Multi-Channel Hyperspectral Imaging Spectrometer Design for Ultraviolet Detection in the Atmosphere of Venus
Abstract
:1. Introduction
- A multi-channel hyperspectral imaging spectrometer for ultraviolet detection of Venus’s atmosphere is proposed.
- Emphasis is placed on the introduction of the design principles of the pupil separation prism and the grating multilevel spectra. Simultaneously, the selection of the spectral imaging system structure is conducted, and its design principles are introduced.
- Through the initial structure calculation and optical design software optimization simulation, a UV multi-channel hyperspectral imaging spectrometer system is obtained. This system achieves simultaneous three-channel spectral detection using only a single spectrometer system and detector, with a high spectral resolution of up to 0.15 nm.
2. Multi-Channel Hyperspectral Imaging Spectrometer System Design Principles
2.1. Pupil Separation Prism Design
2.2. Grating Multilevel Spectra Design
2.3. Spectral Imaging System Structure Selection and Design
3. Multi-Channel Hyperspectral Imaging Spectrometer System Optical Design
3.1. Multi-Channel Hyperspectral Imaging Spectrometer System Design Example
3.2. Detector Parameters
3.3. Evaluation Indicators
3.3.1. Modulation Transfer Function
3.3.2. Spectral Smile and Keystone
3.3.3. Tolerance Analysis
4. Mechanical Structure Design
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Blamont, J.; Sagdeev, R.Z. The VEGA mission. Naturwissenschaften 1984, 71, 295–302. [Google Scholar] [CrossRef]
- Bertaux, J.L.; Nevejans, D. SPICAV on Venus Express: Three spectrometers to study the global structure and composition of the Venus atmosphere. Planet. Space Sci. 2007, 55, 1673–1700. [Google Scholar] [CrossRef]
- Piccialli, A. Cyclostrophic Wind in the Mesosphere of Venus from Venus Express Observations. Ph.D. Thesis, Fakultät für Elektrotechnik, Informationstechnik, Physikder Technischen Universität Carolo-Wilhelmina, Braunschweig, Germany, 2010. [Google Scholar]
- Sánchez-Lavega, A.; Lebonnois, S.; Imamura, T.; Read, P.; Luz, D. The atmospheric dynamics of Venus. Space Sci. Rev. 2017, 212, 1541–1616. [Google Scholar] [CrossRef]
- Barath, F.T.; Barrett, A.H.; Copeland, J.; Jones, D.E.; Lilley, A.E. Mariner II: Preliminary reports on measurements of Venus: Microwave radiometers. Science 1963, 139, 908–909. [Google Scholar] [CrossRef]
- Smith, E.J.; Davis, L., Jr.; Coleman, P.J., Jr.; Sonett, C.P. Mariner II: Preliminary reports on measurements of Venus: Magnetic field. Science 1963, 139, 909–910. [Google Scholar] [CrossRef]
- Reese, D.E.; Swan, P.R. Venera 4 probes atmosphere of Venus. Science 1968, 159, 1228–1230. [Google Scholar] [CrossRef]
- Stewart, R.W. Interpretation of Mariner 5 and Venera 4 data on the upper atmosphere of Venus. J. Atmos. Sci. 1968, 25, 578–579. [Google Scholar] [CrossRef]
- Keldysh, M.V. Venus exploration with the Venera 9 and Venera 10 spacecraft. Icarus 1977, 30, 605–625. [Google Scholar] [CrossRef]
- Grard, R.; Gombosi, T.I.; Sagdeev, R.Z. The Vega missions. ESA Spec. Publ. 1986, 1066, 49–70. [Google Scholar] [CrossRef]
