Evaluation of Sentinel-5P TROPOMI Methane Observations at Northern High Latitudes
Abstract
:1. Introduction
2. Data Description
2.1. TROPOMI XCH4 OPER and OPER Rpro Products
2.2. TROPOMI XCH4 WFMD Products
2.3. TCCON Sites and XCH4 Products
2.4. COCCON XCH4 Product
2.5. AirCore CH4 Profiles
2.6. Permafrost Extent
3. Methods
3.1. Co-Location at TCCON and COCCON Sites
3.2. Prior Correction
3.3. Co-Location and Analysis against AirCore Measurements
4. Results and Discussion
4.1. Seasonal and Regional Coverage
4.1.1. Spatial Comparison of TROPOMI Products
4.1.2. Latitudinal Comparisons
4.1.3. Coverage of TROPOMI at High Latitudes
4.2. TROPOMI Evaluation at the TCCON Sites
4.2.1. TROPOMI XCH4 Evaluation against TCCON GGG2020
4.2.2. Comparison of TCCON GGG2014 and TCCON GGG2020
4.3. Evaluation at the COCCON Sites
4.4. AirCore Comparisons
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. TROPOMI OPER and WFMD v1.2 Time Series at the TCCON Sites
Appendix B. Tabulated Daily Median XCH4 Differences
East Trout Lake | Sodankylä | Ny-Ålesund | Eureka | |
---|---|---|---|---|
N, OPER rpro | 462 | 270 | 48 | 79 |
Bias (ppb), OPER rpro | 3.30 | −0.47 | 7.54 | 22.42 |
(ppb), OPER rpro | 15.45 | 20.43 | 16.7 | 12.98 |
r, OPER rpro | 0.604 | 0.415 | 0.494 | 0.761 |
N, WFMD v1.8 | 520 | 234 | 66 | 113 |
Bias (ppb), WFMD v1.8 | 4.61 | 1.17 | 9.17 | 19.41 |
(ppb), WFMD v1.8 | 14.97 | 12.51 | 14.66 | 13.37 |
r, WFMD v1.8 | 0.744 | 0.707 | 0.847 | 0.643 |
N, OPER | 444 | 259 | 34 | 56 |
Bias (ppb), OPER | 4.22 | −6.42 | 32.81 | 36.25 |
(ppb), OPER | 18.72 | 17.61 | 13.96 | 18.30 |
N, WFMD v1.2 | 377 | 172 | 64 | 126 |
Bias (ppb), WFMD v1.2 | 5.54 | −1.43 | 4.79 | 19.98 |
(ppb), WFMD v1.2 | 16.97 | 16.83 | 26.78 | 16.52 |
East Trout Lake | Sodankylä | Ny-Ålesund | Eureka | |
---|---|---|---|---|
N, OPER rpro | 363 | 295 | 44 | 77 |
Bias (ppb), GGG2014 | −3.8 | −12.9 | −1.7 | 6.3 |
(ppb), GGG2014 | 15.3 | 19.4 | 17.8 | 10.5 |
Bias (ppb), GGG2020 | 3.3 | −6.3 | 5.6 | 21.9 |
(ppb), GGG2020 | 16.6 | 19.9 | 18.3 | 10.3 |
N, WFMD v1.8 | 416 | 249 | 46 | 94 |
Bias (ppb), GGG2014 | 0.8 | −4.3 | − 0.9 | 9.0 |
(ppb), GGG2014 | 14.2 | 12.3 | 18.0 | 13.1 |
Bias (ppb), GGG2020 | 8.9 | 3.3 | 10.5 | 25.3 |
(ppb), GGG2020 | 15.3 | 13.0 | 20.1 | 14.1 |
Kiruna | Sodankylä (SN039) | Sodankylä (SN122) | Fairbanks | St. Petersburg | |
---|---|---|---|---|---|
N, OPER rpro | 125 | 97 | 40 | 205 | 15 |
Bias (ppb), OPER rpro | −14.81 | −6.74 | −6.32 | 5.62 | −26.51 |
(ppb), OPER rpro | 14.36 | 16.02 | 13.96 | 14.61 | 28.73 |
r, OPER rpro | 0.561 | 0.368 | 0.750 | 0.712 | 0.118 |
N, WFMD v1.8 | 132 | 78 | 27 | 188 | 27 |
Bias (ppb), WFMD v1.8 | −5.03 | −0.03 | −3.79 | 17.23 | 2.67 |
(ppb), WFMD v1.8 | 12.94 | 11.54 | 13.02 | 12.05 | 11.45 |
r, WFMD v1.8 | 0.734 | 0.576 | 0.595 | 0.819 | 0.623 |
References
- Rantanen, M.; Karpechko, A.Y.; Lipponen, A.; Nordling, K.; Hyvärinen, O.; Ruosteenoja, K.; Vihma, T.; Laaksonen, A. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 2022, 3, 168. [Google Scholar] [CrossRef]
- Comiso, J.C.; Hall, D.K. Climate trends in the Arctic as observed from space. Wiley Interdiscip. Rev. Clim. Chang. 2014, 5, 389–409. [Google Scholar] [CrossRef] [PubMed]
