Statistical Characteristics of Remote Sensing Extreme Temperature Anomaly Events in the Taiwan Strait
Abstract
1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
2.2.1. MHW and MCS Identification
2.2.2. Metrics of MHWs and MCSs
2.2.3. Mann–Kendall Test
2.2.4. Evaluating Effects of the SST Long-Term Trend and Variability on MHWs/MCSs
3. Results
3.1. Characteristics and Long-Term Trend of SST in the TWS
3.2. Annual Mean Characteristics of Extreme Temperature Anomaly Events in the TWS
3.2.1. MHWs in the TWS
3.2.2. MCSs in the TWS
3.3. Seasonal Variability of Extreme Temperature Anomaly Events in the TWS
4. Discussion
5. Summary
- The SST and its long-term trend in the Taiwan Strait show different spatial patterns in different seasons.
- The regionally averaged annual total days and frequency of MHWs in the TWS are 34 days and 3.1 times, respectively, and show a significant increasing trend during 1982–2021. The increasing rate in the east of the Taiwan Strait is higher than that in the west. The maximum MHW duration can reach 12 days, and the maximum increasing rate can reach 5.3 days per decade. The annual mean intensity of MHWs ranges from 0.6 °C to 2.7 °C and increases by 0.1 °C~0.4 °C per decade. The MCSs mainly occur in the west of the strait. The annual total days of MCSs range from 17 to 31 days and show a linear trend of −20 to 10 days per decade. The metrics of MCSs show an increasing trend in the western strait but a decreasing trend in the eastern.
- In summer and autumn, MHWs occur in most areas of the TWS, and their metrics tend to increase with time during the period of 1982–2021. The metrics of MHWs in spring and winter show a decreasing trend in the west of the strait and an increasing trend in the east. The spring and winter MCSs are concentrated in the western TWS affected by the ZCC and show an increasing trend. In summer and autumn, the metrics of MCSs show an obvious decreasing trend. The cooling effect of summer upwelling around DS and TB tends to inhibit the occurrence of MHWs but enhances MCSs.
- The rising background SST is the dominant driver for the increasing trend of summer MHWs in the TWS while both the SST decreasing trend and internal variability contribute to the increasing trend of winter MCSs in the strait.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Scafetta, N. Empirical assessment of the role of the Sun in climate change using balanced multi-proxy solar records. Geosci. Front. 2023, 14, 101650. [Google Scholar] [CrossRef]
- Svensmark, H.; Svensmark, J.; Enghoff, M.B.; Shaviv, N.J. Atmospheric ionization and cloud radiative forcing. Sci. Rep. 2021, 11, 19668. [Google Scholar] [CrossRef]
- Coumou, D.; Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2012, 2, 491–496. [Google Scholar] [CrossRef]
- Kennedy, J.J. A review of uncertainty in in situ measurements and data sets of sea surface temperature. Rev. Geophys. 2014, 52, 1–32. [Google Scholar] [CrossRef]
- Cai, R.; Tan, H.; Kontoyiannis, H. Robust Surface Warming in Offshore China Seas and Its Relationship to the East Asian Monsoon Wind Field and Ocean Forcing on Interdecadal Time Scales. J. Clim. 2017, 30, 8987–9005. [Google Scholar] [CrossRef]
- Tan, H.; Cai, R.; Huo, Y.; Guo, H. Projections of changes in marine environment in coastal China seas over the 21st century based on CMIP5 models. J. Oceanol. Limnol. 2020, 38, 1676–1691. [Google Scholar] [CrossRef]
