Comparison of Different Quantitative Precipitation Estimation Methods Based on a Severe Rainfall Event in Tuscany, Italy, November 2023
Abstract
1. Introduction
2. Materials and Methods
2.1. Meteorological Event Description
2.2. Datasets
2.2.1. Radar Dataset
2.2.2. Rain Gauge Dataset
2.3. QPE Methods
2.3.1. Radar-Based Method
- , Marshall–Palmer [28].
- , Joss–Waldvogel [29].
- , utilized in the QPE algorithms of the Multi-Radar Multi-Sensor (MRMS) system for convective precipitation [30].
- , computed specifically for C-band radars, relying on experimental DSD measurements provided by disdrometers and collected in Rome (Italy) during convective events [31].
2.3.2. Rain Gauge-Based Method
2.3.3. Kriging with External Drift (KED)
2.3.4. Conditional Merging (CM)
2.3.5. Mean Field Bias Adjustment (MFB)
2.3.6. Brandes Spatial Adjustment (BSA)
2.3.7. Space-Time Adaptive Coefficient Conversion (STACC)
2.4. Performance Analysis
- Remove one rain gauge from the dataset.
- Use a QPE method to estimate the rainfall at the location of the removed rain gauge.
- Compare the estimated rainfall y to the actual value x measured by the gauge.
- Repeat the above steps for all the available rain gauges.
3. Experimental Results
3.1. Leave-One-Out Cross-Validation (LOOCV)
3.2. Critical Scenarios: Simulation and Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lanza, L.G.; Vuerich, E. The WMO Field Intercomparison of Rain Intensity Gauges. Atmos. Res. 2009, 94, 534–543. [Google Scholar] [CrossRef]
- Michaelides, S.; Levizzani, V.; Anagnostou, E.; Bauer, P.; Kasparis, T.; Lane, J. Precipitation: Measurement, Remote Sensing, Climatology and Modeling. Atmos. Res. 2009, 94, 512–533. [Google Scholar] [CrossRef]
- Ahrens, B. Distance in spatial interpolation of daily rain gauge data. Hydrol. Earth Syst. Sci. 2006, 10, 197–208. [Google Scholar] [CrossRef]
- Wackernagel, H. Multivariate Geostatistics: An Introduction with Applications, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Piazza, A.D.; Conti, F.L.; Noto, L.V.; Viola, F.; Loggia, G.L. Comparative analysis of different techniques for spatial interpolation of rainfall data to create a serially complete monthly time series of precipitation for Sicily, Italy. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 396–408. [Google Scholar] [CrossRef]
- Mair, A.; Fares, A. Comparison of Rainfall Interpolation Methods in a Mountainous Region of a Tropical Island. J. Hydrol. Eng. 2011, 16, 371–383. [Google Scholar] [CrossRef]
- Doviak, R.J.; Zrnić, D.S. Doppler Radar and Weather Observations, 2nd ed.; Academic Press: San Diego, CA, USA, 1993. [Google Scholar]
- Villarini, G.; Krajewsky, W.F. Review of the Different Sources of Uncertainty in Single Polarization Radar-Based Estimates of Rainfall. Surv. Geophys. 2010, 31, 107–129. [Google Scholar] [CrossRef]
- Wilson, J.W.; Brandes, E.A. Radar Measurement of Rainfall—A Summary. Bull. Am. Meteorol. Soc. 1979, 60, 1048–1060. [Google Scholar] [CrossRef]
- Chapon, B.; Delrieu, G.; Gosset, M.; Boudevillain, B. Variability of rain drop size distribution and its effect on the Z–R relationship: A case study for intense Mediterranean rainfall. Atmos. Res. 2008, 87, 52–65. [Google Scholar] [CrossRef]