- Pulliainen, J.; Luojus, K.; Derksen, C.; Mudryk, L.; Lemmetyinen, J.; Salminen, M.; Ikonen, J.; Takala, M.; Cohen, J.; Smolander, T.; et al. Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018. Nature 2020, 581, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Runge, A.; Nitze, I.; Grosse, G. Remote sensing annual dynamics of rapid permafrost thaw disturbances with LandTrendr. Remote Sens. Environ. 2022, 268, 112752. [Google Scholar] [CrossRef]
- Shiklomanov, N.I.; Streletskiy, D.A.; Nelson, F.E. Northern hemisphere component of the global circumpolar active layer monitoring (CALM) program. In Proceedings of the 10th International Conference on Permafrost, Salekhard, Russia, 25–29 June 2012; Volume 1, pp. 377–382. [Google Scholar]
- Henry, H.A. Climate change and soil freezing dynamics: Historical trends and projected changes. Clim. Chang. 2008, 87, 421–434. [Google Scholar] [CrossRef]
- Paxian, A.; Eyring, V.; Beer, W.; Sausen, R.; Wright, C. Present-day and future global bottom-up ship emission inventories including polar routes. Environ. Sci. Technol. 2010, 44, 1333–1339. [Google Scholar] [CrossRef] [PubMed]
- Schach, M.; Madlener, R. Impacts of an ice-free Northeast Passage on LNG markets and geopolitics. Energy Policy 2018, 122, 438–448. [Google Scholar] [CrossRef]
- Petrick, S.; Riemann-Campe, K.; Hoog, S.; Growitsch, C.; Schwind, H.; Gerdes, R.; Rehdanz, K. Climate change, future Arctic Sea ice, and the competitiveness of European Arctic offshore oil and gas production on world markets. Ambio 2017, 46, 410–422. [Google Scholar] [CrossRef]
- Turetsky, M.R.; Abbott, B.W.; Jones, M.C.; Anthony, K.W.; Olefeldt, D.; Schuur, E.A.; Grosse, G.; Kuhry, P.; Hugelius, G.; Koven, C.; et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 2020, 13, 138–143. [Google Scholar] [CrossRef]
- Miner, K.R.; Turetsky, M.R.; Malina, E.; Bartsch, A.; Tamminen, J.; McGuire, A.D.; Fix, A.; Sweeney, C.; Elder, C.D.; Miller, C.E. Permafrost carbon emissions in a changing Arctic. Nat. Rev. Earth Environ. 2022, 3, 55–67. [Google Scholar] [CrossRef]
- Comiso, J.C.; Parkinson, C.L. Satellite-observed changes in the Arctic. Phys. Today 2004, 57, 38–44. [Google Scholar] [CrossRef]
- Duncan, B.N.; Ott, L.E.; Abshire, J.B.; Brucker, L.; Carroll, M.L.; Carton, J.; Comiso, J.C.; Dinnat, E.P.; Forbes, B.C.; Gonsamo, A.; et al. Space-based observations for understanding changes in the arctic-boreal zone. Rev. Geophys. 2020, 58, e2019RG000652. [Google Scholar] [CrossRef]
- Buchwitz, M.d.; De Beek, R.; Burrows, J.; Bovensmann, H.; Warneke, T.; Notholt, J.; Meirink, J.; Goede, A.; Bergamaschi, P.; Körner, S.; et al. Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: Initial comparison with chemistry and transport models. Atmos. Chem. Phys. 2005, 5, 941–962. [Google Scholar] [CrossRef]
- Kuze, A.; Suto, H.; Nakajima, M.; Hamazaki, T. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Appl. Opt. 2009, 48, 6716–6733. [Google Scholar] [CrossRef] [PubMed]