- Hobday, A.J.; Alexander, L.V.; Perkins, S.E.; Smale, D.A.; Straub, S.C.; Oliver, E.C.J.; Benthuysen, J.A.; Burrows, M.T.; Donat, M.G.; Feng, M.; et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 2016, 141, 227–238. [Google Scholar] [CrossRef]
- Wernberg, T.; Smale, D.A.; Tuya, F.; Thomsen, M.S.; Langlois, T.J.; de Bettignies, T.; Bennett, S.; Rousseaux, C.S. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 2012, 3, 78–82. [Google Scholar] [CrossRef]
- Di Lorenzo, E.; Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 2016, 6, 1042–1047. [Google Scholar] [CrossRef]
- Hughes, T.P.; Kerry, J.T.; Álvarez-Noriega, M.; Álvarez-Romero, J.G.; Anderson, K.D.; Baird, A.H.; Babcock, R.C.; Beger, M.; Bellwood, D.R.; Berkelmans, R.; et al. Global warming and recurrent mass bleaching of corals. Nature 2017, 543, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Oliver, E.C.J.; Benthuysen, J.A.; Bindoff, N.L.; Hobday, A.J.; Holbrook, N.J.; Mundy, C.N.; Perkins-Kirkpatrick, S.E. The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun. 2017, 8, 16101. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, R.W.; Oliver, E.C.J.; Wernberg, T.; Smit, A.J. Nearshore and offshore co-occurrence of marine heatwaves and cold-spells. Prog. Oceanogr. 2017, 151, 189–205. [Google Scholar] [CrossRef]
- Hobday, A.; Oliver, E.; Sen Gupta, A.; Benthuysen, J.; Burrows, M.; Donat, M.; Holbrook, N.; Moore, P.; Thomsen, M.; Wernberg, T.; et al. Categorizing and Naming Marine Heatwaves. Oceanography 2018, 31, 162–173. [Google Scholar] [CrossRef]
- Rodrigues, R.R.; Taschetto, A.S.; Sen Gupta, A.; Foltz, G.R. Common cause for severe droughts in South America and marine heatwaves in the South Atlantic. Nat. Geosci. 2019, 12, 620–626. [Google Scholar] [CrossRef]
- Lee, S.; Park, M.S.; Kwon, M.; Park, Y.G.; Kim, Y.H.; Choi, N. Rapidly Changing East Asian Marine Heatwaves Under a Warming Climate. J. Geophys. Res. Ocean. 2023, 128, e2023JC019761. [Google Scholar] [CrossRef]
- Diaz-Almela, E.; MarbÀ, N.; Duarte, C.M. Consequences of Mediterranean warming events in seagrass (Posidonia oceanica) flowering records. Glob. Change Biol. 2006, 13, 224–235. [Google Scholar] [CrossRef]
- Cavole, L.; Demko, A.; Diner, R.; Giddings, A.; Koester, I.; Pagniello, C.; Paulsen, M.-L.; Ramirez-Valdez, A.; Schwenck, S.; Yen, N.; et al. Biological Impacts of the 2013–2015 Warm-Water Anomaly in the Northeast Pacific: Winners, Losers, and the Future. Oceanography 2016, 29, 273–285. [Google Scholar] [CrossRef]
- Bond, N.A.; Cronin, M.F.; Freeland, H.; Mantua, N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 2015, 42, 3414–3420. [Google Scholar] [CrossRef]
- Mills, K.; Pershing, A.; Brown, C.; Chen, Y.; Chiang, F.-S.; Holland, D.; Lehuta, S.; Nye, J.; Sun, J.; Thomas, A.; et al. Fisheries Management in a Changing Climate: Lessons From the 2012 Ocean Heat Wave in the Northwest Atlantic. Oceanography 2013, 26, 191–195. [Google Scholar] [CrossRef]
- Schlegel, R.W.; Darmaraki, S.; Benthuysen, J.A.; Filbee-Dexter, K.; Oliver, E.C.J. Marine cold-spells. Prog. Oceanogr. 2021, 198, 102684. [Google Scholar] [CrossRef]
- Aretxabaleta, A.; Nelson, J.R.; Blanton, J.O.; Seim, H.E.; Werner, F.E.; Bane, J.M.; Weisberg, R. Cold event in the South Atlantic Bight during summer of 2003: Anomalous hydrographic and atmospheric conditions. J. Geophys. Res. Ocean. 2006, 111, C06007. [Google Scholar] [CrossRef]