- Lorenz, R.D.; Crisp, D.; Huber, L. Venus atmospheric structure and dynamics from the VEGA lander and balloons: New results and PDS archive. Icarus 2018, 305, 277–283. [Google Scholar] [CrossRef]
- Wilquet, V.; Fedorova, A.; Montmessin, F.; Drummond, R.; Mahieux, A.; Vandaele, A.C.; Villard, E.; Korablev, O.; Bertaux, J.L. Preliminary characterization of the upper haze by SPICAV/SOIR solar occultation in UV to mid-IR onboard Venus Express. J. Geophys. Res. Planets 2009, 114, E9. [Google Scholar] [CrossRef]
- Sánchez, L.; Fedorova, A.; Bertaux, J.L.; Stepanov, A.V.; Kiselev, A.; Kalinnikov, Y.K.; Titov, A.Y.; Montmessin, F.; Dubois, J.P.; Villard, E.; et al. SPICAV IR acousto-optic spectrometer experiment on Venus Express. Planet. Space Sci. 2012, 65, 38–57. [Google Scholar] [CrossRef]
- Nakamura, M.; Imamura, T.; Ishii, N.; Abe, T.; Satoh, T.; Suzuki, M.; Ueno, M.; Yamazaki, A.; Iwagami, N.; Watanabe, S. Overview of Venus orbiter, Akatsuki. Earth Planets Space 2011, 63, 443–457. [Google Scholar] [CrossRef]
- Nakamura, M.; Kawakatsu, Y.; Hirose, C.; Imamura, T.; Ishii, N.; Abe, T.; Yamazaki, A.; Yamada, M.; Ogohara, K.; Uemizu, K.; et al. Return to Venus of the Japanese Venus climate orbiter AKATSUKI. Acta Astronaut. 2014, 93, 384–389. [Google Scholar] [CrossRef]
- Marcq, E.; Jessup, K.L.; Baggio, L.; Encrenaz, T.; Lee, Y.J.; Montmessin, F.; Belyaev, D.; Korablev, O.; Bertaux, J.L. Climatology of SO2 and UV absorber at Venus’ cloud top from SPICAV-UV nadir dataset. Icarus 2020, 335, 113368. [Google Scholar] [CrossRef]
- Barker, E.S. Detection of SO2 in the UV spectrum of Venus. Geophys. Res. Lett. 1979, 6, 117–120. [Google Scholar] [CrossRef]
- Svedhem, H.; Titov, D.V.; McCoy, D.; Lebreton, J.P.; Barabash, S.; Bertaux, J.L.; Drossart, P.; Formisano, V.; Häusler, B.; Korablev, O.; et al. Venus Express—The first European mission to Venus. Planet. Space Sci. 2007, 55, 1636–1652. [Google Scholar] [CrossRef]
- Marcq, E.; Belyaev, D.; Montmessin, F.; Fedorova, A.; Bertaux, J.L.; Vandaele, A.C.; Neefs, E. An investigation of the SO2 content of the venusian mesosphere using SPICAV-UV in nadir mode. Icarus 2011, 211, 58–69. [Google Scholar] [CrossRef]
- Jessup, K.L.; Marcq, E.; Bertaux, J.L.; Mills, F.P.; Limaye, S.; Roman, A. On Venus’ cloud top chemistry, convective activity and topography: A perspective from HST. Icarus 2020, 335, 113372. [Google Scholar] [CrossRef]
- Taylor, F.W. Venus before Venus express. Planet. Space Sci. 2006, 54, 1249–1262. [Google Scholar] [CrossRef]
- Titov, D.V.; Svedhem, H.; McCoy, D.; Lebreton, J.P.; Barabash, S.; Bertaux, J.L.; Drossart, P.; Formisano, V.; Haeusler, B.; Korablev, O.I.; et al. Venus Express: Scientific goals, instrumentation, and scenario of the mission. Cosm. Res. 2006, 44, 334–348. [Google Scholar] [CrossRef]
- Svedhem, H.; Titov, D.V.; Taylor, F.W.; Witasse, O. Venus as a more Earth-like planet. Nature 2007, 450, 629–632. [Google Scholar] [CrossRef] [PubMed]
- Thuillier, G.; Zhu, P.; Snow, M.; Zhang, P.; Ye, X. Characteristics of solar-irradiance spectra from measurements, modeling, and theoretical approach. Light Sci. Appl. 2022, 11, 79. [Google Scholar] [CrossRef] [PubMed]