- Tsuruta, A.; Aalto, T.; Backman, L.; Hakkarainen, J.; Van Der Laan-Luijkx, I.T.; Krol, M.C.; Spahni, R.; Houweling, S.; Laine, M.; Dlugokencky, E.; et al. Global methane emission estimates for 2000–2012 from CarbonTracker Europe-CH 4 v1. 0. Geosci. Model Dev. 2017, 10, 1261–1289. [Google Scholar] [CrossRef]
- Maasakkers, J.D.; Jacob, D.J.; Sulprizio, M.P.; Scarpelli, T.R.; Nesser, H.; Sheng, J.X.; Zhang, Y.; Hersher, M.; Bloom, A.A.; Bowman, K.W.; et al. Global distribution of methane emissions, emission trends, and OH concentrations and trends inferred from an inversion of GOSAT satellite data for 2010–2015. Atmos. Chem. Phys. 2019, 19, 7859–7881. [Google Scholar] [CrossRef]
- Baray, S.; Jacob, D.J.; Maasakkers, J.D.; Sheng, J.X.; Sulprizio, M.P.; Jones, D.B.; Bloom, A.A.; McLaren, R. Estimating 2010–2015 anthropogenic and natural methane emissions in Canada using ECCC surface and GOSAT satellite observations. Atmos. Chem. Phys. 2021, 21, 18101–18121. [Google Scholar] [CrossRef]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; De Vries, J.; Otter, G.; Claas, J.; Eskes, H.; De Haan, J.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Liu, M.; Van Der A, R.; Van Weele, M.; Eskes, H.; Lu, X.; Veefkind, P.; De Laat, J.; Kong, H.; Wang, J.; Sun, J.; et al. A new divergence method to quantify methane emissions using observations of Sentinel-5P TROPOMI. Geophys. Res. Lett. 2021, 48, e2021GL094151. [Google Scholar] [CrossRef]
- Jacob, D.J.; Varon, D.J.; Cusworth, D.H.; Dennison, P.E.; Frankenberg, C.; Gautam, R.; Guanter, L.; Kelley, J.; McKeever, J.; Ott, L.E.; et al. Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane. Atmos. Chem. Phys. 2022, 22, 9617–9646. [Google Scholar] [CrossRef]
- Schneising, O.; Buchwitz, M.; Reuter, M.; Vanselow, S.; Bovensmann, H.; Burrows, J.P. Remote sensing of methane leakage from natural gas and petroleum systems revisited. Atmos. Chem. Phys. 2020, 20, 9169–9182. [Google Scholar] [CrossRef]
- Ialongo, I.; Stepanova, N.; Hakkarainen, J.; Virta, H.; Gritsenko, D. Satellite-based estimates of nitrogen oxide and methane emissions from gas flaring and oil production activities in Sakha Republic, Russia. Atmos. Environ. X 2021, 11, 100114. [Google Scholar] [CrossRef]
- Lindqvist, H.; Martikainen, J.; Räbinä, J.; Penttilä, A.; Muinonen, K. Ray optics for absorbing particles with application to ice crystals at near-infrared wavelengths. J. Quant. Spectrosc. Radiat. Transf. 2018, 217, 329–337. [Google Scholar] [CrossRef]
- Mikkonen, A.; Lindqvist, H.; Peltoniemi, J.; Tamminen, J. Non-Lambertian snow surface reflection models for simulated top-of-the-atmosphere radiances in the NIR and SWIR wavelengths. J. Quant. Spectrosc. Radiat. Transf. 2024, 315, 108892. [Google Scholar] [CrossRef]
- Tukiainen, S.; Railo, J.; Laine, M.; Hakkarainen, J.; Kivi, R.; Heikkinen, P.; Chen, H.; Tamminen, J. Retrieval of atmospheric CH4 profiles from Fourier transform infrared data using dimension reduction and MCMC. J. Geophys. Res. Atmos. 2016, 121, 10–312. [Google Scholar] [CrossRef]
- Karppinen, T.; Lamminpää, O.; Tukiainen, S.; Kivi, R.; Heikkinen, P.; Hatakka, J.; Laine, M.; Chen, H.; Lindqvist, H.; Tamminen, J. Vertical distribution of arctic methane in 2009–2018 using ground-based remote sensing. Remote Sens. 2020, 12, 917. [Google Scholar] [CrossRef]
