Detection of Typical Forest Degradation Patterns: Characteristics and Drivers of Forest Degradation in Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Remote Sensing Index and Driving Factors
2.2.2. Field Validation Data
2.3. Construction of the Degradation Index
2.3.1. Fire-Induced Indicator
2.3.2. Drought-Induced Indicator
2.3.3. Insect-Induced Indicator
2.4. Spatiotemporal Characteristics of Forest Degradation
2.5. Analysis of Factors Driving Forest Degradation
3. Results
3.1. Index Validation
3.2. Spatiotemporal Characteristics of Forest Degradation
3.3. Drivers of Forest Degradation
4. Discussion
4.1. Distinguishing Different Degradation Patterns Using Indicators Constructed Based on Different Remote Sensing Indicators
4.2. Differences of Forest Degradation Patterns among Vegetation Zones
4.3. Insights for Management Implications from Differences in Factors Driving Forest Degradation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. Global Forest Resources Assessment 2010 Main Report; Food and Agriculture Organization (FAO): Rome, Italy, 2010. [Google Scholar]
- Griffiths, P.; Kuemmerle, T.; Baumann, M.; Radeloff, V.C.; Abrudan, I.V.; Lieskovsky, J.; Munteanu, C.; Ostapowicz, K.; Hostert, P. Forest Disturbances, Forest Recovery, and Changes in Forest Types across the Carpathian Ecoregion from 1985 to 2010 Based on Landsat Image Composites. Remote Sens. Environ. 2014, 151, 72–88. [Google Scholar] [CrossRef]
- Millar, C.I.; Stephenson, N.L. Temperate Forest Health in an Era of Emerging Megadisturbance. Science 2015, 349, 823–826. [Google Scholar] [CrossRef] [PubMed]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest Disturbances under Climate Change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Skutsch, M.; Paneque-Gálvez, J.; Ghilardi, A. Remote Sensing of Forest Degradation: A Review. Environ. Res. Lett. 2020, 15, 103001. [Google Scholar] [CrossRef]
- Bullock, E.L.; Woodcock, C.E.; Olofsson, P. Monitoring Tropical Forest Degradation Using Spectral Unmixing and Landsat Time Series Analysis. Remote Sens. Environ. 2020, 238, 110968. [Google Scholar] [CrossRef]
- Ghazoul, J.; Burivalova, Z.; Garcia-Ulloa, J.; King, L.A. Conceptualizing Forest Degradation. Trends Ecol. Evol. 2015, 30, 622–632. [Google Scholar] [CrossRef]
- NFGA. China Forest Resources Report; National Forestry and Grassland Administration: Beijing, China, 2019.
- Boisvenue, C.; Smiley, B.P.; White, J.C.; Kurz, W.A.; Wulder, M.A. Integration of Landsat Time Series and Field Plots for Forest Productivity Estimates in Decision Support Models. For. Ecol. Manag. 2016, 376, 284–297. [Google Scholar] [CrossRef]
- Herold, M.; Skutsch, M. Monitoring, Reporting and Verification for National REDD + Programmes: Two Proposals. Environ. Res. Lett. 2011, 6, 014002. [Google Scholar] [CrossRef]
- Castillo, M.; Rivard, B.; Sánchez-Azofeifa, A.; Calvo-Alvarado, J.; Dubayah, R. LIDAR Remote Sensing for Secondary Tropical Dry Forest Identification. Remote Sens. Environ. 2012, 121, 132–143. [Google Scholar] [CrossRef]
- Laporte, N.T.; Stabach, J.A.; Grosch, R.; Lin, T.S.; Goetz, S.J. Expansion of Industrial Logging in Central Africa. Science 2007, 316, 1451. [Google Scholar] [CrossRef]
- Mitchell, A.L.; Rosenqvist, A.; Mora, B. Current Remote Sensing Approaches to Monitoring Forest Degradation in Support of Countries Measurement, Reporting and Verification (MRV) Systems for REDD+. Carbon Balance Manag. 2017, 12, 9. [Google Scholar] [CrossRef]
- Gao, C.; Zhao, F.; Shi, C.; Liu, K.; Wu, X.; Wu, G.; Liang, Y.; Shu, L. Previous Atlantic Multidecadal Oscillation (AMO) Modulates the Lightning-Ignited Fire Regime in the Boreal Forest of Northeast China. Environ. Res. Lett. 2021, 16, 024054. [Google Scholar] [CrossRef]
