Kinematic and Dynamic Structure of the 18 May 2020 Squall Line over South Korea
Abstract
:1. Introduction
2. Data Sources and Analysis Procedures
2.1. Data Sources
2.2. Analysis Procedures
3. A Case Overview
3.1. Evolution of Squall Line
3.2. Movement of Squall Line
4. Comprehensive Analysis of Squall Line Dynamics and Environmental Influences
4.1. Synoptic-Scale Weather Pattern
4.2. Upper Air Sounding Analysis
4.3. Cold Pool Characteristics
4.4. Vertical Wind Shear
4.5. Vertical Structure of the Squall Line
4.5.1. Characteristics of the Squall Line in the Northern Segment
4.5.2. Characteristics of the Squall Line in the Southern Segment
4.5.3. Vertical Motion Dynamic in the Northern Segment
4.5.4. Vertical Motion Dynamic in the Southern Segment
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Characteristics | Northern Segment | Southern Segment |
---|---|---|
Storm structure | Maintained well-organized structure | Fragmented structure before reaching mainland |
Vertical wind shear | Pronounced environmental wind shear contributed to the organized convection (specifically over ocean) | Less pronounced |
Vertical motion | Strong tilted updraft strengthened the structure | Dominant downdraft, weaker updraft |
Reflectivity | Broader area with significant reflectivity up to 6 km over ocean, consistent reflectivity bands | Narrow area with significant reflectivity (over ocean), weakened in coast and inland |
Inflow structure | Stronger ascending front-to-rear flow reach to 7 km, with the descending rear-to-front flow descend to the surface | Weaker, less pronounced ascending front-to-rear flow reach only 4 km, with dominated descending rear-to-front flow and outflow from the middle altitude |
References
- Meng, Z.; Yan, D.; Zhang, Y. General Features of Squall Lines in East China. Mon. Weather Rev. 2013, 141, 1629–1647. [Google Scholar] [CrossRef]
- Parker, M.D.; Johnson, R.H. Organizational modes of Midlatitude mesoscale convective systems. Mon. Weather Rev. 2000, 128, 3413–3436. [Google Scholar] [CrossRef]
- Bluestein, H.B.; Jain, M.H. Formation of Mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci. 1985, 42, 1711–1732. [Google Scholar] [CrossRef]
- Rotunno, R.; Klemp, J.B.; Weisman, M.L. A theory for strong, long-lived squall lines. J. Atmos. Sci. 1988, 45, 463–485. [Google Scholar] [CrossRef]
- Markowski, P.; Richardson, Y. Mesoscale Meteorology in Midlatitudes; John Wiley & Scons, Ltd.: Hoboken, NJ, USA, 2010; pp. 32–33. ISBN 978-047-074-213-6. [Google Scholar]
- Davenport, C.E. Environmental Evolution of Long-Lived Supercell Thunderstorms in the Great Plains. Weather Forecast. 2021, 36, 2187–2209. [Google Scholar] [CrossRef]
- Daher, B.; Hamie, S.; Pappas, K.; Nahidul Karim, M.; Thomas, T. Toward Resilient Water-Energy-Food Systems under Shocks: Understanding the Impact of Migration, Pandemics, and Natural Disasters. Sustainability 2021, 13, 9402. [Google Scholar] [CrossRef]
- Weisman, M.L.; Klemp, J.B.; Rotunno, R. Structure and Evolution of Numerically Simulated Squall Lines. J. Atmos. Sci. 1988, 45, 1990–2013. [Google Scholar] [CrossRef]
- Takemi, T. A sensitivity of squall line intensity to environmental static stability under various shear and moisture conditions. Atmos. Res. 2007, 84, 374–389. [Google Scholar] [CrossRef]
- French, A.J.; Parker, M.D. Observations of Mergers between Squall Lines and Isolated Supercell Thunderstorms. Weather Forecast. 2012, 27, 255–278. [Google Scholar] [CrossRef]
- Szeto, K.K.; Cho, H.R. A numerical investigation of squall lines. Part II: The mechanics of evolution. J. Atmos. Sci 1994, 51, 425–433. [Google Scholar]
- Trapp, R.J.; Weisman, M.L. Low-Level Mesovortices within Squall Lines and Bow Echoes. Part II: Their Genesis and Implications. Mon. Weather Rev. 2003, 131, 2804–2823. [Google Scholar]
- Wakimoto, R. The Life Cycle of Thunderstorm Gust Fronts as Viewed with Doppler Radar and Rawinsonde Data. Mon. Weather Rev. 1982, 110, 1060–1082. [Google Scholar] [CrossRef]