- Boesch, H.; Liu, Y.; Tamminen, J.; Yang, D.; Palmer, P.I.; Lindqvist, H.; Cai, Z.; Che, K.; Di Noia, A.; Feng, L.; et al. Monitoring greenhouse gases from space. Remote Sens. 2021, 13, 2700. [Google Scholar] [CrossRef]
- Hachmeister, J.; Schneising, O.; Buchwitz, M.; Lorente, A.; Borsdorff, T.; Burrows, J.P.; Notholt, J.; Buschmann, M. On the influence of underlying elevation data on Sentinel-5 Precursor TROPOMI satellite methane retrievals over Greenland. Atmos. Meas. Tech. 2022, 15, 4063–4074. [Google Scholar] [CrossRef]
- Hu, H.; Landgraf, J.; Detmers, R.; Borsdorff, T.; Aan de Brugh, J.; Aben, I.; Butz, A.; Hasekamp, O. Toward global mapping of methane with TROPOMI: First results and intersatellite comparison to GOSAT. Geophys. Res. Lett. 2018, 45, 3682–3689. [Google Scholar] [CrossRef]
- Lorente, A.; Borsdorff, T.; Butz, A.; Hasekamp, O.; aan de Brugh, J.; Schneider, A.; Wu, L.; Hase, F.; Kivi, R.; Wunch, D.; et al. Methane retrieved from TROPOMI: Improvement of the data product and validation of the first 2 years of measurements. Atmos. Meas. Tech. 2021, 14, 665–684. [Google Scholar] [CrossRef]
- Lorente, A.; Borsdorff, T.; Martinez-Velarte, M.C.; Butz, A.; Hasekamp, O.P.; Wu, L.; Landgraf, J. Evaluation of the methane full-physics retrieval applied to TROPOMI ocean sun glint measurements. Atmos. Meas. Tech. 2022, 15, 6585–6603. [Google Scholar] [CrossRef]
- Borsdorff, T.; Martinez-Velarte, M.C.; Sneep, M.; ter Linden, M.; Landgraf, J. Random Forest Classifier for Cloud Clearing of the Operational TROPOMI XCH4 Product. Remote Sens. 2024, 16, 1208. [Google Scholar] [CrossRef]
- Schneising, O.; Buchwitz, M.; Reuter, M.; Bovensmann, H.; Burrows, J.P.; Borsdorff, T.; Deutscher, N.M.; Feist, D.G.; Griffith, D.W.T.; Hase, F.; et al. A scientific algorithm to simultaneously retrieve carbon monoxide and methane from TROPOMI onboard Sentinel-5 Precursor. Atmos. Meas. Tech. 2019, 12, 6771–6802. [Google Scholar] [CrossRef]
- Schneising, O.; Buchwitz, M.; Hachmeister, J.; Vanselow, S.; Reuter, M.; Buschmann, M.; Bovensmann, H.; Burrows, J.P. Advances in retrieving XCH4 and XCO from Sentinel-5 Precursor: Improvements in the scientific TROPOMI/WFMD algorithm. Atmos. Meas. Tech. 2023, 16, 669–694. [Google Scholar] [CrossRef]
- Wu, L.; Hasekamp, O.; Hu, H.; Landgraf, J.; Butz, A.; Aben, I.; Pollard, D.F.; Griffith, D.W.; Feist, D.G.; Koshelev, D.; et al. Carbon dioxide retrieval from OCO-2 satellite observations using the RemoTeC algorithm and validation with TCCON measurements. Atmos. Meas. Tech. 2018, 11, 3111–3130. [Google Scholar] [CrossRef]
- Butz, A.; Galli, A.; Hasekamp, O.; Landgraf, J.; Tol, P.; Aben, I. TROPOMI aboard Sentinel-5 Precursor: Prospective performance of CH4 retrievals for aerosol and cirrus loaded atmospheres. Remote Sens. Environ. 2012, 120, 267–276. [Google Scholar] [CrossRef]
- Schepers, D.; Aan de Brugh, J.; Hahne, P.; Butz, A.; Hasekamp, O.; Landgraf, J. LINTRAN v2.0: A linearised vector radiative transfer model for efficient simulation of satellite-born nadir-viewing reflection measurements of cloudy atmospheres. J. Quant. Spectrosc. Radiat. Transf. 2014, 149, 347–359. [Google Scholar] [CrossRef]
