Remote Detection of Geothermal Alteration Using Airborne Light Detection and Ranging Return Intensity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Locations and Rock Samples
2.3. Airborne LiDAR Datasets
2.4. Validation of LRI for Hydrothermal Alteration
3. Results
4. Discussion
4.1. Comparison with Laboratory Results
4.2. Variability in Airborne LRI Values, Limitations, and Challenges
4.2.1. Variability Due to Alteration Degree
4.2.2. Variability Due to Outcrop Geomorphology
4.2.3. Variability Due to Soil Moisture
4.3. Outlook for Airborne Applications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van der Meer, F.; Hecker, C.; van Ruitenbeek, F.; van der Werff, H.; de Wijkerslooth, C.; Wechsler, C. Geologic Remote Sensing for Geothermal Exploration: A Review. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 255–269. [Google Scholar] [CrossRef]
- Yalcin, M.; Kilic Gul, F.; Yildiz, A.; Polat, N.; Basaran, C. The Mapping of Hydrothermal Alteration Related to the Geothermal Activities with Remote Sensing at Akarcay Basin (Afyonkarahisar), Using Aster Data. Arab. J. Geosci. 2020, 13, 1166. [Google Scholar] [CrossRef]
- Calvin, W.M.; Littlefield, E.F.; Kratt, C. Remote Sensing of Geothermal-Related Minerals for Resource Exploration in Nevada. Geothermics 2015, 53, 517–526. [Google Scholar] [CrossRef]
- Abubakar, A.J.; Hashim, M.; Pour, A.B. Identification of Hydrothermal Alteration Minerals Associated with Geothermal System Using ASTER and Hyperion Satellite Data: A Case Study from Yankari Park, NE Nigeria. Geocarto. Int. 2019, 34, 597–625. [Google Scholar] [CrossRef]
- Hellman, M.J.; Ramsey, M.S. Analysis of Hot Springs and Associated Deposits in Yellowstone National Park Using ASTER and AVIRIS Remote Sensing. J. Volcanol. Geotherm. Res. 2004, 135, 195–219. [Google Scholar] [CrossRef]
- Kruse, F.A. Comparative Analysis of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), and Hyperspectral Thermal Emission Spectrometer (HyTES) Longwave Infrared (LWIR) Hyperspectral Data for Geologic Mapping. In Proceedings of the SPIE 9472, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXI, Baltimore, MD, USA, 20–24 April 2015; Velez-Reyes, M., Kruse, F.A., Eds.; SPIE: Bellingham, WA, USA, 2015; Volume 9472. [Google Scholar]
- Kumar, H.; Ramakrishnan, D.; Jain, R.; Govil, H. Can Imaging Spectroscopy Divulge the Process Mechanism of Mineralization? Inferences from the Talc Mineralization, Jahazpur, India. Remote Sens. 2023, 15, 2394. [Google Scholar] [CrossRef]
- Mishra, G.; Govil, H.; Srivastava, P.K. Identification of Malachite and Alteration Minerals Using Airborne AVIRIS-NG Hyperspectral Data. Quat. Sci. Adv. 2021, 4, 100036. [Google Scholar] [CrossRef]
- Pour, A.B.; Hashim, M.; van Genderen, J. Detection of Hydrothermal Alteration Zones in a Tropical Region Using Satellite Remote Sensing Data: Bau Goldfield, Sarawak, Malaysia. Ore. Geol. Rev. 2013, 54, 181–196. [Google Scholar] [CrossRef]
- Roy, S.; Bhattacharya, S.; Omkar, S.N. Automated Large-Scale Mapping of the Jahazpur Mineralised Belt by a MapReduce Model with an Integrated ELM Method. PFG—J. Photogramm. Remote Sens. Geoinf. Sci. 2022, 90, 191–209. [Google Scholar] [CrossRef]
