Liquidambar formosana | 12.20 | 18.10 | 66.15 | 14.42 | 16.86 | 72.38 | 10.64 | 16.82 | 56.04 | 9.97 | 13.77 | 33.91 |
Acer cinnamomifolium | 9.84 | 12.46 | 50.17 | 11.76 | 12.28 | 52.72 | 10.72 | 13.85 | 87.68 | 9.58 | 10.89 | 39.35 |
Eriobotrya japonica | 12.55 | 12.43 | 67.32 | 14.95 | 11.41 | 74.86 | 13.99 | 9.07 | 54.47 | 12.15 | 9.91 | 41.20 |
Photinia serratifolia | 15.23 | 14.22 | 39.22 | 11.76 | 11.53 | 37.40 | 15.80 | 13.14 | 43.97 | 12.75 | 11.13 | 27.60 |
Michelia figo | 13.51 | 14.27 | 86.07 | 14.52 | 13.24 | 45.56 | 18.05 | 11.12 | 37.84 | 11.70 | 13.78 | 35.73 |
Lagerstroemia indica | 10.90 | 14.91 | 40.17 | 11.10 | 13.00 | 46.01 | 9.42 | 12.64 | 44.84 | 10.19 | 11.12 | 31.09 |
Prunus serrulata var. lannesiana | 17.68 | 15.57 | 57.43 | 9.87 | 12.86 | 54.80 | 13.91 | 9.04 | 32.40 | 12.21 | 10.70 | 33.67 |
Gardenia jasminoides | 10.11 | 13.45 | 36.39 | 10.50 | 13.56 | 42.89 | 9.93 | 13.68 | 36.94 | 10.44 | 10.16 | 21.91 |
Firmiana simplex | 14.62 | 13.87 | 77.83 | 13.86 | 13.37 | 76.80 | 12.85 | 14.49 | 71.57 | 12.44 | 12.05 | 38.60 |
Liriodendron chinense | 15.72 | 12.68 | 38.69 | 16.21 | 13.59 | 47.55 | 15.17 | 12.61 | 22.07 | 16.03 | 13.76 | 15.56 |
Yulania denudata | 10.68 | 12.83 | 45.47 | 11.38 | 11.50 | 48.49 | 11.13 | 14.46 | 41.10 | 10.31 | 12.01 | 25.47 |
Magnolia grandiflora | 12.91 | 16.17 | 29.67 | 14.29 | 15.14 | 28.52 | 10.71 | 13.95 | 31.20 | 12.46 | 12.96 | 26.88 |
Albizia julibrissin | 16.43 | 14.38 | 42.27 | 18.03 | 12.76 | 50.23 | 12.21 | 11.46 | 55.66 | 14.71 | 19.09 | 21.07 |
Styphnolobium japonicum | 9.95 | 14.04 | 35.31 | 7.50 | 12.56 | 36.87 | 10.51 | 12.80 | 38.27 | 8.98 | 11.68 | 32.15 |
Mean | 12.74 | 14.60 | 54.06 | 12.55 | 13.66 | 54.64 | 12.37 | 12.54 | 46.10 | 11.57 | 12.12 | 33.09 |
SD | 2.39 | 1.94 | 15.84 | 2.53 | 1.71 | 13.32 | 2.19 | 2.36 | 15.59 | 1.85 | 2.12 | 9.79 |
References
- Post, W.M.; Peng, T.; Emanuel, W.R.; King, A.W.; Dale, V.H.; DeAngelis, D.L. The global carbon cycle. Am. Sci. 1990, 78, 310–326. [Google Scholar]
- Nelson, N.; Yocum, C.F. Structure and function of photosystems I and II. Annu. Rev. Plant Biol. 2006, 57, 521–565. [Google Scholar] [CrossRef]
- Kattenborn, T.; Schiefer, F.; Zarco-Tejada, P.J.; Schmidtlein, S. Advantages of retrieving pigment content [μg/cm] versus concentration [%] from canopy reflectance. Remote Sens. Environ. 2019, 230, 111195. [Google Scholar] [CrossRef]
- Cutolo, E.A.; Guardini, Z.; Dall’Osto, L.; Bassi, R. A paler shade of green: Engineering cellular chlorophyll content to enhance photosynthesis in crowded environments. New Phytol. 2023, 239, 1567–1583. [Google Scholar] [CrossRef]
- Lopatin, J. Estimation of foliar carotenoid content using spectroscopy wavelet-based vegetation indices. IEEE Geosci. Remote Sens. Lett. 2023, 20, 2500405. [Google Scholar] [CrossRef]
- Yu, Z.C.; Lin, W.; Zheng, X.T.; Chow, W.S.; Luo, Y.N.; Cai, M.L.; Peng, C.L. The relationship between anthocyanin accumulation and photoprotection in young leaves of two dominant tree species in subtropical forests in different seasons. Photosynth. Res. 2021, 149, 41–55. [Google Scholar] [CrossRef] [PubMed]