- Landgraf, J.; Hasekamp, O.P.; Box, M.A.; Trautmann, T. A linearized radiative transfer model for ozone profile retrieval using the analytical forward-adjoint perturbation theory approach. J. Geophys. Res. Atmos. 2001, 106, 27291–27305. [Google Scholar] [CrossRef]
- Houweling, S.; Krol, M.; Bergamaschi, P.; Frankenberg, C.; Dlugokencky, E.; Morino, I.; Notholt, J.; Sherlock, V.; Wunch, D.; Beck, V.; et al. A multi-year methane inversion using SCIAMACHY, accounting for systematic errors using TCCON measurements. Atmos. Chem. Phys. 2014, 14, 3991–4012. [Google Scholar] [CrossRef]
- Hasekamp, O.; Lorente, A.; Hu, H.; Butz, A.; de Brugh, J.; Landgraf, J. Algorithm Theoretical Baseline Document for Sentinel-5 Precursor Methane Retrieval. 2022. Available online: https://sentinels.copernicus.eu/documents/247904/2476257/Sentinel-5P-TROPOMI-ATBD-Methane-retrieval.pdf/f275eb1d-89a8-464f-b5b8-c7156cda874e?t=1658313508597 (accessed on 15 April 2024).
- Lorente, A.; Borsdorff, T.; Martinez-Velarte, M.C.; Landgraf, J. Accounting for surface reflectance spectral features in TROPOMI methane retrievals. Atmos. Meas. Tech. 2023, 16, 1597–1608. [Google Scholar] [CrossRef]
- Wunch, D.; Toon, G.C.; Wennberg, P.O.; Wofsy, S.C.; Stephens, B.B.; Fischer, M.L.; Uchino, O.; Abshire, J.B.; Bernath, P.; Biraud, S.C.; et al. Calibration of the Total Carbon Column Observing Network using aircraft profile data. Atmos. Meas. Tech. 2010, 3, 1351–1362. [Google Scholar] [CrossRef]
- Wunch, D.; Toon, G.C.; Blavier, J.F.L.; Washenfelder, R.A.; Notholt, J.; Connor, B.J.; Griffith, D.W.T.; Sherlock, V.; Wennberg, P.O. The Total Carbon Column Observing Network. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 2087–2112. [Google Scholar] [CrossRef] [PubMed]
- Laughner, J.L.; Toon, G.C.; Mendonca, J.; Petri, C.; Roche, S.; Wunch, D.; Blavier, J.F.; Griffith, D.W.; Heikkinen, P.; Keeling, R.F.; et al. The Total Carbon Column Observing Network’s GGG2020 Data Version. Earth Syst. Sci. Data Discuss. 2023, 2023, 1–86. [Google Scholar] [CrossRef]
- Laughner, J.L.; Roche, S.; Kiel, M.; Toon, G.C.; Wunch, D.; Baier, B.C.; Biraud, S.; Chen, H.; Kivi, R.; Laemmel, T.; et al. A new algorithm to generate a priori trace gas profiles for the GGG2020 retrieval algorithm. Atmos. Meas. Tech. 2023, 16, 1121–1146. [Google Scholar] [CrossRef]
- Wunch, D.; Mendonca, J.; Colebatch, O.; Allen, N.; Blavier, J.F.L.; Springett, S.; Worthy, D.; Kessler, R.; Strong, K. TCCON Data from East Trout Lake, Canada, Release GGG2014R0; TCCON Data Archive; CaltechDATA, California Institute of Technology: Pasadena, CA, USA, 2014. [Google Scholar]
- Wunch, D.; Mendonca, J.; Colebatch, O.; Allen, N.; Blavier, J.F.L.; Kunz, K.; Roche, S.; Hedelius, J.; Neufeld, G.; Springett, S.; et al. TCCON Data from East Trout Lake, Canada, Release GGG2020R0; TCCON Data Archive; CaltechDATA, California Institute of Technology: Pasadena, CA, USA, 2020. [Google Scholar] [CrossRef]