- Tripathi, M.K.; Govil, H.; Bhaumik, P. Implications and Interrelations of Litho-Boundaries and Vicinity of Lineaments for Hydrothermal Alteration Zones under Remote Sensing and GIS Environment. Adv. Space Res. 2022, 70, 621–640. [Google Scholar] [CrossRef]
- Müller, D.; Bredemeyer, S.; Zorn, E.; De Paolo, E.; Walter, T.R. Surveying Fumarole Sites and Hydrothermal Alteration by Unoccupied Aircraft Systems (UAS) at the La Fossa Cone, Vulcano Island (Italy). J. Volcanol. Geotherm. Res. 2021, 413, 107208. [Google Scholar] [CrossRef]
- Beraldin, J.-A.; Blais, F.; Lohr, U. Airborne and Terrestrial Laser Scanning. In Airborne and Terrestrial Laser Scanning; Vosselman, G., Maas, H.-G., Eds.; Whittles Publishing: Scotland, UK, 2010; pp. 1–44. ISBN 9781904445876. [Google Scholar]
- Jaboyedoff, M.; Oppikofer, T.; Abellán, A.; Derron, M.-H.; Loye, A.; Metzger, R.; Pedrazzini, A. Use of LIDAR in Landslide Investigations: A Review. Nat. Hazards 2012, 61, 5–28. [Google Scholar] [CrossRef]
- Jia, Y.; Lan, T.; Peng, T.; Wu, H.; Li, C.; Ni, G. Effects of Point Density on DEM Accuracy of Airborne LiDAR. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium—IGARSS, Melbourne, Australia, 21–26 July 2013; pp. 493–496. [Google Scholar] [CrossRef]
- Petras, V.; Petrasova, A.; McCarter, J.B.; Mitasova, H.; Meentemeyer, R.K. Point Density Variations in Airborne Lidar Point Clouds. Sensors 2023, 23, 1593. [Google Scholar] [CrossRef]
- Wu, Q.; Zhong, R.; Dong, P.; Mo, Y.; Jin, Y. Airborne LiDAR Intensity Correction Based on a New Method for Incidence Angle Correction for Improving Land-Cover Classification. Remote Sens. 2021, 13, 511. [Google Scholar] [CrossRef]
- Jelalian, A.V. Laser Radar Systems; Artech House: Boston, MA, USA, 1992; ISBN 9780890065549, 0890065543. [Google Scholar]
- García, M.; Riaño, D.; Chuvieco, E.; Danson, F.M. Estimating Biomass Carbon Stocks for a Mediterranean Forest in Central Spain Using LiDAR Height and Intensity Data. Remote Sens. Environ. 2010, 114, 816–830. [Google Scholar] [CrossRef]
- Coren, F.; Sterzai, P. Radiometric Correction in Laser Scanning. Int. J. Remote Sens. 2006, 27, 3097–3104. [Google Scholar] [CrossRef]
- Franceschi, M.; Teza, G.; Preto, N.; Pesci, A.; Galgaro, A.; Girardi, S. Discrimination between Marls and Limestones Using Intensity Data from Terrestrial Laser Scanner. ISPRS J. Photogramm. Remote Sens. 2009, 64, 522–528. [Google Scholar] [CrossRef]
- Burton, D.; Dunlap, D.B.; Wood, L.J.; Flaig, P.P. Lidar Intensity as a Remote Sensor of Rock Properties. J. Sediment. Res. 2011, 81, 339–347. [Google Scholar] [CrossRef]
- Penasa, L.; Franceschi, M.; Preto, N.; Teza, G.; Polito, V. Integration of Intensity Textures and Local Geometry Descriptors from Terrestrial Laser Scanning to Map Chert in Outcrops. ISPRS J. Photogramm. Remote Sens. 2014, 93, 88–97. [Google Scholar] [CrossRef]
- Humair, F.; Abellan, A.; Carrea, D.; Matasci, B.; Epard, J.-L.; Jaboyedoff, M. Geological Layers Detection and Characterisation Using High Resolution 3D Point Clouds: Example of a Box-Fold in the Swiss Jura Mountains. Eur. J. Remote Sens. 2015, 48, 541–568. [Google Scholar] [CrossRef]