- Gitelson, A.A.; Keydan, G.P.; Merzlyak, M.N. Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophys. Res. Lett. 2006, 33, L11402. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Ustin, S.L.; Verdebout, J.; Schmuck, G.; Andreoli, G.; Hosgood, B. Estimating leaf biochemistry using the PROSPECT leaf optical properties model. Remote Sens. Environ. 1996, 56, 194–202. [Google Scholar] [CrossRef]
- Coops, N.C.; Smith, M.; Martin, M.E.; Ollinger, S.V. Prediction of eucalypt foliage nitrogen content from satellite-derived hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1338–1346. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Gamon, J.A.; Field, C.B.; Fredeen, A.L.; Thayer, S. Assessing photosynthetic downregulation in sunflower stands with an optically-based model. Photosynth. Res. 2001, 67, 113–125. [Google Scholar] [CrossRef]
- Ustin, S.L.; Gitelson, A.A.; Jacquemoud, S.; Schaepman, M.; Asner, G.P.; Gamon, J.A.; Zarco-Tejada, P. Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. Remote Sens. Environ. 2009, 113, S67–S77. [Google Scholar] [CrossRef]
- Féret, J.B.; Gitelson, A.A.; Noble, S.D.; Jacquemoud, S. PROSPECT-D: Towards modeling leaf optical properties through a complete lifecycle. Remote Sens. Environ. 2017, 193, 204–215. [Google Scholar]
- Gitelson, A.A.; Merzlyak, M.N. Non-Destructive Assessment of Chlorophyll Carotenoid and Anthocyanin Content in Higher Plant Leaves: Principles and Algorithms; Peripheral Editions: Ella, Greece, 2004. [Google Scholar]
- Blachburn, G.A. Quantifying chlorophylls and carotenoids at leaf and canopy scales. Remote Sens. Environ. 1998, 66, 273–825. [Google Scholar]
- Croft, H.; Chen, J.M.; Zhang, Y.; Simic, A. Modelling leaf chlorophyll content in broadleaf and needle leaf canopies from ground, CASI, Landsat TM 5 and MERIS reflectance data. Remote Sens. Environ. 2013, 133, 128–140. [Google Scholar]
- Bhadra, S.; Sagan, V.; Sarkar, S.; Braud, M.; Mockler, T.C.; Eveland, A.L. PROSAIL-Net: A transfer learning-based dual stream neural network to estimate leaf chlorophyll and leaf angle of crops from UAV hyperspectral images. ISPRS J. Photogramm. Remote Sens. 2024, 210, 1–24. [Google Scholar]
- Garrity, S.R.; Eitel, J.U.; Vierling, L.A. Disentangling the relationships between plant pigments and the photochemical reflectance index reveals a new approach for remote estimation of carotenoid content. Remote Sens. Environ. 2011, 115, 628–635. [Google Scholar]
- Zhou, X.; Huang, W.; Kong, W.; Ye, H.; Dong, Y.; Casa, R. Assessment of leaf carotenoids content with a new carotenoid index: Development and validation on experimental and model data. Int. J. Appl. Earth Obs. Geoinf. 2017, 57, 24–35. [Google Scholar] [CrossRef]
- Gitelson, A. Towards a generic approach to remote non-invasive estimation of foliar carotenoid-to-chlorophyll ratio. J. Plant Physiol. 2020, 252, 153227. [Google Scholar] [PubMed]
- Li, X.; Wei, Z.; Peng, F.; Liu, J.; Han, G. Non-destructive prediction and visualization of anthocyanin content in mulberry fruits using hyperspectral imaging. Front. Plant Sci. 2023, 14, 1137198. [Google Scholar] [CrossRef]