- Ji, L.; Wang, Z.; Wang, X.; An, L. Forest Insect Pest Management and Forest Management in China: An Overview. Environ. Manag. 2011, 48, 1107–1121. [Google Scholar] [CrossRef] [PubMed]
- Mildrexler, D.J.; Zhao, M.; Running, S.W. Testing a MODIS Global Disturbance Index across North America. Remote Sens. Environ. 2009, 113, 2103–2117. [Google Scholar] [CrossRef]
- Tyukavina, A.; Hansen, M.C.; Potapov, P.V.; Stehman, S.V.; Smith-Rodriguez, K.; Okpa, C.; Aguilar, R. Types and Rates of Forest Disturbance in Brazilian Legal Amazon, 2000–2013. Sci. Adv. 2017, 3, e1601047. [Google Scholar] [CrossRef] [PubMed]
- Goward, S.N.; Masek, J.G.; Cohen, W.; Moisen, G.; Collatz, G.J.; Healey, S.; Houghton, R.A.; Huang, C.; Kennedy, R.; Law, B.; et al. Forest Disturbance and North American Carbon Flux. Eos Trans. AGU 2008, 89, 105. [Google Scholar] [CrossRef]
- Senf, C.; Seidl, R.; Hostert, P. Remote Sensing of Forest Insect Disturbances: Current State and Future Directions. Int. J. Appl. Earth Obs. Geoinf. 2017, 60, 49–60. [Google Scholar] [CrossRef]
- Yu, D.; Zhou, L.; Zhou, W.; Ding, H.; Wang, Q.; Wang, Y.; Wu, X.; Dai, L. Forest Management in Northeast China: History, Problems, and Challenges. Environ. Manag. 2011, 48, 1122–1135. [Google Scholar] [CrossRef]
- Deng, K.; Yang, S.; Ting, M.; Lin, A.; Wang, Z. An Intensified Mode of Variability Modulating the Summer Heat Waves in Eastern Europe and Northern China. Geophys. Res. Lett. 2018, 45, 11361–11369. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, S. Changes in Forest Biomass and Linkage to Climate and Forest Disturbances over Northeastern China. Glob. Chang. Biol. 2014, 20, 2596–2606. [Google Scholar] [CrossRef]
- Xu, X.; Cao, M.; Li, K. Temporal-Spatial Dynamics of Carbon Storage of Forest Vegetation in China. Prog. Geogr. 2007, 6, 3–12. [Google Scholar] [CrossRef]
- Wang, S.; Zhong, R.; Liu, L.; Zhang, J. Ecological Effect of Ecological Engineering Projects on Low-Temperature Forest Cover in Great Khingan Mountain, China. Int. J. Environ. Res. Public Health 2021, 18, 10625. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Song, Y.; Liu, H.; Piao, S. Vegetation-Climate Relationship and Its Application in the Division of Vegetation Zone in China. Acta Bot. Sin. 2002, 44, 1105–1122. [Google Scholar]
- Dale, V.H.; Joyce, L.A.; Mcnulty, S.; Neilson, R.P.; Ayres, M.P.; Flannigan, M.D.; Hanson, P.J.; Irland, L.C.; Lugo, A.E.; Peterson, C.J.; et al. Climate Change and Forest Disturbances. BioScience 2001, 51, 723. [Google Scholar] [CrossRef]
- Li, C.; Wang, J.; Hu, L.; Yu, L.; Clinton, N.; Huang, H.; Yang, J.; Gong, P. A Circa 2010 Thirty Meter Resolution Forest Map for China. Remote Sens. 2014, 6, 5325–5343. [Google Scholar] [CrossRef]
- Goward, S.N.; Cruickshanks, G.D.; Hope, A.S. Observed Relation between Thermal Emission and Reflected Spectral Radiance of a Complex Vegetated Landscape. Remote Sens. Environ. 1985, 18, 137–146. [Google Scholar] [CrossRef]
- Gobin, R.; Korboulewsky, N.; Dumas, Y.; Balandier, P. Transpiration of Four Common Understorey Plant Species According to Drought Intensity in Temperate Forests. Ann. For. Sci. 2015, 72, 1053–1064. [Google Scholar] [CrossRef]
- Tan, Y.; Sun, J.-Y.; Zhang, B.; Chen, M.; Liu, Y.; Liu, X.-D. Sensitivity of a Ratio Vegetation Index Derived from Hyperspectral Remote Sensing to the Brown Planthopper Stress on Rice Plants. Sensors 2019, 19, 375. [Google Scholar] [CrossRef] [PubMed]
- Google Earth Engine. Available online: https://earthengine.google.com (accessed on 25 March 2024).