- Smith, J.A.; Hui, E.; Steiner, M.; Baeck, M.L.; Krajewski, W.F.; Ntelekos, A.A. Variability of rainfall rate and raindrop size distributions in heavy rain. Water Resour. Res. 2009, 45, W04430. [Google Scholar] [CrossRef]
- Atlas, D.; Ulbrich, C.W.; Meneghini, R. The multiparameter remote measurement of rainfall. Radio Sci. 1984, 19, 3–22. [Google Scholar] [CrossRef]
- Lee, G.W.; Zawadzki, I. Variability of Drop Size Distributions: Time-Scale Dependence of the Variability and Its Effects on Rain Estimation. J. Appl. Meteorol. 2005, 44, 241–255. [Google Scholar] [CrossRef]
- Bringi, V.N.; Chandrasekar, V. Polarimetric Doppler Weather Radar: Principles and Applications; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar] [CrossRef]
- Zrnic, D.S.; Ryzhkov, A.V. Polarimetry for Weather Surveillance Radars. Bull. Am. Meteorol. Soc. 1999, 80, 389–406. [Google Scholar] [CrossRef]
- Ryzhkov, A.; Zhang, P.; Bukovčić, P.; Zhang, J.; Cocks, S. Polarimetric Radar Quantitative Precipitation Estimation. Remote Sens. 2022, 14, 1695. [Google Scholar] [CrossRef]
- Vulpiani, G.; Montopoli, M.; Passeri, L.D.; Gioia, A.G.; Giordano, P.; Marzano, F.S. On the Use of Dual-Polarized C-Band Radar for Operational Rainfall Retrieval in Mountainous Areas. J. Appl. Meteorol. Climatol. 2012, 51, 405–425. [Google Scholar] [CrossRef]
- Gu, J.Y.; Ryzhkov, A.; Zhang, P.; Neilley, P.; Knight, M.; Wolf, B.; Lee, D.I. Polarimetric Attenuation Correction in Heavy Rain at C Band. J. Appl. Meteorol. Climatol. 2011, 50, 39–58. [Google Scholar] [CrossRef]
- Ochoa-Rodriguez, S.; Wang, L.P.; Willems, P.; Onof, C. A Review of Radar-Rain Gauge Data Merging Methods and Their Potential for Urban Hydrological Applications. Water Resour. Res. 2019, 55, 6356–6391. [Google Scholar] [CrossRef]
- Sinclair, S.; Pegram, G. Combining radar and rain gauge rainfall estimates using conditional merging. Atmos. Sci. Lett. 2005, 6, 19–22. [Google Scholar] [CrossRef]
- Brandes, E.A. Optimizing Rainfall Estimates with the Aid of Radar. J. Appl. Meteorol. Climatol. 1975, 14, 1339–1345. [Google Scholar] [CrossRef]
- Cuccoli, F.; Facheris, L.; Antonini, A.; Melani, S.; Baldini, L. Weather Radar and Rain-Gauge Data Fusion for Quantitative Precipitation Estimation: Two Case Studies. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6639–6649. [Google Scholar] [CrossRef]
- Biondi, A.; Facheris, L.; Argenti, F.; Cuccoli, F.; Antonini, A.; Melani, S. Assessing quantitative precipitation estimation methods based on the fusion of weather radar and rain-gauge data. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1–5. [Google Scholar] [CrossRef]
- Krajewski, W.F. Cokriging radar-rainfall and rain gage data. J. Geophys. Res. 1987, 92, 9571–9580. [Google Scholar] [CrossRef]
- Todini, E. A Bayesian technique for conditioning radar precipitation estimates to rain-gauge measurements. Hydrol. Earth Syst. Sci. 2001, 5, 187–199. [Google Scholar] [CrossRef]
- Report Meteorologico: Evento 2 novembre 2023 (Consorzio LaMMA). Available online: https://www.lamma.toscana.it/clima/report/eventi/evento_02112023.pdf (accessed on 2 August 2024). (In Italian).
- Meteo-Hub Mistral (Meteo Italian Supercomputing Portal). Available online: https://www.mistralportal.it/opendata/ (accessed on 26 July 2024).