- Piccolo, E.L.; Matteoli, S.; Landi, M.; Guidi, L.; Massai, R.; Remorini, D. Measurements of Anthocyanin Content of Prunus Leaves Using Proximal Sensing Spectroscopy and Statistical Machine Learning. IEEE Trans. Instrum. Meas. 2022, 71, 2508110. [Google Scholar] [CrossRef]
- Croft, H.; Chen, J.M.; Zhang, Y. The applicability of empirical vegetation indices for determining leaf chlorophyll content over different leaf and canopy structures. Ecol. Complex. 2014, 17, 119–130. [Google Scholar] [CrossRef]
- Gara, T.W.; Darvishzadeh, R.; Skidmore, A.K.; Wang, T. Impact of vertical canopy position on leaf spectral properties and traits across multiple species. Remote Sens. 2018, 10, 346. [Google Scholar] [CrossRef]
- Li, Y.; Huang, J. Leaf anthocyanin content retrieval with partial least squares and gaussian process regression from spectral reflectance data. Sensors 2021, 21, 3078. [Google Scholar] [CrossRef]
- Feilhauer, H.; Asner, G.P.; Martin, R.E. Multi-method ensemble selection of spectral bands related to leaf biochemistry. Remote Sens. Environ. 2015, 164, 57–65. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemometr. Intell. Lab. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Caicedo, J.P.R.; Verrelst, J.; Muñoz-Marí, J.; Moreno, J.; Camps-Valls, G. Toward a semiautomatic machine learning retrieval of biophysical parameters. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1249–1259. [Google Scholar] [CrossRef]
- Van Wittenberghe, S.; Verrelst, J.; Rivera, J.P.; Alonso, L.; Moreno, J.; Samson, R. Gaussian processes retrieval of leaf parameters from a multi-species reflectance, absorbance and fluorescence dataset. J. Photochem. Photobiol. B Biol. 2014, 134, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Verrelst, J.; Rivera, J.P.; Gitelson, A.; Delegido, J.; Moreno, J.; Camps-Valls, G. Spectral band selection for vegetation properties retrieval using Gaussian processes regression. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 554–567. [Google Scholar] [CrossRef]
- Wan, L.; Zhou, W.; He, Y.; Wanger, T.C.; Cen, H. Combining transfer learning and hyperspectral reflectance analysis to assess leaf nitrogen concentration across different plant species datasets. Remote Sens. Environ. 2022, 269, 112826. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Baret, F. PROSPECT: A model of leaf optical properties spectra. Remote Sens. Environ. 1990, 34, 75–91. [Google Scholar] [CrossRef]
- Dawson, T.P.; Curran, P.J.; Plummer, S.E. LIBERTY—Modeling the effects of leaf biochemical concentration on reflectance spectra. Remote Sens. Environ. 1998, 65, 50–60. [Google Scholar] [CrossRef]
- Feret, J.; François, C.; Asner, G.P.; Gitelson, A.A.; Martin, R.E.; Bidel, L.P.; Ustin, S.L.; Le Maire, G.; Jacquemoud, S. PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens. Environ. 2008, 112, 3030–3043. [Google Scholar] [CrossRef]
- Féret, J.; Berger, K.; de Boissieu, F.; Malenovský, Z. PROSPECT-PRO for estimating content of nitrogen-containing leaf proteins and other carbon-based constituents. Remote Sens. Environ. 2021, 252, 112173. [Google Scholar] [CrossRef]