- National Earth System Science Data Center. Available online: https://www.geodata.cn (accessed on 25 March 2024).
- Van Zyl, J.J. The Shuttle Radar Topography Mission (SRTM): A Breakthrough in Remote Sensing of Topography. Acta Astronaut. 2001, 48, 559–565. [Google Scholar] [CrossRef]
- Jones, P.G.; Thornton, P.K. Representative Soil Profiles for the Harmonized World Soil Database at Different Spatial Resolutions for Agricultural Modelling Applications. Agric. Syst. 2015, 139, 93–99. [Google Scholar] [CrossRef]
- Potapov, P.; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Tang, H.; Silva, C.E.; et al. Mapping Global Forest Canopy Height through Integration of GEDI and Landsat Data. Remote Sens. Environ. 2021, 253, 112165. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, Q.; Tong, X.; Atkinson, P.M. Thirty-Meter Map of Young Forest Age in China. Earth Syst. Sci. Data 2023, 15, 3365–3386. [Google Scholar] [CrossRef]
- National Geomatics Center of China. Available online: https://www.ngcc.cn/ngcc/ (accessed on 25 March 2024).
- Lloyd, C.T.; Sorichetta, A.; Tatem, A.J. High Resolution Global Gridded Data for Use in Population Studies. Sci. Data 2017, 4, 170001. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Li, Q.; Zhang, L.; Gao, J.; Li, W.; Ding, W.; Sun, Y. Accumulated Temperature Variation and Accumulated Temperature Rezone in Heilongjiang Province. Chin. J. Agrometeorol. 2014, 35, 492. [Google Scholar] [CrossRef]
- Hu, Z.; Zhou, J.; Zhang, L.; Wei, W.; Cao, J. Climate dry-wet change and drought evolution characteristics of different dry-wet areas in northern China. Acta Ecol. Sin. 2018, 38, 1908–1919. [Google Scholar]
- Dou, X.; Li, K.; Zhang, Q.; Ma, C.; Tang, H.; Liu, X.; Qian, Y.; Chen, J.; Li, J.; Li, Y.; et al. Estimation of Land Surface Temperature from Chinese ZY1-02E IRS Data. Remote Sens. 2024, 16, 383. [Google Scholar] [CrossRef]
- Wu, W.; Yang, F.; Wang, J.; Diao, Y.; Guo, Y.; Wu, R. Dynamic monitoring and analysis of ecosystem disturbances in major vegetation types based on MODIS time series data in Southwest China. Geogr. Res. 2021, 40, 1478–1494. [Google Scholar]
- Rullán-Silva, C.; Olthoff, A.E.; Pando, V.; Pajares, J.A.; Delgado, J.A. Remote Monitoring of Defoliation by the Beech Leaf-Mining Weevil Rhynchaenus Fagi in Northern Spain. For. Ecol. Manag. 2015, 347, 200–208. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R.; Hastie, T. A Working Guide to Boosted Regression Trees. J. Anim. Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef]
- Doetterl, S.; Stevens, A.; Six, J.; Merckx, R.; Van Oost, K.; Casanova Pinto, M.; Casanova-Katny, A.; Muñoz, C.; Boudin, M.; Zagal Venegas, E.; et al. Soil Carbon Storage Controlled by Interactions between Geochemistry and Climate. Nat. Geosci. 2015, 8, 780–783. [Google Scholar] [CrossRef]
- Vlassova, L.; Pérez-Cabello, F.; Mimbrero, M.; Llovería, R.; García-Martín, A. Analysis of the Relationship between Land Surface Temperature and Wildfire Severity in a Series of Landsat Images. Remote Sens. 2014, 6, 6136–6162. [Google Scholar] [CrossRef]