- Matasci, B.; Carrea, D.; Abellan, A.; Derron, M.-H.; Humair, F.; Jaboyedoff, M.; Metzger, R. Geological Mapping and Fold Modeling Using Terrestrial Laser Scanning Point Clouds: Application to the Dents-Du-Midi Limestone Massif (Switzerland). Eur. J. Remote Sens. 2015, 48, 569–591. [Google Scholar] [CrossRef]
- Bellian, J.A.; Kerans, C.; Jennette, D.C. Digital Outcrop Models: Applications of Terrestrial Scanning Lidar Technology in Stratigraphic Modeling. J. Sediment. Res. 2005, 75, 166–176. [Google Scholar] [CrossRef]
- Freski, Y.R.; Hecker, C.; van der Meijde, M.; Setianto, A. The Effects of Alteration Degree, Moisture and Temperature on Laser Return Intensity for Mapping Geothermal Manifestations. Geothermics 2021, 97, 102250. [Google Scholar] [CrossRef]
- Muraoka, H.; Nasution, A.; Simanjuntak, J.; Dwipa, S.; Takahashi, M.; Takahashi, H. Geology and Geothermal Systems in the Bajawa Volcanic Rift Zone, Flores, Eastern Indonesia. In Proceedings of the World Geothermal Congress, Antalya, Turkey, 24–29 April 2005; pp. 1–13. [Google Scholar]
- Ministry of Energy and Mineral Resources of the Republic of Indonesia. Potensi Panas Bumi NTT Mencapai 1.266 Mw (Geothermal potential in Nusa Tenggara Timur province reaches 1.266 Mw). Available online: https://www.esdm.go.id/id/media-center/arsip-berita/potensi-panas-bumi-ntt-mencapai-1266-mw (accessed on 1 May 2024).
- Wunderman, R. (Ed.) Global Volcanism Program Report on Inielika (Indonesia). In Bulletin of the Global Volcanism Network; Smithsonian Institution: Washington, DC, USA, 2001; Volume 26, p. 9. [Google Scholar]
- PT ASI Pudjiastuti Geosurvey LiDAR Data and Aerial Photo Acquisition Report: Bajawa, Flores Island, Indonesia; PT ASI Pudjiastuti Geosurvey: Jakarta, Indonesia, 2018.
- BMKG of the Republic of Indonesia Meteorological Report of Frans Sales Lega Station, Manggarai, Flores. Available online: https://dataonline.bmkg.go.id/ (accessed on 15 June 2022).
- Kashani, A.G.; Olsen, M.J.; Parrish, C.E.; Wilson, N. A Review of LIDAR Radiometric Processing: From Ad Hoc Intensity Correction to Rigorous Radiometric Calibration. Sensors 2015, 15, 28099–28128. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Höfle, B.; Pfeifer, N. Correction of Laser Scanning Intensity Data: Data and Model-Driven Approaches. ISPRS J. Photogramm. Remote Sens. 2007, 62, 415–433. [Google Scholar] [CrossRef]
- Kaasalainen, S.; Hyyppä, J.; Litkey, P.; Hyyppä, H.; Ahokas, E.; Kukko, A.; Kaartinen, H. Radiometric Calibration of ALS Intensity. Int. Arch. Photogramm. Remote Sens. 2007, 47, 201–205. [Google Scholar]
- Vain, A.; Kaasalainen, S.; Pyysalo, U.; Krooks, A.; Litkey, P. Use of Naturally Available Reference Targets to Calibrate Airborne Laser Scanning Intensity Data. Sensors 2009, 9, 2780–2796. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.Y.; Shaker, A. Radiometric Correction and Normalization of Airborne LiDAR Intensity Data for Improving Land-Cover Classification. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7658–7673. [Google Scholar] [CrossRef]
- El Halim, M.; Daoudi, L.; El Alaoui El Fels, A. How Elemental Composition Influences the Color of Igneous and Sedimentary Rocks: Case of the High Atlas Rocks of Morocco. Color. Res. Appl. 2022, 47, 475–485. [Google Scholar] [CrossRef]