- Li, P.; Wang, Q. Retrieval of leaf biochemical parameters using PROSPECT inversion: A new approach for alleviating ill-posed problems. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2499–2506. [Google Scholar]
- LeCun, Y.; Bengio, Y. Convolutional networks for images, speech, and time series. Handb. Brain Theory Neural Netw. 1995, 3361, 1995. [Google Scholar]
- Kim, N.; Ha, K.; Park, N.; Cho, J.; Hong, S.; Lee, Y. A comparison between major artificial intelligence models for crop yield prediction: Case study of the midwestern United States, 2006–2015. ISPRS Int. J. Geo-Inf. 2019, 8, 240. [Google Scholar] [CrossRef]
- Fayad, I.; Ienco, D.; Baghdadi, N.; Gaetano, R.; Alvares, C.A.; Stape, J.L.; Scolforo, H.F.; Le Maire, G. A CNN-based approach for the estimation of canopy heights and wood volume from GEDI waveforms. Remote Sens. Environ. 2021, 265, 112652. [Google Scholar] [CrossRef]
- Wang, R.; Qu, H.; Su, W. From sensors to insights: Technological trends in image-based high-throughput plant phenotyping. Smart Agric. Technol. 2025, 12, 101257. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, H.; Bian, L.; Zhou, L.; Ge, Y. Integrating sensor fusion with machine learning for comprehensive assessment of phenotypic traits and drought response in poplar species. Plant Biotechnol. J. 2025, 23, 2464–2481. [Google Scholar] [CrossRef]
- Zhang, R.; Jin, S.; Wang, Y.; Zang, J.; Wang, Y.; Zhao, R.; Su, Y.; Wu, J.; Wang, X.; Jiang, D. PhenoSR: Enhancing organ-level phenotyping with super-resolution RGB UAV imagery for large-scale field experiments. ISPRS J. Photogramm. Remote Sens. 2025, 228, 582–602. [Google Scholar] [CrossRef]
- Pullanagari, R.R.; Dehghan-Shoar, M.; Yule, I.J.; Bhatia, N. Field spectroscopy of canopy nitrogen concentration in temperate grasslands using a convolutional neural network. Remote Sens. Environ. 2021, 257, 112353. [Google Scholar] [CrossRef]
- Prilianti, K.R.; Setiyono, E.; Kelana, O.H.; Brotosudarmo, T.H.P. Deep chemometrics for nondestructive photosynthetic pigments prediction using leaf reflectance spectra. Inf. Process. Agric. 2021, 8, 194–204. [Google Scholar] [CrossRef]
- Barman, U. Deep Convolutional neural network (CNN) in tea leaf chlorophyll estimation: A new direction of modern tea farming in Assam, India. J. Appl. Nat. Sci. 2021, 13, 1059–1064. [Google Scholar] [CrossRef]
- Shi, S.; Xu, L.; Gong, W.; Chen, B.; Chen, B.; Qu, F.; Tang, X.; Sun, J.; Yang, J. A convolution neural network for forest leaf chlorophyll and carotenoid estimation using hyperspectral reflectance. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102719. [Google Scholar] [CrossRef]
- Annala, L.; Honkavaara, E.; Tuominen, S.; Pölönen, I. Chlorophyll concentration retrieval by training convolutional neural network for stochastic model of leaf optical properties (SLOP) inversion. Remote Sens. 2020, 12, 283. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Ng, W.; Minasny, B.; Montazerolghaem, M.; Padarian, J.; Ferguson, R.; Bailey, S.; McBratney, A.B. Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared, mid-infrared, and their combined spectra. Geoderma 2019, 352, 251–267. [Google Scholar] [CrossRef]