- Riaño, D.; Moreno Ruiz, J.A.; Barón Martínez, J.; Ustin, S.L. Burned Area Forecasting Using Past Burned Area Records and Southern Oscillation Index for Tropical Africa (1981–1999). Remote Sens. Environ. 2007, 107, 571–581. [Google Scholar] [CrossRef]
- Chompuchan, C.; Lin, C.-Y. Assessment of Forest Recovery at Wu-Ling Fire Scars in Taiwan Using Multi-Temporal Landsat Imagery. Ecol. Indic. 2017, 79, 196–206. [Google Scholar] [CrossRef]
- Souza, C.M.; Roberts, D.A.; Cochrane, M.A. Combining Spectral and Spatial Information to Map Canopy Damage from Selective Logging and Forest Fires. Remote Sens. Environ. 2005, 98, 329–343. [Google Scholar] [CrossRef]
- Shi, S.; Yao, F.; Zhang, J.; Yang, S. Evaluation of Temperature Vegetation Dryness Index on Drought Monitoring Over Eurasia. IEEE Access 2020, 8, 30050–30059. [Google Scholar] [CrossRef]
- Wei, W.; Pang, S.; Wang, X.; Zhou, L.; Xie, B.; Zhou, J.; Li, C. Temperature Vegetation Precipitation Dryness Index (TVPDI)-Based Dryness-Wetness Monitoring in China. Remote Sens. Environ. 2020, 248, 111957. [Google Scholar] [CrossRef]
- Wang, L.; Wang, P.; Li, L.; Xun, L.; Kong, Q.; Liang, S. Developing an Integrated Indicator for Monitoring Maize Growth Condition Using Remotely Sensed Vegetation Temperature Condition Index and Leaf Area Index. Comput. Electron. Agric. 2018, 152, 340–349. [Google Scholar] [CrossRef]
- Baeza, A.; Martin, R.E.; Stephenson, N.L.; Das, A.J.; Hardwick, P.; Nydick, K.; Mallory, J.; Slaton, M.; Evans, K.; Asner, G.P. Mapping the Vulnerability of Giant Sequoias after Extreme Drought in California Using Remote Sensing. Ecol. Appl. 2021, 31, e02395. [Google Scholar] [CrossRef] [PubMed]
- Lyons, D.S.; Dobrowski, S.Z.; Holden, Z.A.; Maneta, M.P.; Sala, A. Soil Moisture Variation Drives Canopy Water Content Dynamics across the Western U.S. Remote Sens. Environ. 2021, 253, 112233. [Google Scholar] [CrossRef]
- Olsson, P.-O.; Lindström, J.; Eklundh, L. Near Real-Time Monitoring of Insect Induced Defoliation in Subalpine Birch Forests with MODIS Derived NDVI. Remote Sens. Environ. 2016, 181, 42–53. [Google Scholar] [CrossRef]
- Liu, Z.; Yan, M.; Zhang, X.; Tu, G. Methodical Study on Monitoring Wide-Range Forest Insect Pest by Meteorsat. J. Nat. Disasters 2002, 11, 109–114. [Google Scholar]
- Eklundh, L.; Johansson, T.; Solberg, S. Mapping Insect Defoliation in Scots Pine with MODIS Time-Series Data. Remote Sens. Environ. 2009, 113, 1566–1573. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, J.; Sun, H.; Lu, X.; Huang, J.; Wang, S.; Fang, G. Satellite Remote Sensing Identification of Discolored Standing Trees for Pine Wilt Disease Based on Semi-Supervised Deep Learning. Remote Sens. 2022, 14, 5936. [Google Scholar] [CrossRef]
- Lantschner, M.V.; Aukema, B.H.; Corley, J.C. Droughts Drive Outbreak Dynamics of an Invasive Forest Insect on an Exotic Host. For. Ecol. Manag. 2019, 433, 762–770. [Google Scholar] [CrossRef]