- Li, J.; Su, Y.; Ping, F.; Tang, J. Simulation of the Dynamic and Thermodynamic Structure and Microphysical Evolution of a Squall Line in South China. Atmosphere 2021, 12, 1187. [Google Scholar] [CrossRef]
- Du, Y.; Chen, G.; Han, B.; Bai, L.; Li, M. Convection initiation and growth at the coast of South China. Part II: Effects of the terrain, coastline, and cold pools. Mon. Weather Rev 2020, 148, 3871–3892. [Google Scholar]
- Jeong, J.H.; Lee, D.I.; Wang, C.C. Impact of the cold pool on mesoscale convective system–produced extreme rainfall over southeastern South Korea: 7 July 2009. Mon. Weather Rev. 2016, 144, 3985–4006. [Google Scholar] [CrossRef]
- Qian, Q.; Lin, Y.; Luo, Y.; Zhao, X.; Zhao, Z.; Luo, Y.; Liu, X. Sensitivity of a Simulated Squall Line during Southern China Monsoon Rainfall Experiment to Parameterization of Microphysics. J. Geophys. Res. Atmos. 2018, 123, 4197–4220. [Google Scholar] [CrossRef]
- Fujita, T.T. Results of detailed synoptic studies of squall lines. Tellus 1955, 4, 405–436. [Google Scholar] [CrossRef]
- Braun, S.A.; Houze, R.A. The Transition Zone and Secondary Maximum of Radar Reflectivity behind a Midlatitude Squall Line: Results Retrieved from Doppler Radar Data. J. Atmos. Sci. 1994, 51, 2733–2755. [Google Scholar] [CrossRef]
- Braun, S.A.; Houze, R.A. The Evolution of the 10–11 June 1985 PRE-STORM Squall Line: Initiation, Development of Rear Inflow, and Dissipation. Mon. Weather Rev. 1997, 125, 478–504. [Google Scholar] [CrossRef]
- Leary, C.A.; Houze, R.A. The Structure and Evolution of Convection in a Tropical Cloud Cluster. J. Atmos. Sci. 1979, 36, 437–457. [Google Scholar] [CrossRef]
- Gamache, J.F.; Houze, R.A. Mesoscale Air Motions Associated with a Tropical Squall Line. Mon. Weather Rev. 1982, 110, 118–135. [Google Scholar] [CrossRef]
- Biggerstaff, M.I.; Houze, R.A. Kinematic and Precipitation Structure of the 10–11 June 1985 Squall Line. Mon. Weather Rev. 1991, 119, 3034–3065. [Google Scholar] [CrossRef]
- Wang, T.-C.C.; Lin, Y.-J.; Pasken, R.W.; Shen, H. Characteristics of a subtropical squall line determined from TAMEX dual-Doppler data. Part I: Kinematic structure. J. Atmos. Sci 1990, 47, 2357–2381. [Google Scholar]
- Schumacher, C.; Houze, R.A., Jr. Stratiform precipitation production over sub-Saharan Africa and the tropical east Atlantic as observed by TRMM. Q. J. R. Meteorol. Soc. 2006, 132, 2235–2255. [Google Scholar] [CrossRef]
- Weygandt, S.S.; Shapiro, A.; Droegemeier, K.K. Retrieval of model initial fields from single-Doppler observations of a supercell thunderstorm. Part II: Thermodynamic retrieval and numerical prediction. Mon. Weather Rev. 2002, 130, 454–476. [Google Scholar] [CrossRef]
- Choi, H.Y.; Ha, J.H.; Lee, D.K.; Kuo, Y.H. Analysis and simulation of mesoscale convective systems accompanying heavy rainfall: The Goyang case. Asia-Pac. J. Atmos. Sci. 2011, 47, 265–279. [Google Scholar] [CrossRef]
- Tang, J.; Tang, X.; Xu, F.; Zhang, F. Multi-Scale Interaction between a Squall Line and a Supercell and Its Impact on the Genesis of the “0612” Gaoyou Tornado. Atmosphere 2022, 13, 272. [Google Scholar] [CrossRef]
- Tsai, C.L.; Kim, K.; Liou, Y.C.; Lee, G.; Yu, C.K. Impacts of topography on airflow and precipitation in the Pyeongchang area seen from multiple-Doppler radar observations. Mon. Weather Rev. 2018, 146, 3401–3424. [Google Scholar] [CrossRef]
- Marsham, J.H.; Trier, S.B.; Weckwerth, T.M.; Wilson, J.W. Observations of Elevated Convection Initiation Leading to a Surface-Based Squall Line during 13 June IHOP_2002. Mon. Weather Rev. 2011, 139, 247–271. [Google Scholar] [CrossRef]
- Bryan, G.H.; Parker, M.D. Observations of a Squall Line and Its Near Environment Using High-Frequency Rawinsonde Launches during VORTEX2. Mon. Weather Rev. 2010, 138, 4076–4097. [Google Scholar] [CrossRef]
- Oh, Y.A.; Kim, H.L.; Suk, M.K. Clutter elimination algorithm for non-precipitation echo of radar data considering meteorological and observational properties in polarimetric measurements. Remote Sens. 2020, 12, 3790. [Google Scholar] [CrossRef]
- Lee, J.E.; Jung, S.H.; Kwon, S. Characteristics of the bright band based on quasi-vertical profiles of polarimetric observations from an S-band weather radar network. Remote Sens. 2020, 12, 4061. [Google Scholar] [CrossRef]