- Kivi, R.; Heikkinen, P. Fourier transform spectrometer measurements of column CO2 at Sodankylä, Finland. Geosci. Instrum. Method. Data Syst. 2016, 5, 271–279. [Google Scholar] [CrossRef]
- Kivi, R.; Heikkinen, P.; Kyrö, E. TCCON Data from Sodankylä (FI), Release GGG2014.R0; CaltechDATA, California Institute of Technology: Pasadena, CA, USA, 2014. [Google Scholar] [CrossRef]
- Kivi, R.; Heikkinen, P.; Kyro, E. TCCON Data from Sodankyla, Finland, Release GGG2020R0; TCCON Data Archive; CaltechDATA, California Institute of Technology: Pasadena, CA, USA, 2017. [Google Scholar] [CrossRef]
- Maturilli, M. Basic and Other Measurements of Radiation at Station Ny-Ålesund (2006-05 et seq); Alfred Wegener Institute—Research Unit Potsdam, PANGAEA: Bremerhaven, Germany, 2020. [Google Scholar] [CrossRef]
- Notholt, J.; Warneke, T.; Petri, C.; Deutscher, N.M.; Weinzierl, C.; Palm, M.; Buschmann, M. TCCON Data from Ny Ålesund, Spitsbergen (NO), Release GGG2014.R1; CaltechDATA: Pasadena, CA, USA, 2019. [Google Scholar] [CrossRef]
- Buschmann, M.; Petri, C.; Palm, M.; Warneke, T.; Notholt, J.; Engineers, A.S. TCCON Data from Ny-Alesund, Svalbard, Norway, Release GGG2020R0; TCCON Data Archive; CaltechDATA, California Institute of Technology: Pasadena, CA, USA, 2022. [Google Scholar] [CrossRef]
- Fogal, P.F.; LeBlanc, L.M.; Drummond, J.R. The polar environment atmospheric research laboratory (PEARL): Sounding the atmosphere at 80° North. Arctic 2013, 66, 377–386. [Google Scholar] [CrossRef]
- Batchelor, R.L.; Strong, K.; Lindenmaier, R.; Mittermeier, R.L.; Fast, H.; Drummond, J.R.; Fogal, P.F. A new Bruker IFS 125HR FTIR spectrometer for the Polar Environment Atmospheric Research Laboratory at Eureka, Nunavut, Canada: Measurements and comparison with the existing Bomem DA8 spectrometer. J. Atmos. Ocean. Technol. 2009, 26, 1328–1340. [Google Scholar] [CrossRef]
- Strong, K.; Roche, S.; Franklin, J.; Mendonca, J.; Lutsch, E.; Weaver, D.; Fogal, P.; Drummond, J.; Batchelor, R.; Lindenmaier, R. TCCON Data from Eureka (CA), Release GGG2014. R3; TCCON Data Archive; CaltechDATA: Pasadena, CA, USA, 2019. [Google Scholar]
- Strong, K.; Roche, S.; Franklin, J.; Mendonca, J.; Lutsch, E.; Weaver, D.; Fogal, P.; Drummond, J.; Batchelor, R.; Lindenmaier, R.; et al. TCCON Data from Eureka (CA), Release GGG2020. R0 (Version R0) [Data Set]; CaltechDATA: Pasadena, CA, USA, 2022. [Google Scholar]
- Frey, M.; Sha, M.K.; Hase, F.; Kiel, M.; Blumenstock, T.; Harig, R.; Surawicz, G.; Deutscher, N.M.; Shiomi, K.; Franklin, J.E.; et al. Building the COllaborative Carbon Column Observing Network (COCCON): Long-term stability and ensemble performance of the EM27/SUN Fourier transform spectrometer. Atmos. Meas. Tech. 2019, 12, 1513–1530. [Google Scholar] [CrossRef]
- Gisi, M.; Hase, F.; Dohe, S.; Blumenstock, T.; Simon, A.; Keens, A. XCO2-measurements with a tabletop FTS using solar absorption spectroscopy. Atmos. Meas. Tech. 2012, 5, 2969–2980. [Google Scholar] [CrossRef]
- Hase, F.; Frey, M.; Kiel, M.; Blumenstock, T.; Harig, R.; Keens, A.; Orphal, J. Addition of a channel for XCO observations to a portable FTIR spectrometer for greenhouse gas measurements. Atmos. Meas. Tech. 2016, 9, 2303–2313. [Google Scholar] [CrossRef]