- Maria, T. Atmospheric trace gas (NO2 and O3) variability in South Korean Coastal Waters, and implications for remote sensing of coastal ocean color dynamics. Remote Sens. 2018, 10, 1587–1606. [Google Scholar] [CrossRef]
- Belyaev, D.; Korablev, O.; Fedorova, A.; Bertaux, J.L.; Vandaele, A.C.; Montmessin, F.; Drummond, R. First observations of SO2 above Venus’ clouds by means of Solar Occultation in the Infrared. J. Geophys. Res. Planets 2008, 113, E5. [Google Scholar] [CrossRef]
- De Clercq, C.; Moreau, V.; Jamoye, J.F.; Marchi, A.Z.; Gloesener, P. ELOIS: An innovative spectrometer design using a free-form grating. In Proceedings of the Optical Systems Design 2015: Optical Design and Engineering VI, Jena, Germany, 7–10 September 2015; SPIE: Bellingham, WA, USA, 2015; Volume 9626, pp. 407–415. [Google Scholar] [CrossRef]
- Bagusat, V.; Kraus, M.; Förster, E.; Thomae, D.; Hönle, T.; Brüning, R.; Hillmer, H.; Brunner, R. Concept and optical design of a compact cross-grating spectrometer. JOSA A 2019, 36, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Han, Y.; Liu, B.; Sun, P.; Li, X.; Chen, P. Optical design of a high-resolution spectrometer with a wide field of view. Opt. Lasers Eng. 2021, 140, 106547. [Google Scholar] [CrossRef]
- Titov, D.V.; Svedhem, H.; Koschny, D.; Hoofs, R.; Barabash, S.; Bertaux, J.L.; Drossart, P.; Formisano, V.; Häusler, B.; Korablev, O.; et al. Venus Express science planning. Planet. Space Sci. 2006, 54, 1279–1297. [Google Scholar] [CrossRef]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; De Vries, J.; Otter, G.; Claas, J.; Eskes, H.J.; de Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Irizar, J.; Melf, M.; Bartsch, P.; Koehler, J.; Weiss, S.; Greinacher, R.; Erdmann, M.; Kirschner, V.; Perez Albinana, A.; Martin, D. Sentinel-5/UVNS. In Proceedings of the International Conference on Space Optics—ICSO 2018, Chania, Greece, 9–12 October 2018; SPIE: Bellingham, WA, USA, 2019; Volume 11180, pp. 41–58. [Google Scholar] [CrossRef]
- Jakosky, B.M.; Lin, R.P.; Grebowsky, J.M.; Luhmann, J.G.; Mitchell, D.F.; Beutelschies, G.; Priser, T.; Acuna, M.; Andersson, L.; Baird, D.; et al. The Mars atmosphere and volatile evolution (MAVEN) mission. Space Sci. Rev. 2015, 195, 3–48. [Google Scholar] [CrossRef]
- McClintock, W.E.; Schneider, N.M.; Holsclaw, G.M.; Clarke, J.T.; Hoskins, A.C.; Stewart, I.; Montmessin, F.; Yelle, R.V.; Deighan, J. The imaging ultraviolet spectrograph (IUVS) for the MAVEN mission. Space Sci. Rev. 2015, 195, 75–124. [Google Scholar] [CrossRef]
- Jones, A.R.; Wolff, M.; Alshamsi, M.; Osterloo, M.; Bay, P.; Brennan, N.; Bryant, K.; Castleman, Z.; Curtin, A.; DeVito, E.; et al. The Emirates Exploration Imager (EXI) instrument on the Emirates Mars mission (EMM) hope mission. Space Sci. Rev. 2021, 217, 81. [Google Scholar] [CrossRef]
- Holsclaw, G.M.; Deighan, J.; Almatroushi, H.; Chaffin, M.; Correira, J.; Evans, J.S.; Fillingim, M.; Hoskins, A.; Jain, S.K.; Lillis, R.; et al. The emirates Mars ultraviolet spectrometer (EMUS) for the EMM mission. Space Sci. Rev. 2021, 217, 79. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, F.; Wang, W.; Huang, F.; Chen, B.; Gao, L.; Wang, S.; Yan, H.H.; Ye, H.H.; Si, F.Q.; et al. The development and application of satellite remote sensing for atmospheric compositions in China. Atmos. Res. 2020, 245, 105056. [Google Scholar] [CrossRef]