- Radosavovic, I.; Kosaraju, R.P.; Girshick, R.; He, K.; Dollár, P. Designing network design spaces. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10428–10436. [Google Scholar]
- Padarian, J.; Minasny, B.; McBratney, A.B. Using deep learning to predict soil properties from regional spectral data. Geoderma Reg. 2019, 16, e198. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning: PMLR, Lille, France, 7–9 July 2015; pp. 448–456. [Google Scholar]
- Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [Google Scholar] [CrossRef]
- Leardi, R.; Gonzalez, A.L. Genetic algorithms applied to feature selection in PLS regression: How and when to use them. Chemometr. Intell. Lab. 1998, 41, 195–207. [Google Scholar] [CrossRef]
- Hosgood, B.; Jacquemoud, S.; Andreoli, G.; Verdebout, J.; Pedrini, G.; Schmuck, G. Leaf Optical properties Experiment 93 (LOPEX93); Report EUR; European Commission: Brussels, Belgium, 1995; Volume 16095, pp. 1–46. [Google Scholar]
- Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747. [Google Scholar]
- Huang, W.; Lin, K.; Hsu, M.; Huang, M.; Yang, Z.; Chao, P.; Yang, C. Eliminating interference by anthocyanin in chlorophyll estimation of sweet potato (Ipomoea batatas L.) leaves. Bot. Stud. 2014, 55, 11. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhao, W.; Zhou, D.; Gong, H. Sensitivity analysis of vegetation reflectance to biochemical and biophysical variables at leaf, canopy, and regional scales. IEEE Trans. Geosci. Remote Sens. 2013, 52, 4014–4024. [Google Scholar] [CrossRef]
- Tsai, F.; Philpot, W. Derivative analysis of hyperspectral data. Remote Sens. Environ. 1998, 66, 41–51. [Google Scholar] [CrossRef]
- Blackburn, G.A.; Ferwerda, J.G. Retrieval of chlorophyll concentration from leaf reflectance spectra using wavelet analysis. Remote Sens. Environ. 2008, 112, 1614–1632. [Google Scholar] [CrossRef]
- Ali, A.M.; Skidmore, A.K.; Darvishzadeh, R.; van Duren, I.; Holzwarth, S.; Mueller, J. Retrieval of forest leaf functional traits from HySpex imagery using radiative transfer models and continuous wavelet analysis. ISPRS J. Photogramm. Remote Sens. 2016, 122, 68–80. [Google Scholar] [CrossRef]
- Féret, J.; François, C.; Gitelson, A.; Asner, G.P.; Barry, K.M.; Panigada, C.; Richardson, A.D.; Jacquemoud, S. Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling. Remote Sens. Environ. 2011, 115, 2742–2750. [Google Scholar] [CrossRef]
- Zhao, K.; Valle, D.; Popescu, S.; Zhang, X.; Mallick, B. Hyperspectral remote sensing of plant biochemistry using Bayesian model averaging with variable and band selection. Remote Sens. Environ. 2013, 132, 102–119. [Google Scholar] [CrossRef]
Tree Species | Number of Samples | Tree Species | Number of Samples |
---|---|---|---|
Osmanthus fragrans | 74 | Liquidambar formosana | 74 |
Diospyros oleifera | 80 | Acer cinnamomifolium | 75 |
Sapindus mukorossi | 68 | Eriobotrya japonica | 76 |
Phoebe sheareri | 74 | Photinia serratifolia | 77 |
Ginkgo biloba | 75 | Michelia figo | 74 |
Glochidion puberum | 77 | Lagerstroemia indica | 77 |
Ilex chinensis | 74 | Prunus serrulata var. lannesiana | 70 |
Carya illinoinensis | 72 | Gardenia jasminoides | 68 |
Quercus glauca | 78 | Firmiana simplex | 74 |