- Hartzell, P.; Glennie, C.; Biber, K.; Khan, S. Application of Multispectral LiDAR to Automated Virtual Outcrop Geology. ISPRS J. Photogramm. Remote Sens. 2014, 88, 147–155. [Google Scholar] [CrossRef]
- Jin, J.; De Sloover, L.; Verbeurgt, J.; Stal, C.; Deruyter, G.; Montreuil, A.L.; De Maeyer, P.; De Wulf, A. Measuring Surface Moisture on a Sandy Beach Based on Corrected Intensity Data of a Mobile Terrestrial LiDAR. Remote Sens. 2020, 12, 209. [Google Scholar] [CrossRef]
- Kaasalainen, S.; Niittymäki, H.; Krooks, A.; Koch, K.; Kaartinen, H.; Vain, A.; Hyyppä, H. Effect of Target Moisture on Laser Scanner Intensity. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2128–2136. [Google Scholar] [CrossRef]
Alteration Degree | Description | Photograph | Sample Code | Sampling Coordinates in UTM (Zone 51L) |
---|---|---|---|---|
Strongly altered porous fine-grained lapilli-tuff | SA_PF | 277383 9033139 | ||
Strongly altered porous porphyritic autobreccia | SA_PP | 277389 9033149 | ||
Strongly altered porous coarse-grained breccia | SA_PC | 277384 9033145 | ||
Weakly altered porous fine-grained lapilli-tuff | WA_PF | 277385 9033140 | ||
Weakly altered porous porphyritic andesite | WA_PP | 277411 9033267 | ||
Unaltered porous aphanitic scoriaceous basalt | UA_PA | 279596 9019644 |
Measures | UA_PA | WA_PP | WA_PF | SA_PC | SA_PP | SA_PF | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TLS | ALS | TLS | ALS | TLS | ALS | TLS | ALS | TLS | ALS | TLS | ALS | |
Mean | 71.69 | 25.65 | 78.86 | 37.80 | 83.53 | 56.03 | 82.59 | 52.70 | 86.16 | 59.22 | 84.79 | 49.69 |
Median | 71.08 | 26.00 | 79.04 | 38.00 | 83.88 | 56.00 | 82.76 | 52.00 | 86.27 | 59.00 | 85.39 | 52.00 |
Standard deviation | 3.29 | 6.43 | 1.69 | 4.85 | 1.64 | 8.49 | 1.60 | 7.16 | 1.07 | 7.62 | 1.55 | 13.65 |
Minimum | 64.48 | 10.00 | 72.74 | 23.00 | 76.06 | 22.00 | 75.43 | 34.00 | 80.70 | 29.00 | 78.65 | 12.00 |
Maximum | 81.86 | 86.00 | 84.03 | 58.00 | 86.76 | 92.00 | 87.45 | 79.00 | 89.11 | 79.00 | 87.10 | 92.00 |
Interquartile range | 4.93 | 8.25 | 2.20 | 7.00 | 1.61 | 11.00 | 2.20 | 9.50 | 1.27 | 9.00 | 1.61 | 15.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freski, Y.R.; Hecker, C.; Meijde, M.v.d.; Setianto, A. Remote Detection of Geothermal Alteration Using Airborne Light Detection and Ranging Return Intensity. Remote Sens. 2024, 16, 1646. https://doi.org/10.3390/rs16091646
Freski YR, Hecker C, Meijde Mvd, Setianto A. Remote Detection of Geothermal Alteration Using Airborne Light Detection and Ranging Return Intensity. Remote Sensing. 2024; 16(9):1646. https://doi.org/10.3390/rs16091646
Chicago/Turabian StyleFreski, Yan Restu, Christoph Hecker, Mark van der Meijde, and Agung Setianto. 2024. "Remote Detection of Geothermal Alteration Using Airborne Light Detection and Ranging Return Intensity" Remote Sensing 16, no. 9: 1646. https://doi.org/10.3390/rs16091646
APA StyleFreski, Y. R., Hecker, C., Meijde, M. v. d., & Setianto, A. (2024). Remote Detection of Geothermal Alteration Using Airborne Light Detection and Ranging Return Intensity. Remote Sensing, 16(9), 1646. https://doi.org/10.3390/rs16091646