- Kolb, T.E.; Fettig, C.J.; Ayres, M.P.; Bentz, B.J.; Hicke, J.A.; Mathiasen, R.; Stewart, J.E.; Weed, A.S. Observed and Anticipated Impacts of Drought on Forest Insects and Diseases in the United States. For. Ecol. Manag. 2016, 380, 321–334. [Google Scholar] [CrossRef]
- Rouault, G.; Candau, J.-N.; Lieutier, F.; Nageleisen, L.-M.; Martin, J.-C.; Warzée, N. Effects of Drought and Heat on Forest Insect Populations in Relation to the 2003 Drought in Western Europe. Ann. For. Sci. 2006, 63, 613–624. [Google Scholar] [CrossRef]
- Cumming, S.G. Forest Type and Wildfire in the Alberta Boreal Mixedwood: What Do Fires Burn? Ecol. Appl. 2001, 11, 97–110. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Verbyla, D.L.; Rupp, T.S.; McGuire, A.D.; Murphy, K.A.; Jandt, R.; Barnes, J.L.; Hoy, E.E.; Duffy, P.A.; Calef, M.; et al. Alaska’s Changing Fire Regime—Implications for the Vulnerability of Its Boreal forests. Can. J. For. Res. 2010, 40, 1313–1324. [Google Scholar] [CrossRef]
- Astrup, R.; Bernier, P.Y.; Genet, H.; Lutz, D.A.; Bright, R.M. A Sensible Climate Solution for the Boreal Forest. Nat. Clim. Chang. 2018, 8, 11–12. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, J.; Meng, Y.; Du, Z.; Ma, H.; Qiu, L.; Tian, Q.; Wang, L.; Xu, M.; Zhao, H.; et al. Spatiotemporal Patterns of Fire-Driven Forest Mortality in China. For. Ecol. Manag. 2023, 529, 120678. [Google Scholar] [CrossRef]
- Tian, X.; Zhao, F.; Shu, L.; Wang, M. Distribution Characteristics and the Influence Factors of Forest Fires in China. For. Ecol. Manag. 2013, 310, 460–467. [Google Scholar] [CrossRef]
- Ding, Y.; Sun, Y.; Wang, Z.; Zhu, Y.; Song, Y. Inter-Decadal Variation of the Summer Precipitation in China and Its Association with Decreasing Asian Summer Monsoon Part II: Possible Causes. Int. J. Climatol. 2009, 29, 1926–1944. [Google Scholar] [CrossRef]
- Pei, F.; Wu, C.; Liu, X.; Li, X.; Yang, K.; Zhou, Y.; Wang, K.; Xu, L.; Xia, G. Monitoring the Vegetation Activity in China Using Vegetation Health Indices. Agric. For. Meteorol. 2018, 248, 215–227. [Google Scholar] [CrossRef]
- Zhou, W.; Chen, W.; Wang, D.X. The Implications of El Niño-Southern Oscillation Signal for South China Monsoon Climate. Aquat. Ecosyst. Health Manag. 2012, 15, 14–19. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.; Zhang, M.; Zeng, Z. Summer Extreme Consecutive Dry Days over Northeast China in the Changing Climate: Observed Features and Projected Future Changes Based on CESM-LE. Front. Earth Sci. 2023, 11, 1138985. [Google Scholar] [CrossRef]
- Chang, J.; Liu, Q.; Wang, S.; Huang, C. Vegetation Dynamics and Their Influencing Factors in China from 1998 to 2019. Remote Sens. 2022, 14, 3390. [Google Scholar] [CrossRef]
- Liu, H. It Is Difficult for China’s Greening through Large-Scale Afforestation to Cross the Hu Line. Sci. China Earth Sci. 2019, 62, 1662–1664. [Google Scholar] [CrossRef]