Acer buergerianum Miq. | 79 | Liriodendron chinense | 76 |
Ligustrum lucidum | 80 | Yulania denudata | 77 |
Cinnamomum camphora | 73 | Magnolia grandiflora | 73 |
Ailanthus altissima | 75 | Albizia julibrissin | 76 |
Viburnum macrocephalum | 74 | Styphnolobium japonicum | 74 |
Layer Type | Size | Filters | Activation Function |
---|---|---|---|
Input layer | 1 × 400 | - | - |
Conv1 | 1 × 5 | 96 | ReLU |
Dropout (0.5) | - | - | - |
Conv2 | 1 × 3 | 96 | ReLU |
Dropout (0.5) | - | - | - |
Conv3 | 1 × 3 | 192 | ReLU |
Conv4 | 1 × 3 | 192 | ReLU |
Conv5 | 1 × 3 | 256 | ReLU |
Dropout (0.5) | - | - | - |
Fully1 | 1 × 4096 | - | ReLU |
Fully2 | 1 × 4096 | - | ReLU |
Fully3 | 1 × 3 | - | Linear |
Layer Type | Size | Filters | Activation Function |
---|---|---|---|
Layers | 20 × 20 | ||
Conv1 | 5 × 5 | 96 | ReLU |
BatchNormalization () | - | - | - |
Dropout (0.5) | - | - | - |
Conv2 | 3 × 3 | 96 | ReLU |
BatchNormalization () | - | - | - |
Dropout (0.5) | - | - | - |
Conv3 | 3 × 3 | 192 | ReLU |
BatchNormalization () | - | ||
Conv4 | 3 × 3 | 192 | ReLU |
BatchNormalization () | |||
Conv5 | 3 × 3 | 256 | ReLU |
BatchNormalization () | - | - | - |
Dropout (0.5) | - | - | - |
Fully1 | 1 × 4096 | - | ReLU |
Fully2 | 1 × 4096 | - | ReLU |
Fully3 | 1 × 3 | - | Linear |
Strategies | A | B | C | D | E |
---|---|---|---|---|---|
Layers | Input layer | Input layer | Input layer | Input layer | Input layer |
Conv1 | Conv1 | Conv1 | Conv1 | Conv1 | |
Dropout | Dropout | Dropout | Dropout | Dropout | |
- | Conv2 | Conv2 | Conv2 | Conv2 | |
- | Dropout | Dropout | Dropout | Dropout | |
- | - | Conv3 | Conv3 | Conv3 | |
- | - | - | Conv4 | Conv4 | |
- | - | - | - | Conv5 | |
- | - | - | - | Dropout | |
Fully1 | Fully1 | Fully1 | Fully1 | Fully1 | |
Fully2 | Fully2 | Fully2 | Fully2 | Fully2 | |
Fully3 | Fully3 | Fully3 | Fully3 | Fully3 |
Models | Data Used |
---|---|
1D-CNNf | full spectrum (400–800 nm) |
1D-CNNGA | subset spectrum (400–800 nm) |
2D-CNNf | full spectrum (400–800 nm) in 2D representation |
2D-CNNGA | subset spectrum (400–800 nm) in 2D representation |
PLSRf | full spectrum (400–800 nm) |
PLSRGA | subset spectrum (400–800 nm) |
RFRf | full spectrum (400–800 nm) |
RFRGA | subset spectrum (400–800 nm) |
GPRf | full spectrum (400–800 nm) |
GPRGA | subset spectrum (400–800 nm) |
Pigments | Mean | SD | Max | Min | Range |
---|---|---|---|---|---|
Cab (µg/cm2) | 52.51 | 21.78 | 97.73 | 15.50 | 82.23 |
Car (µg/cm2) | 8.33 | 2.49 | 14.36 | 4.15 | 10.21 |
Canth (µg/cm2) | 1.18 | 1.15 | 7.18 | 0.02 | 7.16 |
Models | Strategies (Nconv) | Cab | Car | Canth | ||||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE (µg/cm2) | nRMSE (%) | R2 | RMSE (µg/cm2) | nRMSE (%) | R2 | RMSE (µg/cm2) | nRMSE (%) | ||
1D-CNNf | A (1) | 0.88 | 7.67 | 14.72 | 0.70 | 1.47 | 17.52 | 0.05 | 1.05 | 93.51 |
B (2) | 0.89 | 7.38 | 14.16 | 0.73 | 1.37 | 16.31 | 0.46 | 0.86 | 76.88 | |
C (3) | 0.90 | 7.41 | 14.22 | 0.75 | 1.29 | 15.36 | 0.54 | 0.78 | 69.48 | |
D (4) | 0.91 | 6.75 | 12.94 | 0.77 | 1.25 | 14.88 | 0.68 | 0.63 | 56.13 | |
E (5) | 0.90 | 14.25 | 27.34 | 0.58 | 1.96 | 23.33 | 0.23 | 1.00 | 89.13 | |
1D-CNNGA | A (1) | 0.91 | 6.82 | 13.08 | 0.78 | 1.28 | 15.28 | 0.11 | 1.02 | 90.87 |
