Severe Convection at Burgas Airport: Case Study 17 September 2022
Abstract
:1. Introduction
2. Data and Methods
2.1. ERA5 Reanalyse
2.2. Observations
3. Results
3.1. Storm Diagnosis: 17 September 2022
3.2. Analysis of IWV and IVT: 17 September 2022
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Available online: https://wmo.int/topics/extreme-weather (accessed on 19 October 2024).
- Asadnabizadeh, M. Critical findings of the sixth assessment report (AR6) of working Group I of the intergovernmental panel on climate change (IPCC) for global climate change policymaking a summary for policymakers (SPM) analysis. Int. J. Clim. Change Strateg. Manag. 2022. ahead-of-print. [Google Scholar] [CrossRef]
- Hermanson, L.; Smith, D.; Seabrook, M.; Bilbao, R.; Doblas-Reyes, F.; Tourigny, E.; Lapin, V.; Kharin, V.V.; Merryfield, W.J.; Sospedra-Alfonso, R.; et al. WMO global annual to decadal climate update: A prediction for 2021–25. Bull. Am. Meteorol. Soc. 2022, 103, E1117–E1129. [Google Scholar] [CrossRef]
- Wang, Y.; Coning, E.D.; Jacobs, W.; Joe, P.; Nikitina, L.; Roberts, R.; Wan, J.; Wilson, J. Guidelines for Nowcasting Techniques; World Meteorological Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res. Atmos. 1992, 97, 15787–15801. [Google Scholar] [CrossRef]
- Guerova, G.; Jones, J.; Douša, J.; Dick, G.; de Haan, S.; Pottiaux, E.; Bock, O.; Pacione, R.; Elgered, G.; Vedel, H.; et al. Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe. Atmos. Meas. Tech. 2016, 9, 5385–5406. [Google Scholar] [CrossRef]
- Sapucci, L.F.; Machado, L.A.; de Souza, E.M.; Campos, T.B. Global P ositioning S ystem precipitable water vapour (GPS-PWV) jumps before intense rain events: A potential application to nowcasting. Meteorol. Appl. 2019, 26, 49–63. [Google Scholar] [CrossRef]
- Slavchev, M.; Stoycheva, A.; Gerova, G. Comparative analysis of convective processes and the intense precipitation using numerical weather model and GNSS meteorology method. Bulg. J. Meteorol. Hydrol. 2019, 23, 31–45. [Google Scholar]
- Jones, J.; Guerova, G.; Douša, J.; Dick, G.; de Haan, S.; Pottiaux, E.; Bock, O.; Pacione, R.; van Malderen, R. (Eds.) Advanced GNSS Tropospheric Products for Monitoring Severe Weather Events and Climate; Spinger: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Central Office for Delay Analysis Eurocontrol Annual 2022 Report. All-Causes Delays to Air Transport in Europe. 2023. Available online: https://www.eurocontrol.int/publication/all-causes-delays-air-transport-europe-annual-2022 (accessed on 19 October 2024).
- Eurocontrol. ATM Cost-Effectiveness (ACE) Benchmarking Report; Eurocontrol: Brussels, Belgium, 2024. [Google Scholar]
- Eurocontrol. Bulgaria Local Single Sky Implementation (LSSIP) Document—2022; Eurocontrol: Brussels, Belgium, 2023. [Google Scholar]
- Groenemeijer, P.; Dotzek, N.; Stel, F.; Brooks, H.E.; Doswell, C.A., III; The Late Derek Michael Elsom; Dario, G.; Gilbert, A.; Holzer, A.M.; Meaden, G.T.; et al. ESWD-A standardized, flexible data format for severe weather reports. In Proceedings of the 3rd European Conference on Severe Storms, Leon, France, 9–12 November 2004. [Google Scholar]
- Branzov, H. Valuation of the possibility for determination the maximum wind speeds using the averaged values. Bulg. J. Meteorol. Hydrol. 2010, 15, 118–130. [Google Scholar]
- Lavers, A.D.; Villarini, G. The nexus between atmospheric rivers and extreme precipitation across Europe. Geophys. Res. Lett. 2013, 40, 3259–3264. [Google Scholar] [CrossRef]
- Mahlstein, I.; Bhend, J.; Spirig, C.; Martius, O. Developing an automated medium-range flood awareness system for Switzerland based on probabilistic forecasts of integrated water vapor fluxes. Weather. Forecast. 2019, 34, 1759–1776. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Pressure Levels from 1940 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2023. Available online: https://climate.copernicus.eu/ (accessed on 19 October 2024).