- Bai, Y.; Zhu, Y.; Liu, Y.; Wang, S. Vegetation Greening and Its Response to a Warmer and Wetter Climate in the Yellow River Basin from 2000 to 2020. Remote Sens. 2024, 16, 790. [Google Scholar] [CrossRef]
- Zhao, D.; Gao, X.; Wu, S.; Zheng, D. Trend of Climate Variation in China from 1960 to 2018 Based on Natural Regionalization. Adv. Earth Sci. 2020, 35, 750–760. [Google Scholar]
- Wang, X.; Zhao, C.; Jia, Q. Impacts of Climate Change on Forest Ecosystems in Northeast China. Adv. Clim. Chang. Res. 2013, 4, 230–241. [Google Scholar] [CrossRef]
- Guo, F.; Su, Z.; Wang, G.; Sun, L.; Tigabu, M.; Yang, X.; Hu, H. Understanding Fire Drivers and Relative Impacts in Different Chinese Forest Ecosystems. Sci. Total Environ. 2017, 605–606, 411–425. [Google Scholar] [CrossRef]
- Ding, Z.; Zheng, H.; Wang, J.; O’Connor, P.; Li, C.; Chen, X.; Li, R.; Ouyang, Z. Integrating Top-Down and Bottom-Up Approaches Improves Practicality and Efficiency of Large-Scale Ecological Restoration Planning: Insights from a Social–Ecological System. Engineering 2022, 31, 50–58. [Google Scholar] [CrossRef]
- Pyne, S.J.; Andrews, P.L.; Laven, R.D. Introduction to Wildland Fire, 2nd ed.; Wiley: New York, NY, USA, 1996; ISBN 978-0-471-54913-0. [Google Scholar]
- Rakhmatulina, E.; Stephens, S.; Thompson, S. Soil Moisture Influences on Sierra Nevada Dead Fuel Moisture Content and Fire Risks. For. Ecol. Manag. 2021, 496, 119379. [Google Scholar] [CrossRef]
- Chen, Q.; Timmermans, J.; Wen, W.; Van Bodegom, P.M. A Multi-Metric Assessment of Drought Vulnerability across Different Vegetation Types Using High Resolution Remote Sensing. Sci. Total Environ. 2022, 832, 154970. [Google Scholar] [CrossRef]
- Guarín, A.; Taylor, A.H. Drought Triggered Tree Mortality in Mixed Conifer Forests in Yosemite National Park, California, USA. For. Ecol. Manag. 2005, 218, 229–244. [Google Scholar] [CrossRef]
- Xu, P.; Zhou, T.; Yi, C.; Fang, W.; Hendrey, G.; Zhao, X. Forest Drought Resistance Distinguished by Canopy Height. Environ. Res. Lett. 2018, 13, 075003. [Google Scholar] [CrossRef]
- Bennett, A.C.; McDowell, N.G.; Allen, C.D.; Anderson-Teixeira, K.J. Larger Trees Suffer Most during Drought in Forests Worldwide. Nat. Plants 2015, 1, 15139. [Google Scholar] [CrossRef]
- Marini, L.; Økland, B.; Jönsson, A.M.; Bentz, B.; Carroll, A.; Forster, B.; Grégoire, J.-C.; Hurling, R.; Nageleisen, L.M.; Netherer, S.; et al. Climate Drivers of Bark Beetle Outbreak Dynamics in Norway Spruce Forests. Ecography 2017, 40, 1426–1435. [Google Scholar] [CrossRef]
- Greenbank, D.O. The Role of Climate and Dispersal in the Initiation of Outbreaks of the Spruce Budworm in New Brunswick: I. the Role of Climate. Can. J. Zool. 1956, 34, 453–476. [Google Scholar] [CrossRef]
- Royama, T. Population Dynamics of the Spruce Budworm Choristoneura Fumiferana. Ecol. Monogr. 1984, 54, 429–462. [Google Scholar] [CrossRef]
- Jactel, H.; Brockerhoff, E.G. Tree Diversity Reduces Herbivory by Forest Insects. Ecol. Lett. 2007, 10, 835–848. [Google Scholar] [CrossRef]