- Sha, M.K.; De Mazière, M.; Notholt, J.; Blumenstock, T.; Chen, H.; Dehn, A.; Griffith, D.W.T.; Hase, F.; Heikkinen, P.; Hermans, C.; et al. Intercomparison of low- and high-resolution infrared spectrometers for ground-based solar remote sensing measurements of total column concentrations of CO2, CH4, and CO. Atmos. Meas. Tech. 2020, 13, 4791–4839. [Google Scholar] [CrossRef]
- Alberti, C.; Hase, F.; Frey, M.; Dubravica, D.; Blumenstock, T.; Dehn, A.; Castracane, P.; Surawicz, G.; Harig, R.; Baier, B.C.; et al. Improved calibration procedures for the EM27/SUN spectrometers of the COllaborative Carbon Column Observing Network (COCCON). Atmos. Meas. Tech. 2022, 15, 2433–2463. [Google Scholar] [CrossRef]
- Blumenstock, T.; Roehling, A.; Raffalski, U.; Dubravica, D. COCCON Version 1 Dataset from Atmospheric Observatory of Kiruna Available at the EVDC Data Handling Facilities Covering Start Date Mar 9th 2017 to End Date Apr 21th 2020; COCCON—Central Facility/EVDC—ESA Atmospheric Validation Data Centre: Paris, France, 2021. [Google Scholar] [CrossRef]
- Tu, Q.; Hase, F.; Blumenstock, T.; Kivi, R.; Heikkinen, P.; Sha, M.K.; Raffalski, U.; Landgraf, J.; Lorente, A.; Borsdorff, T.; et al. Intercomparison of atmospheric CO2 and CH4 abundances on regional scales in boreal areas using Copernicus Atmosphere Monitoring Service (CAMS) analysis, COllaborative Carbon Column Observing Network (COCCON) spectrometers, and Sentinel-5 Precursor satellite observations. Atmos. Meas. Tech. 2020, 13, 4751–4771. [Google Scholar] [CrossRef]
- Tu, Q.; Heikkinen, P.; Dubravica, D. COCCON Version 1 Dataset from Atmospheric Observatory of Sodankyla Available at the EVDC Data Handling Facilities Covering Start Date Mar 6th 2017 to End Date Jun 2nd 2020; COCCON—Central Facility/EVDC—ESA Atmospheric Validation Data Centre: Paris, France, 2021. [Google Scholar] [CrossRef]
- Kivi, R.; Heikkinen, P. COCCON Version 1 Dataset from Atmospheric Observatory of Sodankyla Available at the EVDC Data Handling Facilities Covering Start Date Apr 2nd 2020 to End Date Mar 23rd 2021; COCCON—Central Facility/EVDC—ESA Atmospheric Validation Data Centre: Paris, France, 2023. [Google Scholar] [CrossRef]
- Simpson, W.; Jacobs, N. COCCON Version 1 Dataset from Atmospheric Observatory of Fairbanks/Alaska Available at the EVDC Data Handling Facilities Covering Start Date Apr 7th 2018 to End Date Oct 18th 2021; COCCON—Central Facility/EVDC—ESA Atmospheric Validation Data Centre: Paris, France, 2022. [Google Scholar] [CrossRef]
- Hase, F.; Alberti, C.; Dubravica, D.; Makarova, M.; Foka, S. COCCON Version 1 Dataset from Atmospheric Observatory of Saint Petersburg Available at the EVDC Data Handling Facilities Covering Start Date Jan 22nd 2019 to End date Mar 17th 2020; COCCON—Central Facility/EVDC—ESA Atmospheric Validation Data Centre: Paris, France, 2022. [Google Scholar] [CrossRef]