- Xia, C.; Liu, C.; Cai, Z.; Zhao, F.; Su, W.; Zhang, C.; Liu, Y. First sulfur dioxide observations from the environmental trace gases monitoring instrument (EMI) onboard the GeoFen-5 satellite. Sci. Bull. 2021, 66, 969–973. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Ren, X.; Liu, J.; Zhang, L.; Chen, W.; Wang, D.; Fu, Q.; Tan, X.; Zhang, X.X.; Ai, H.B.; et al. Topographic Reconstruction of the “Tianwen-1” Landing Area on the Mars Using High Resolution Imaging Camera Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4512414. [Google Scholar] [CrossRef]
- Zou, Y.L.; Zhu, Y.; Bai, Y.F.; Wang, L.G.; Jia, Y.Z.; Shen, W.H.; Fan, Y.; Liu, Y.; Wang, C.; Zhang, A.B.; et al. Scientific objectives and payloads of Tianwen-1, China’s first Mars exploration mission. Adv. Space Res. 2021, 67, 812–823. [Google Scholar] [CrossRef]
- Zhu, J.; Zhao, Z.; Liu, Q.; Chen, X.; Li, H.; Tang, S.; Shen, W. Geostationary Full-Spectrum Wide-Swath High-Fidelity Imaging Spectrometer: Optical Design and Prototype Development. Remote Sens. 2023, 15, 396. [Google Scholar] [CrossRef]
- Prieto-Blanco, X.; de la Fuente, R. Compact Offner–Wynne imaging spectrometers. Opt. Commun. 2014, 328, 143–150. [Google Scholar] [CrossRef]
- Tan, F.; Zeng, C.; Ji, Y. Optical design of a novel Wynne-Offner snapshot hyperspectral imaging system. In Proceedings of the Optical Design and Testing XI, Nantong, China, 10–12 October 2021; SPIE: Bellingham, WA, USA, 2021; Volume 11895, pp. 67–74. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, Y.; Lin, C.; Ji, Z.; Wu, H. Analysis method of the Offner hyperspectral imaging spectrometer based on vector aberration theory. Appl. Opt. 2021, 60, 264–275. [Google Scholar] [CrossRef]
- Ceamanos, X.; Douté, S. Spectral smile correction of CRISM/MRO hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3951–3959. [Google Scholar] [CrossRef]
- Gao, J.; Jiao, C.; Xiang, G.X.; Lu, Z.; Niu, Y.T. Optical system design of imaging spectrometer with large aperture and high resolution. In Proceedings of the Ninth Symposium on Novel Photoelectronic Detection Technology and Applications, Hefei, China, 21–23 April 2023; SPIE: Bellingham, WA, USA, 2023; Volume 12617, pp. 1068–1073. [Google Scholar] [CrossRef]
- Shen, Z.; Ameta, G.; Shah, J.J.; Davidson, J.K. A comparative study of tolerance analysis methods. J. Comput. Inf. Sci. Eng. 2005, 5, 247–256. [Google Scholar] [CrossRef]
- Saetiew, J.; Sanjae, J.; Meemon, P. Real-time assessment of spectrometer alignment using modulation transfer function (MTF) measurement. Opt. Lasers Eng. 2024, 175, 108021. [Google Scholar] [CrossRef]
- Yamamoto, S.; Tsuchida, S.; Urai, M.; Mizuochi, H.; Iwao, K.; Iwasaki, A. Initial Analysis of Spectral Smile Calibration of Hyperspectral Imager Suite (HISUI) Using Atmospheric Absorption Bands. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5534215. [Google Scholar] [CrossRef]