B (2) | 0.91 | 6.67 | 12.81 | 0.78 | 1.25 | 14.89 | 0.55 | 0.79 | 71.22 | |
C (3) | 0.91 | 6.74 | 12.93 | 0.80 | 1.17 | 14.02 | 0.59 | 0.72 | 64.53 | |
D (4) | 0.92 | 6.66 | 12.79 | 0.81 | 1.13 | 13.53 | 0.72 | 0.62 | 55.34 | |
E (5) | 0.91 | 6.70 | 12.85 | 0.80 | 1.19 | 14.26 | 0.51 | 0.78 | 69.63 |
Models | Strategies (Nconv) | Cab | Car | Canth | ||||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE (µg/cm2) | nRMSE (%) | R2 | RMSE (µg/cm2) | nRMSE (%) | R2 | RMSE (µg/cm2) | nRMSE (%) | ||
2D-CNNf (20 × 20) | A (1) | 0.91 | 6.92 | 13.28 | 0.78 | 1.07 | 12.70 | 0.82 | 0.49 | 43.72 |
B (2) | 0.92 | 7.08 | 13.58 | 0.78 | 1.10 | 13.04 | 0.76 | 0.56 | 49.90 | |
C (3) | 0.92 | 6.52 | 12.50 | 0.80 | 1.12 | 13.34 | 0.82 | 0.47 | 41.89 | |
D (4) | 0.92 | 6.43 | 12.35 | 0.81 | 1.07 | 12.77 | 0.84 | 0.46 | 41.43 | |
E (5) | 0.92 | 7.30 | 14.01 | 0.80 | 1.12 | 13.38 | 0.82 | 0.53 | 46.90 | |
2D-CNNGA (20 × 20) | A (1) | 0.91 | 6.98 | 13.40 | 0.83 | 1.05 | 12.53 | 0.88 | 0.37 | 32.99 |
B (2) | 0.92 | 6.38 | 12.24 | 0.82 | 1.09 | 12.98 | 0.87 | 0.40 | 35.29 | |
C (3) | 0.92 | 6.23 | 11.95 | 0.83 | 1.16 | 13.80 | 0.89 | 0.37 | 33.14 | |
D (4) | 0.92 | 6.10 | 11.71 | 0.84 | 1.03 | 12.29 | 0.89 | 0.35 | 31.58 | |
E (5) | 0.92 | 6.81 | 13.07 | 0.82 | 1.11 | 13.29 | 0.89 | 0.36 | 31.84 | |
2D-CNNf (40 × 10) | A (1) | 0.92 | 6.75 | 12.96 | 0.82 | 1.12 | 13.31 | 0.80 | 0.50 | 44.54 |
B (2) | 0.92 | 6.67 | 12.79 | 0.83 | 1.07 | 12.78 | 0.81 | 0.48 | 42.46 | |
C (3) | 0.92 | 6.78 | 13.01 | 0.82 | 1.10 | 13.13 | 0.78 | 0.61 | 54.02 | |
D (4) | 0.91 | 7.16 | 13.75 | 0.81 | 1.11 | 13.23 | 0.78 | 0.54 | 47.79 | |
E (5) | 0.92 | 6.88 | 13.20 | 0.84 | 1.08 | 12.85 | 0.79 | 0.52 | 46.36 | |
2D-CNNGA (40 × 10) | A (1) | 0.92 | 6.46 | 12.39 | 0.82 | 1.11 | 13.24 | 0.86 | 0.41 | 37.05 |
B (2) | 0.92 | 6.36 | 12.20 | 0.84 | 1.05 | 12.49 | 0.88 | 0.37 | 33.25 | |
C (3) | 0.92 | 6.38 | 12.24 | 0.83 | 1.07 | 12.76 | 0.85 | 0.42 | 37.80 | |
D (4) | 0.92 | 6.47 | 12.41 | 0.81 | 1.12 | 13.39 | 0.84 | 0.43 | 38.38 | |
E (5) | 0.92 | 7.13 | 13.68 | 0.82 | 1.08 | 12.83 | 0.91 | 0.43 | 38.61 | |
2D-CNNf (10 × 40) | A (1) | 0.91 | 6.84 | 13.12 | 0.81 | 1.13 | 13.42 | 0.82 | 0.52 | 46.06 |
B (2) | 0.91 | 7.31 | 14.03 | 0.81 | 1.13 | 13.45 | 0.86 | 0.53 | 47.75 | |
C (3) | 0.92 | 6.63 | 12.72 | 0.82 | 1.10 | 13.14 | 0.83 | 0.47 | 41.82 | |
D (4) | 0.91 | 6.79 | 13.04 | 0.81 | 1.16 | 13.78 | 0.78 | 0.51 | 45.26 | |
E (5) | 0.91 | 6.71 | 12.88 | 0.82 | 1.13 | 13.43 | 0.83 | 0.54 | 48.36 | |
2D-CNNGA (10 × 40) | A (1) | 0.91 | 6.65 | 12.76 | 0.80 | 1.18 | 14.02 | 0.89 | 0.42 | 37.65 |
B (2) | 0.92 | 6.75 | 12.96 | 0.81 | 1.15 | 13.68 | 0.88 | 0.40 | 35.48 | |
C (3) | 0.92 | 6.49 | 12.45 | 0.82 | 1.13 | 13.39 | 0.88 | 0.38 | 33.98 | |
D (4) | 0.92 | 6.68 | 12.81 | 0.79 | 1.20 | 14.23 | 0.84 | 0.43 | 38.30 | |
E (5) | 0.92 | 6.66 | 12.77 | 0.80 | 1.14 | 13.54 | 0.86 | 0.40 | 35.90 | |
2D-CNNf (50 × 8) | A (1) | 0.91 | 6.81 | 13.06 | 0.83 | 1.16 | 13.85 | 0.79 | 0.52 | 46.16 |
B (2) | 0.92 | 6.72 | 12.89 | 0.84 | 1.08 | 12.83 | 0.77 | 0.56 | 49.96 | |
C (3) | 0.92 | 6.64 | 12.74 | 0.84 | 1.06 | 12.60 | 0.80 | 0.48 | 42.74 | |