- Alberti, C.; Tu, Q.; Hase, F.; Makarova, M.V.; Gribanov, K.; Foka, S.C.; Zakharov, V.; Blumenstock, T.; Buchwitz, M.; Diekmann, C.; et al. Investigation of spaceborne trace gas products over St Petersburg and Yekaterinburg, Russia, by using COllaborative Column Carbon Observing Network (COCCON) observations. Atmos. Meas. Tech. 2022, 15, 2199–2229. [Google Scholar] [CrossRef]
- Karion, A.; Sweeney, C.; Tans, P.; Newberger, T. AirCore: An Innovative Atmospheric Sampling System. J. Atmos. Ocean. Technol. 2010, 27, 1839–1853. [Google Scholar] [CrossRef]
- Osterkamp, T.; Burn, C. PERMAFROST. In Encyclopedia of Atmospheric Sciences; Holton, J.R., Ed.; Academic Press: Oxford, UK, 2003; pp. 1717–1729. [Google Scholar] [CrossRef]
- Obu, J.; Westermann, S.; Barboux, C.; Bartsch, A.; Delaloye, R.; Grosse, G.; Heim, B.; Hugelius, G.; Irrgang, A.; Kääb, A.; et al. ESA Permafrost Climate Change Initiative (Permafrost_cci): Permafrost Version 3 Data Products; Centre for Environmental Data Analysis: Oxfordshire, UK, 2024. [Google Scholar]
- Rodgers, C.D. Inverse Methods for Atmospheric Sounding: Theory and Practice; World Scientific: Singapore, 2000; Volume 2. [Google Scholar]
- Tsuruta, A.; Kivimäki, E.; Lindqvist, H.; Karppinen, T.; Backman, L.; Hakkarainen, J.; Schneising, O.; Buchwitz, M.; Lan, X.; Kivi, R.; et al. CH4 Fluxes Derived from Assimilation of TROPOMI XCH4 in CarbonTracker Europe-CH4: Evaluation of Seasonality and Spatial Distribution in the Northern High Latitudes. Remote Sens. 2023, 15, 1620. [Google Scholar] [CrossRef]
- Mostafavi Pak, N.; Hedelius, J.K.; Roche, S.; Cunningham, L.; Baier, B.; Sweeney, C.; Roehl, C.; Laughner, J.; Toon, G.; Wennberg, P.; et al. Using portable low-resolution spectrometers to evaluate Total Carbon Column Observing Network (TCCON) biases in North America. Atmos. Meas. Tech. 2023, 16, 1239–1261. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lindqvist, H.; Kivimäki, E.; Häkkilä, T.; Tsuruta, A.; Schneising, O.; Buchwitz, M.; Lorente, A.; Martinez Velarte, M.; Borsdorff, T.; Alberti, C.; et al. Evaluation of Sentinel-5P TROPOMI Methane Observations at Northern High Latitudes. Remote Sens. 2024, 16, 2979. https://doi.org/10.3390/rs16162979
Lindqvist H, Kivimäki E, Häkkilä T, Tsuruta A, Schneising O, Buchwitz M, Lorente A, Martinez Velarte M, Borsdorff T, Alberti C, et al. Evaluation of Sentinel-5P TROPOMI Methane Observations at Northern High Latitudes. Remote Sensing. 2024; 16(16):2979. https://doi.org/10.3390/rs16162979
Chicago/Turabian StyleLindqvist, Hannakaisa, Ella Kivimäki, Tuomas Häkkilä, Aki Tsuruta, Oliver Schneising, Michael Buchwitz, Alba Lorente, Mari Martinez Velarte, Tobias Borsdorff, Carlos Alberti, and et al. 2024. "Evaluation of Sentinel-5P TROPOMI Methane Observations at Northern High Latitudes" Remote Sensing 16, no. 16: 2979. https://doi.org/10.3390/rs16162979
APA StyleLindqvist, H., Kivimäki, E., Häkkilä, T., Tsuruta, A., Schneising, O., Buchwitz, M., Lorente, A., Martinez Velarte, M., Borsdorff, T., Alberti, C., Backman, L., Buschmann, M., Chen, H., Dubravica, D., Hase, F., Heikkinen, P., Karppinen, T., Kivi, R., McGee, E., ... Tamminen, J. (2024). Evaluation of Sentinel-5P TROPOMI Methane Observations at Northern High Latitudes. Remote Sensing, 16(16), 2979. https://doi.org/10.3390/rs16162979