- Guerova, G.; Douša, J.; Dimitrova, T.; Stoycheva, A.; Václavovic, P.; Penov, N. GNSS storm nowcasting demonstrator for Bulgaria. Remote Sens. 2022, 14, 3746. [Google Scholar] [CrossRef]
- Betz, H.D.; Schmidt, K.; Laroche, P.; Blanchet, P.; Oettinger, W.P.; Defer, E.; Dziewit, Z.; Konarski, J. LINET—An international lightning detection network in Europe. Atmos. Res. 2009, 91, 564–573. [Google Scholar] [CrossRef]
- Schumann, W.; Stark, H.; McMullan, K.; Aminou, D.; Luhmann, H.-J. The MSG system. In ESA Bulletin; ESA Directorate of Earth Observation, ESTEC: Noordwijk, The Netherlands, 2002; pp. 11–14. [Google Scholar]
- Available online: https://user.eumetsat.int/resources/user-guides/sandwich-products-quick-guide (accessed on 19 October 2024).
- Georgi, T.; Slavchev, M.; Popova, M. Thunderstorms and strong wind gusts in Burgas district on 17th September 2022. Bulg. J. Meteorol. Hydrol. 2022, 26, 65–81. [Google Scholar]
- Moncrieff, M.W.; Miller, M.J. The dynamics and simulation of tropical cumulonimbus and squall lines. Q. J. R. Meteorol. Soc. 1976, 102, 373–394. [Google Scholar] [CrossRef]
- George, J.J. Weather Forecasting for Aeronautics; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Andersson, T.; Andersson, M.; Jacobsson, C.; Nilsson, S. Thermodynamic indexes for forecasting thunderstorms in southern sweden. Meteorol. Mag. 1989, 118, 141–146. [Google Scholar]
- Jefferson, G.J. A further development of the instability index(Modification of instability index, for use with tephigrams, for prediction of thunderstorms). Meteorol. Mag. 1963, 92, 313–316. [Google Scholar]
- Miller, R.C. Notes on Analysis and Severe-Storm Forecasting Procedures of the Air Force Global Weather Central; AWS: Seattle, WA, USA, 1975; Volume 200. [Google Scholar]
- Boyden, C.J. A simple instability index for use as a synoptic parameter. Meteor. Mag. 1963, 92, 198–210. [Google Scholar]
- Rackliff, P.G. Application of an instability index to regional forecasting. Meteorol. Mag. 1962, 91, 113–120. [Google Scholar]
- ShowalterShowalter, A.K. A stability index for thunderstorm forecasting. Bull. Am. Meteorol. Soc. 1953, 34, 250–252. [Google Scholar] [CrossRef]
- Siedlecki, M. Selected instability indices in Europe. Theor. Appl. Climatol. 2020, 96, 85–94. [Google Scholar] [CrossRef]
- Lasota, E.; Slavchev, M.; Guerova, G.; Rohm, W.; Kaplon, J. Combined space- and ground-based GNSS monitoring of two severe hailstorm cases in Bulgaria. J. Atmos. Ocean. Technol. 2022, 39, 649–665. [Google Scholar] [CrossRef]
- Inoue, H.Y.; Toshiro, I. Characteristics of the water-vapor field over the Kanto district associated with summer thunderstorm activities. SOLA 2007, 3, 101–104. [Google Scholar] [CrossRef]
- Dettinger, M.D.; Ralph, F.M.; Das, T.; Neiman, P.J.; Cayan, D.R. Atmospheric rivers, floods and the water resources of California. Water 2011, 3, 445–478. [Google Scholar] [CrossRef]
Index | Value | Moderate | Severe | Reference |
---|---|---|---|---|
CAPE | 857 | 1000 | 2000 | [23] |
K index | 35.3 | 20.0 | 40 | [24] |
KO index | −8.6 | 6.0 | 2.0 | [25] |
S index | 44.8 | 40.0 | 46.0 | [26] |
Jefferson | 31.8 | 27 | 28 | [26] |
Total Totals | 49.3 | 45.0 | 55.0 | [27] |
Vertical Totals | 27.6 | 24 | 26 | [27] |
Cross Totals | 21.6 | 18 | 24 | [27] |
SWEAT | 254 | 300 | 400 | [27] |
BOYDEN | 98.1 | 94.0 | 95.0 | [28] |
Rackliff | 29.8 | 29 | 30 | [29] |
Showalter | −1.2 | 4.0 | −4.0 | [30] |
CIN | 75 | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostashki, B.; Penchev, R.; Guerova, G. Severe Convection at Burgas Airport: Case Study 17 September 2022. Remote Sens. 2024, 16, 4012. https://doi.org/10.3390/rs16214012
Kostashki B, Penchev R, Guerova G. Severe Convection at Burgas Airport: Case Study 17 September 2022. Remote Sensing. 2024; 16(21):4012. https://doi.org/10.3390/rs16214012
Chicago/Turabian StyleKostashki, Bilyana, Rosen Penchev, and Guergana Guerova. 2024. "Severe Convection at Burgas Airport: Case Study 17 September 2022" Remote Sensing 16, no. 21: 4012. https://doi.org/10.3390/rs16214012
APA StyleKostashki, B., Penchev, R., & Guerova, G. (2024). Severe Convection at Burgas Airport: Case Study 17 September 2022. Remote Sensing, 16(21), 4012. https://doi.org/10.3390/rs16214012