- Aretxabaleta, A.; Blanton, B.O.; Seim, H.E.; Werner, F.E.; Nelson, J.R.; Chassignet, E.P. Cold event in the South Atlantic Bight during summer of 2003: Model simulations and implications. J. Geophys. Res. Ocean. 2007, 112, C05022. [Google Scholar] [CrossRef]
- Zapata, F.A.; Jaramillo-González, J.; Navas-Camacho, R. Extensive bleaching of the coral porites lobata at Malpelo Island, Colombia, during a cold water episode in 2009. Boletín Investig. Mar. Y Costeras-INVEMAR 2011, 40, 185–193. [Google Scholar]
- Firth, L.B.; Mieszkowska, N.; Grant, L.M.; Bush, L.E.; Davies, A.J.; Frost, M.T.; Moschella, P.S.; Burrows, M.T.; Cunningham, P.N.; Dye, S.R.; et al. Historical comparisons reveal multiple drivers of decadal change of an ecosystem engineer at the range edge. Ecol. Evol. 2015, 5, 3210–3222. [Google Scholar] [CrossRef]
- Oliver, E.C.J.; Donat, M.G.; Burrows, M.T.; Moore, P.J.; Smale, D.A.; Alexander, L.V.; Benthuysen, J.A.; Feng, M.; Sen Gupta, A.; Hobday, A.J.; et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 2018, 9, 1324. [Google Scholar] [CrossRef]
- Frölicher, T.L.; Fischer, E.M.; Gruber, N. Marine heatwaves under global warming. Nature 2018, 560, 360–364. [Google Scholar] [CrossRef]
- Wang, Y.; Kajtar, J.B.; Alexander, L.V.; Pilo, G.S.; Holbrook, N.J. Understanding the Changing Nature of Marine Cold-Spells. Geophys. Res. Lett. 2022, 49, e2021GL097002. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, C.; Fu, Y. Global Marine Heatwaves and Cold-Spells in Present Climate to Future Projections. Earth’s Future 2022, 10, e2022EF002787. [Google Scholar] [CrossRef]
- Oliver, E.C.J. Mean warming not variability drives marine heatwave trends. Clim. Dyn. 2019, 53, 1653–1659. [Google Scholar] [CrossRef]
- Sun, D.; Liu, Z.; Chiu, L.; Yang, R.; Singh, R.P.; Kafatos, M. Anomalous cold water detected along Mid-Atlantic Coast. Eos Trans. Am. Geophys. Union 2004, 85, 152. [Google Scholar] [CrossRef]
- Varela, R.; Rodríguez-Díaz, L.; de Castro, M.; Gómez-Gesteira, M. Influence of Eastern Upwelling systems on marine heatwaves occurrence. Glob. Planet. Change 2021, 196, 103379. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, C. Variations in Summer Marine Heatwaves in the South China Sea. J. Geophys. Res. Ocean. 2021, 126, e2021JC017792. [Google Scholar] [CrossRef]
- Tan, H.-J.; Cai, R.-S.; Wu, R.-G. Summer marine heatwaves in the South China Sea: Trend, variability and possible causes. Adv. Clim. Change Res. 2022, 13, 323–332. [Google Scholar] [CrossRef]
- Qi, Q.; Cai, R. Analysis on climate characteristics of sea surface temperature extremes in coastal China seas. Haiyang Xuebao 2019, 41, 6. [Google Scholar] [CrossRef]
- Li, Y.; Ren, G.; Wang, Q.; You, Q. More extreme marine heatwaves in the China Seas during the global warming hiatus. Environ. Res. Lett. 2019, 14, 104010. [Google Scholar] [CrossRef]
- Li, Y.; Ren, G.; Wang, Q.; Mu, L. Changes in marine hot and cold extremes in the China Seas during 1982–2020. Weather Clim. Extrem. 2023, 39, 100553. [Google Scholar] [CrossRef]
- Hu, J.Y.; Kawamura, H.; Li, C.Y.; Hong, H.S.; Jiang, Y.W. Review on Current and Seawater Volume Transport through the Taiwan Strait. J. Oceanogr. 2010, 66, 591–610. [Google Scholar] [CrossRef]