- Marshall, J.; Hitschfeld, W.; Gunn, K. Advances in Radar Weather. Adv. Geophys. 1955, 2, 1–56. [Google Scholar] [CrossRef]
- Joss, J.; Waldvogel, A. A method to improve the accuracy of radar measured amounts of precipitation. In Proceedings of the 14th Radar Meteorology Conference, Tucson, AZ, USA, 17–20 November 1970; pp. 237–238. [Google Scholar]
- Zhang, J.; Howard, K.; Langston, C.; Kaney, B.; Qi, Y.; Tang, L.; Grams, H.; Wang, Y.; Cocks, S.; Martinaitis, S.; et al. Multi-Radar Multi-Sensor (MRMS) Quantitative Precipitation Estimation: Initial Operating Capabilities. Bull. Am. Meteorol. Soc. 2016, 97, 621–638. [Google Scholar] [CrossRef]
- Adirosi, E.; Roberto, N.; Montopoli, M.; Gorgucci, E.; Baldini, L. Influence of Disdrometer Type on Weather Radar Algorithms from Measured DSD: Application to Italian Climatology. Atmosphere 2018, 9, 360. [Google Scholar] [CrossRef]
- Müller, S.; Schüler, L.; Zech, A.; Heße, F. GSTools v1.3: A toolbox for geostatistical modelling in Python. Geosci. Model Dev. 2022, 15, 3161–3182. [Google Scholar] [CrossRef]
- Goudenhoofdt, E.; Delobbe, L. Evaluation of radar-gauge merging methods for quantitative precipitation estimates. Hydrol. Earth Syst. Sci. 2009, 13, 195–203. [Google Scholar] [CrossRef]
- Orear, J. Least squares when both variables have uncertainties. Am. J. Phys. 1982, 50, 912–916. [Google Scholar] [CrossRef]
- Battan, L.J. Radar observation of the atmosphere. Q. J. R. Meteorol. Soc. 1973, 99, 793. [Google Scholar] [CrossRef]
- Shepard, D. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 23rd ACM National Conference, San Francisco, CA, USA, 27–29 August 1968; pp. 517–524. [Google Scholar] [CrossRef]
Method | MAE (mm) | RMSE (mm) | Bias (mm) | |
---|---|---|---|---|
ZR | 2.27 | 4.76 | 0.44 | −1.84 |
OK | 1.73 | 3.77 | 0.65 | 0.05 |
KED | 1.29 | 2.77 | 0.81 | 0.04 |
CM | 1.49 | 3.23 | 0.74 | 0.02 |
MFB | 2.17 | 4.56 | 0.48 | −0.32 |
BSA | 1.79 | 3.65 | 0.67 | 0.11 |
STACC | 1.65 | 3.31 | 0.73 | −0.37 |
Method | y (mm) | e (mm) | |
---|---|---|---|
ZR | 19.66 | −37.14 | 65.39% |
OK | 18.30 (5.68) | −38.50 (−51.12) | 67.78% (90.00%) |
KED | 27.13 (22.20) | −29.67 (−34.60) | 52.24% (60.92%) |
CM | 25.31 (20.24) | −31.49 (−36.56) | 55.44% (64.32%) |
MFB | 29.62 (29.38) | −27.18 (−27.43) | 47.85% (48.29%) |
BSA | 28.15 (26.37) | −28.65 (−30.43) | 50.44% (53.57%) |
STACC | 41.05 (42.53) | −15.75 (−14.27) | 27.73% (25.12%) |
Method | y (mm) | e (mm) | ||||
---|---|---|---|---|---|---|
RGC | RGB | RGC | RGB | RGC | RGB | |
ZR | 65.48 | 55.10 | 21.48 | 11.10 | 48.82% | 25.23% |
OK | 21.44 | 21.03 | −22.56 | −22.97 | 51.27% | 52.20% |
KED | 49.08 | 41.86 | 5.08 | −2.14 | 11.55% | 4.86% |
CM | 66.01 | 55.72 | 22.01 | 11.72 | 50.02% | 26.64% |
MFB | 113.06 | 95.15 | 69.06 | 51.15 | 156.95% | 116.25% |
BSA | 86.93 | 73.04 | 42.93 | 29.04 | 97.57% | 66.00% |
STACC | 46.43 | 43.16 | 2.43 | −0.84 | 5.52% | 1.91% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biondi, A.; Facheris, L.; Argenti, F.; Cuccoli, F. Comparison of Different Quantitative Precipitation Estimation Methods Based on a Severe Rainfall Event in Tuscany, Italy, November 2023. Remote Sens. 2024, 16, 3985. https://doi.org/10.3390/rs16213985
Biondi A, Facheris L, Argenti F, Cuccoli F. Comparison of Different Quantitative Precipitation Estimation Methods Based on a Severe Rainfall Event in Tuscany, Italy, November 2023. Remote Sensing. 2024; 16(21):3985. https://doi.org/10.3390/rs16213985
Chicago/Turabian StyleBiondi, Alessio, Luca Facheris, Fabrizio Argenti, and Fabrizio Cuccoli. 2024. "Comparison of Different Quantitative Precipitation Estimation Methods Based on a Severe Rainfall Event in Tuscany, Italy, November 2023" Remote Sensing 16, no. 21: 3985. https://doi.org/10.3390/rs16213985
APA StyleBiondi, A., Facheris, L., Argenti, F., & Cuccoli, F. (2024). Comparison of Different Quantitative Precipitation Estimation Methods Based on a Severe Rainfall Event in Tuscany, Italy, November 2023. Remote Sensing, 16(21), 3985. https://doi.org/10.3390/rs16213985