- Watt, A.D.; Evans, R.; Varley, T. The Egg Laying Behaviour of a Native Insect, the Winter Moth Operophtera brumata (L.) (Lep., Geometridae), on an Introduced Tree Species, Sitka Spruce Picea Sitchensis. J. Appl. Entomol. 1992, 114, 1–4. [Google Scholar] [CrossRef]
- Senf, C.; Seidl, R. Natural Disturbances Are Spatially Diverse but Temporally Synchronized across Temperate Forest Landscapes in Europe. Glob. Chang. Biol. 2018, 24, 1201–1211. [Google Scholar] [CrossRef]
- MacKinnon, W.E.; MacLean, D.A. The Influence of Forest and Stand Conditions on Spruce Budworm Defoliation in New Brunswick, Canada. For. Sci. 2003, 49, 657–667. [Google Scholar] [CrossRef]
- Adams, M.A. Mega-Fires, Tipping Points and Ecosystem Services: Managing Forests and Woodlands in an Uncertain Future. For. Ecol. Manag. 2013, 294, 250–261. [Google Scholar] [CrossRef]
- Mengist, W.; Soromessa, T.; Feyisa, G.L. Forest Fragmentation in a Forest Biosphere Reserve: Implications for the Sustainability of Natural Habitats and Forest Management Policy in Ethiopia. Resour. Environ. Sustain. 2022, 8, 100058. [Google Scholar] [CrossRef]
- Linares, J.C.; Tíscar, P.A. Climate Change Impacts and Vulnerability of the Southern Populations of Pinus nigra Subsp. Salzmannii. Tree Physiol. 2010, 30, 795–806. [Google Scholar] [CrossRef]
- Lechuga, V.; Carraro, V.; Viñegla, B.; Carreira, J.A.; Linares, J.C. Managing Drought-Sensitive Forests under Global Change. Low Competition Enhances Long-Term Growth and Water Uptake in Abies Pinsapo. For. Ecol. Manag. 2017, 406, 72–82. [Google Scholar] [CrossRef]
- Allan, E.; Weisser, W.W.; Fischer, M.; Schulze, E.-D.; Weigelt, A.; Roscher, C.; Baade, J.; Barnard, R.L.; Beßler, H.; Buchmann, N.; et al. A Comparison of the Strength of Biodiversity Effects across Multiple Functions. Oecologia 2013, 173, 223–237. [Google Scholar] [CrossRef]
- Soliveres, S.; Van Der Plas, F.; Manning, P.; Prati, D.; Gossner, M.M.; Renner, S.C.; Alt, F.; Arndt, H.; Baumgartner, V.; Binkenstein, J.; et al. Biodiversity at Multiple Trophic Levels Is Needed for Ecosystem Multifunctionality. Nature 2016, 536, 456–459. [Google Scholar] [CrossRef]
- Van Passel, J.; De Keersmaecker, W.; Bernardino, P.N.; Jing, X.; Umlauf, N.; Van Meerbeek, K.; Somers, B. Climatic Legacy Effects on the Drought Response of the Amazon Rainforest. Glob. Chang. Biol. 2022, 28, 5808–5819. [Google Scholar] [CrossRef] [PubMed]
- Müller, J.; Hothorn, T.; Pretzsch, H. Long-Term Effects of Logging Intensity on Structures, Birds, Saproxylic Beetles and Wood-Inhabiting Fungi in Stands of European Beech Fagus sylvatica L. For. Ecol. Manag. 2007, 242, 297–305. [Google Scholar] [CrossRef]
- Jeffries, J.M.; Marquis, R.J.; Forkner, R.E. Forest Age Influences Oak Insect Herbivore Community Structure, Richness, and Density. Ecol. Appl. 2006, 16, 901–912. [Google Scholar] [CrossRef] [PubMed]
Data Type | Name | Code | Spatial Resolution | Source |
---|---|---|---|---|