- Chang, Y.; Lee, K.-T.; Lee, M.-A.; Lan, K.-W. Satellite Observation on the Exceptional Intrusion of Cold Water in the Taiwan Strait. Terr. Atmos. Ocean. Sci. 2009, 20, 661–669. [Google Scholar] [CrossRef]
- Liao, E.; Oey, L.Y.; Yan, X.-H.; Li, L.; Jiang, Y. The Deflection of the China Coastal Current over the Taiwan Bank in Winter. J. Phys. Oceanogr. 2018, 48, 1433–1450. [Google Scholar] [CrossRef]
- Hu, J.Y.; Kawamura, H.; Hong, H.S.; Pan, W.R. A review of research on the upwelling in the Taiwan Strait. Bull. Mar. Sci. 2003, 73, 605–628. [Google Scholar]
- Good, S.; Fiedler, E.; Mao, C.; Martin, M.J.; Maycock, A.; Reid, R.; Roberts-Jones, J.; Searle, T.; Waters, J.; While, J.; et al. The Current Configuration of the OSTIA System for Operational Production of Foundation Sea Surface Temperature and Ice Concentration Analyses. Remote Sens. 2020, 12, 720. [Google Scholar] [CrossRef]
- Wang, D.; Xu, T.; Fang, G.; Jiang, S.; Wang, G.; Wei, Z.; Wang, Y. Characteristics of Marine Heatwaves in the Japan/East Sea. Remote Sens. 2022, 14, 936. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric test against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Measures; Charles Griffin: London, UK, 1975. [Google Scholar]
- Marin, M.; Feng, M.; Phillips, H.E.; Bindoff, N.L. A Global, Multiproduct Analysis of Coastal Marine Heatwaves: Distribution, Characteristics, and Long-Term Trends. J. Geophys. Res. Ocean. 2021, 126, e2020JC016708. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, Y.; Ding, W. Enhancement of Zhe-Min coastal water in the Taiwan Strait in winter. J. Oceanogr. 2020, 76, 197–209. [Google Scholar] [CrossRef]
Index | Formulas | Unit |
---|---|---|
Total days | Days | |
Duration | Days | |
Frequency | N | Times |
Mean intensity | °C | |
Maximum intensity | for MHWs for MCSs | °C |
Cumulative intensity | •1 day | °C days |
Season | Total Days (Days) | Frequency (Times) | Duration (Days) | Mean Intensity (°C) | Cumulative Intensity (°C Days) |
---|---|---|---|---|---|
Spring | 8.91 | 0.81 | 5.73 | 0.84 | 9.60 |
Summer | 9.92 | 0.91 | 5.74 | 0.77 | 8.48 |
Autumn | 9.54 | 0.77 | 6.42 | 0.70 | 9.43 |
Winter | 7.26 | 0.67 | 4.87 | 0.74 | 8.25 |
Season | Total Days (Days) | Frequency (Times) | Duration (Days) | Mean Intensity (°C) | Cumulative Intensity (°C Days) |
---|---|---|---|---|---|
Spring | 3.44 | 0.35 | 2.33 | −0.41 | −4.20 |
Summer | 2.60 | 0.29 | 1.87 | −0.30 | −2.64 |
Autumn | 2.34 | 0.23 | 1.69 | −0.23 | −2.35 |
Winter | 4.63 | 0.42 | 3.16 | −0.52 | −6.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Z.-F.; Zhang, W.-Z. Statistical Characteristics of Remote Sensing Extreme Temperature Anomaly Events in the Taiwan Strait. Remote Sens. 2024, 16, 3091. https://doi.org/10.3390/rs16163091
Jin Z-F, Zhang W-Z. Statistical Characteristics of Remote Sensing Extreme Temperature Anomaly Events in the Taiwan Strait. Remote Sensing. 2024; 16(16):3091. https://doi.org/10.3390/rs16163091
Chicago/Turabian StyleJin, Ze-Feng, and Wen-Zhou Zhang. 2024. "Statistical Characteristics of Remote Sensing Extreme Temperature Anomaly Events in the Taiwan Strait" Remote Sensing 16, no. 16: 3091. https://doi.org/10.3390/rs16163091
APA StyleJin, Z.-F., & Zhang, W.-Z. (2024). Statistical Characteristics of Remote Sensing Extreme Temperature Anomaly Events in the Taiwan Strait. Remote Sensing, 16(16), 3091. https://doi.org/10.3390/rs16163091