D (4) | 0.90 | 7.31 | 14.02 | 0.83 | 1.08 | 12.90 | 0.77 | 0.57 | 50.61 | |
E (5) | 0.92 | 6.65 | 12.76 | 0.83 | 1.07 | 12.72 | 0.80 | 0.49 | 43.62 | |
2D-CNNGA (50 × 8) | A (1) | 0.92 | 6.41 | 12.30 | 0.83 | 1.09 | 12.99 | 0.81 | 0.46 | 41.36 |
B (2) | 0.92 | 6.53 | 12.54 | 0.82 | 1.11 | 13.25 | 0.82 | 0.47 | 42.35 | |
C (3) | 0.92 | 6.24 | 11.96 | 0.83 | 1.08 | 12.85 | 0.85 | 0.41 | 36.66 | |
D (4) | 0.91 | 6.84 | 13.12 | 0.82 | 1.10 | 13.10 | 0.84 | 0.46 | 40.67 | |
E (5) | 0.92 | 6.94 | 13.31 | 0.82 | 1.08 | 12.87 | 0.84 | 0.45 | 40.07 | |
2D-CNNf (8 × 50) | A (1) | 0.91 | 7.11 | 13.64 | 0.81 | 1.23 | 14.70 | 0.83 | 0.52 | 45.99 |
B (2) | 0.91 | 6.82 | 13.09 | 0.82 | 1.13 | 13.46 | 0.81 | 0.47 | 41.76 | |
C (3) | 0.92 | 6.77 | 12.98 | 0.82 | 1.12 | 13.30 | 0.86 | 0.46 | 41.22 | |
D (4) | 0.90 | 7.04 | 13.51 | 0.80 | 1.21 | 14.43 | 0.81 | 0.46 | 41.27 | |
E (5) | 0.90 | 7.11 | 13.63 | 0.86 | 1.28 | 15.28 | 0.86 | 0.48 | 42.43 | |
2D-CNNGA (8 × 50) | A (1) | 0.91 | 6.92 | 13.28 | 0.82 | 1.12 | 13.29 | 0.86 | 0.48 | 42.67 |
B (2) | 0.92 | 6.49 | 12.45 | 0.82 | 1.09 | 12.97 | 0.85 | 0.43 | 38.62 | |
C (3) | 0.92 | 6.41 | 12.29 | 0.84 | 1.08 | 12.91 | 0.87 | 0.42 | 38.22 | |
D (4) | 0.91 | 6.95 | 13.33 | 0.81 | 1.11 | 13.24 | 0.83 | 0.46 | 40.97 | |
E (5) | 0.92 | 7.30 | 14.00 | 0.80 | 1.20 | 14.26 | 0.83 | 0.44 | 39.57 |
Models | Cab | Car | Canth | ||||||
---|---|---|---|---|---|---|---|---|---|
R2 | RMSE (µg/cm2) | nRMSE (%) | R2 | RMSE (µg/cm2) | nRMSE (%) | R2 | RMSE (µg/cm2) | nRMSE (%) | |
PLSRf | 0.75 | 11.07 | 21.24 | 0.53 | 1.93 | 22.96 | 0.39 | 0.92 | 82.13 |
PLSRGA | 0.80 | 9.91 | 19.01 | 0.61 | 1.67 | 19.84 | 0.44 | 0.86 | 77.03 |
RFRf | 0.84 | 9.05 | 17.36 | 0.70 | 1.53 | 18.17 | 0.51 | 0.81 | 72.15 |
RFRGA | 0.85 | 8.81 | 16.90 | 0.70 | 1.51 | 18.00 | 0.52 | 0.79 | 70.50 |
GPRf | 0.86 | 8.92 | 17.12 | 0.72 | 1.48 | 17.67 | 0.62 | 0.78 | 69.75 |
GPRGA | 0.87 | 8.53 | 16.36 | 0.74 | 1.39 | 16.59 | 0.63 | 0.75 | 66.85 |
Models | Cab | Car | ||||
---|---|---|---|---|---|---|
R2 | RMSE (µg/cm2) | nRMSE (%) | R2 | RMSE (µg/cm2) | nRMSE (%) | |
1D-CNNf | 0.86 | 8.33 | 17.65 | 0.70 | 1.54 | 17.89 |
1D-CNNGA | 0.87 | 7.94 | 16.83 | 0.74 | 1.47 | 17.15 |
2D-CNNf | 0.87 | 7.92 | 16.77 | 0.75 | 1.46 | 16.96 |
2D-CNNGA | 0.88 | 7.81 | 16.54 | 0.75 | 1.43 | 16.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Xu, D. Deep Learning-Based Prediction of Multi-Species Leaf Pigment Content Using Hyperspectral Reflectance. Remote Sens. 2025, 17, 3293. https://doi.org/10.3390/rs17193293
Wang Z, Xu D. Deep Learning-Based Prediction of Multi-Species Leaf Pigment Content Using Hyperspectral Reflectance. Remote Sensing. 2025; 17(19):3293. https://doi.org/10.3390/rs17193293
Chicago/Turabian StyleWang, Ziyu, and Duanyang Xu. 2025. "Deep Learning-Based Prediction of Multi-Species Leaf Pigment Content Using Hyperspectral Reflectance" Remote Sensing 17, no. 19: 3293. https://doi.org/10.3390/rs17193293
APA StyleWang, Z., & Xu, D. (2025). Deep Learning-Based Prediction of Multi-Species Leaf Pigment Content Using Hyperspectral Reflectance. Remote Sensing, 17(19), 3293. https://doi.org/10.3390/rs17193293