- Qian, L.L.; Lü, Q.B.; Huang, M.; Cai, Q.S.; Li, B.X. Effect of keystone on coded aperture spectral imaging. Optik 2016, 127, 686–689. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, J.; Wei, L.; Feng, L.; Jing, J.J.; He, X.; Yang, L.; Li, Y. Optical design of Schwarzschild imaging spectrometer with freeform surfaces. Opt. Commun. 2021, 480, 126495. [Google Scholar] [CrossRef]
Spectral Imaging System Types | System Size (XYZ)/mm | Smile (Maximum)/μm | Keystone (Maximum)/μm |
---|---|---|---|
Offner | 105 × 180 × 320 | 0.04 | 0.06 |
Wynne–Offner | 115 × 280 × 350 | 0.05 | 0.04 |
Czerny–Turner | 108 × 175 × 765 | 0.12 | 0.14 |
Dyson | 150 × 320 × 400 | 0.07 | 0.05 |
Off-axis three-mirror self-collimating | 270 × 516 × 500 | 1.5 | 1.2 |
Parameter | Value |
---|---|
Spectral range/nm | T1 = 180~220 T2 = 275~305 T3 = 360~400 |
Spectral resolution/nm | 0.15 |
F# | 5 |
Field of view/° | 1 × 0.0034 |
Focal length/mm | 150 |
MTF | >0.7@56 lp/mm |
Detector pixel size/μm | 9 × 9 |
System length/mm | 105 × 325 × 600 |
Parameter | Value |
---|---|
Number of pixels | 4096 (H) × 4096 (V) |
Detector pixel size/μm | 9 × 9 |
Full factor/% | 100 |
Effective photosensitive dimensions/mm | 36.9 × 36.9 |
Spectral range in use/nm | 180~400 |
Tolerance Type | Value |
---|---|
Curvature radius | 0.03 mm |
Element thickness | 0.06 mm |
Air thickness | 0.06 mm |
Element eccentricity | 0.02 mm |
Element tilt | 8′ |
Prism wedge angle | 2′ |
Instrument Name | Instrument Advantages | Instrument Disadvantages |
---|---|---|
SPICAV-UV | Small size, simple system structure. | Single-channel design cannot achieve simultaneous multi-channel detection. The spectral resolution is only 0.15 nm. |
Sentinel-5 UV1, UV2-VIS | Small size, simple system structure. | Single-channel design cannot achieve simultaneous multi-channel detection. Low spectral resolution. |
MAVEN-IUVS | Large field of view, wide observable range. | Using multiple detectors to receive imaging spectra results in low detection efficiency. Low spectral resolution. |
Multi-channel hyperspectral imaging spectrometer system | Ultra-high spectral resolution of 0.15 nm, simultaneous multi-channel detection. | The system structure is relatively complex. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Fang, X.; Li, T.; Gu, G.; Li, H.; Shao, Y.; Jiang, X.; Li, B. Multi-Channel Hyperspectral Imaging Spectrometer Design for Ultraviolet Detection in the Atmosphere of Venus. Remote Sens. 2024, 16, 1099. https://doi.org/10.3390/rs16061099
Zhang X, Fang X, Li T, Gu G, Li H, Shao Y, Jiang X, Li B. Multi-Channel Hyperspectral Imaging Spectrometer Design for Ultraviolet Detection in the Atmosphere of Venus. Remote Sensing. 2024; 16(6):1099. https://doi.org/10.3390/rs16061099
Chicago/Turabian StyleZhang, Xv, Xin Fang, Tao Li, Guochao Gu, Hanshuang Li, Yingqiu Shao, Xue Jiang, and Bo Li. 2024. "Multi-Channel Hyperspectral Imaging Spectrometer Design for Ultraviolet Detection in the Atmosphere of Venus" Remote Sensing 16, no. 6: 1099. https://doi.org/10.3390/rs16061099
APA StyleZhang, X., Fang, X., Li, T., Gu, G., Li, H., Shao, Y., Jiang, X., & Li, B. (2024). Multi-Channel Hyperspectral Imaging Spectrometer Design for Ultraviolet Detection in the Atmosphere of Venus. Remote Sensing, 16(6), 1099. https://doi.org/10.3390/rs16061099