- Brooks, H.E.; James, W.L.; Jeffrey, P.C. The Spatial Distribution of Severe Thunderstorm and Tornado Environments from Global Reanalysis Data. Atmos. Res. 2003, 67, 73–94. [Google Scholar] [CrossRef]
- Hirth, B.D.; Schroeder, J.L.; Weiss, C.C. Surface Analysis of the Rear-Flank Downdraft Outflow in Two Tornadic Supercells. Mon. Weather Rev. 2008, 136, 2344–2363. [Google Scholar] [CrossRef]
- Thompson, R.L.; Mead, C.M.; Edwards, R. Effective Storm-Relative Helicity and Bulk Shear in Supercell Thunderstorm Environments. Weather Forecast. 2007, 22, 102–115. [Google Scholar] [CrossRef]
- Kerr, B.W.; Darkow, G.L. Storm-relative winds and helicity in the tornadic thunderstorm environment. Wea. Forecast. 1996, 11, 489–505. [Google Scholar] [CrossRef]
- Lilly, D.K. The structure and propagation of rotation convective storm. Part 2. Helicity and storm. J. Atmos. Sci. 1986, 43, 126–140. [Google Scholar] [CrossRef]
- Chen, Y.R.; Li, Y.Q.; Zhao, T.L. Cause Analysis on Eastward Movement of Southwest China Vortex and Its Induced Heavy Rainfall in South China. Adv. Meteorol. 2015, 2015, 481735. [Google Scholar] [CrossRef]
- Lucas, C.; Zipser, E.J.; Ferrier, B.S. Sensitivity of tropical west Pacific oceanic squall lines to tropospheric wind and moisture profiles. J. Atmos. Sci. 2000, 57, 2351–2373. [Google Scholar] [CrossRef]
- Li, H.; Huang, Y.; Hu, S.; Wu, N.; Liu, X.; Xiao, H. Roles of terrain, surface roughness, and cold pool outflows in an extreme rainfall event over the coastal region of South China. J. Geophys. Res. Atmos. 2021, 126, 23. [Google Scholar] [CrossRef]
- Weisman, M.L.; Trapp, R.J. Low-Level Mesovortices within Squall Lines and Bow Echoes. Part I: Overview and Dependence on Environmental Shear. Mon. Weather Rev. 2003, 131, 2779–2803. [Google Scholar] [CrossRef]
- Hence, D.A.; Houze, R.A., Jr. Kinematic structure of convective-scale elements in the rainbands of Hurricanes Katrina and Rita (2005). J. Geophys. Res. 2008, 113, D15108. [Google Scholar] [CrossRef]
- Newton, C.W. Structure and mechanism of the prefrontal squall line. J. Atmos. Sci. 1950, 7, 210–222. [Google Scholar] [CrossRef]
- Dahl, J.M.L. Tilting of Horizontal Shear Vorticity and the Development of Updraft Rotation in Supercell Thunderstorms. J. Atmos. Sci. 2017, 74, 2997–3020. [Google Scholar] [CrossRef]
- Rotunno, R.; Klemp, J.B. The Influence of the Shear-Induced Pressure Gradient on Thunderstorm Motion. Mon. Weather Rev. 1982, 110, 136–151. [Google Scholar] [CrossRef]
- Weisman, M.L. The Role of Convectively Generated Rear-Inflow Jets in the Evolution of Long-Lived Meso Convective Systems. J. Atmos. Sci. 1992, 49, 1826–1847. [Google Scholar] [CrossRef]
- Alfaro, D.A. Low-Tropospheric Shear in the Structure of Squall Lines: Impacts on Latent Heating under Layer-Lifting Ascent. J. Atmos. Sci. 2017, 74, 229–248. [Google Scholar] [CrossRef]
Station | [m s−1] | [m s−1] | [m s−1] | Surface-Based CAPE (SBC) | Mixed-Layer CAPE (MLC) | Most Unstable CAPE (MUC) |
---|---|---|---|---|---|---|
Baekryeongdo | 14.6 | 17.2 | 26.3 | 1.7 | 0 | 0 |
Osan | 8.9 | 14.7 | 30.9 | 192.8 | 32.3 | 192.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swastiko, W.A.; Tsai, C.-L.; Kim, S.H.; Lee, G. Kinematic and Dynamic Structure of the 18 May 2020 Squall Line over South Korea. Remote Sens. 2024, 16, 1474. https://doi.org/10.3390/rs16081474
Swastiko WA, Tsai C-L, Kim SH, Lee G. Kinematic and Dynamic Structure of the 18 May 2020 Squall Line over South Korea. Remote Sensing. 2024; 16(8):1474. https://doi.org/10.3390/rs16081474
Chicago/Turabian StyleSwastiko, Wishnu Agum, Chia-Lun Tsai, Seung Hee Kim, and GyuWon Lee. 2024. "Kinematic and Dynamic Structure of the 18 May 2020 Squall Line over South Korea" Remote Sensing 16, no. 8: 1474. https://doi.org/10.3390/rs16081474
APA StyleSwastiko, W. A., Tsai, C. -L., Kim, S. H., & Lee, G. (2024). Kinematic and Dynamic Structure of the 18 May 2020 Squall Line over South Korea. Remote Sensing, 16(8), 1474. https://doi.org/10.3390/rs16081474