Remote sensing index | Land surface temperature | LST | 1 km | Google Earth Engine [31] |
Enhanced vegetation index | EVI | 500 m | ||
Ratio vegetation index | RVI | 500 m | ||
Normalized difference water index | NDWI | 500 m | ||
Meteorological | Temperature | Tem | 1 km | National Earth System Science Data Center [32] |
Precipitation | Pre | 1 km | ||
Wind speed | Wind | 1 km | ||
Winter temperature | Wt | 1 km | ||
Growing season precipitation | Gp | 1 km | ||
Potential evapotranspiration | PET | 1 km | ||
Aridity | AI | 1 km | ||
Topographical | Elevation | Elev | 90 m | Van Zyl [33] |
Slope | Slope | 90 m | ||
Aspect | Aspect | 90 m | ||
Soil | Soil bulk density | Bulk | 1 km | Jones et al. [34] |
Clay content | Clay | 1 km | ||
Vegetation | Canopy height | Height | 30 m | Potapov et al. [35] |
Forest age | Age | 1 km | Xiao et al. [36] | |
Forest type | Type | 30 m | Li et al. [27] | |
Human | Nearest road distance | Road | 1:250,000 | National Geomatics Center of China [37] |
Nearest settlement distance | Sett | 1:250,000 | ||
Population density | Pop | 1 km | Lloyd et al. [38] |
Factors | Class | Reference |
---|---|---|
Accumulated temperature (At, °C) | Cold temperate zone (1600 > At) | Cao et al. [39] |
Mid temperate zone (3400 > At ≥ 1600) | ||
Warm temperate zone (4500 > At ≥ 3400) | ||
Subtropical zone (8000 > At ≥ 4500) | ||
Precipitation (P, mm) | Humid region (P > 800) | Hu et al. [40] |
Subhumid region (800 ≥ P > 400) | ||
Semi-arid region (400 ≥ P > 200) | ||
Forest type | Conifer forest | Li et al. [27] |
Conifer and broadleaf mixed forest | ||
Deciduous broadleaf forest | ||
Evergreen broadleaf forest |
Degradation degree | Slight (Sl) | Moderate (Mo) | Severe (Se) |
0 ≤ DI ≤ 33.3 | 33.3 < DI ≤ 66.6 | 66.6 < DI ≤ 100 | |
Trend grade | Increase (In) | Decrease (De) | Stable (St) |
Slope > 0 | Slope < 0 | Other | |
p < 0.05 | p < 0.05 | Other |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hai, Y.; Liang, M.; Yang, Y.; Sun, H.; Li, R.; Yang, Y.; Zheng, H. Detection of Typical Forest Degradation Patterns: Characteristics and Drivers of Forest Degradation in Northeast China. Remote Sens. 2024, 16, 1389. https://doi.org/10.3390/rs16081389
Hai Y, Liang M, Yang Y, Sun H, Li R, Yang Y, Zheng H. Detection of Typical Forest Degradation Patterns: Characteristics and Drivers of Forest Degradation in Northeast China. Remote Sensing. 2024; 16(8):1389. https://doi.org/10.3390/rs16081389
Chicago/Turabian StyleHai, Yue, Mei Liang, Yuze Yang, Hailian Sun, Ruonan Li, Yanzheng Yang, and Hua Zheng. 2024. "Detection of Typical Forest Degradation Patterns: Characteristics and Drivers of Forest Degradation in Northeast China" Remote Sensing 16, no. 8: 1389. https://doi.org/10.3390/rs16081389
APA StyleHai, Y., Liang, M., Yang, Y., Sun, H., Li, R., Yang, Y., & Zheng, H. (2024). Detection of Typical Forest Degradation Patterns: Characteristics and Drivers of Forest Degradation in Northeast China. Remote Sensing, 16(8), 1389. https://doi.org/10.3390/rs16081389