Livestock Detection and Counting in Kenyan Rangelands Using Aerial Imagery and Deep Learning Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Acqusition of Aerial Imagery
2.3. Cattle Detection and Counting
2.3.1. Tile Selection and Image Slicing
2.3.2. Data Augmentation Strategies
2.3.3. Annotation
2.3.4. Training Scenarios
2.3.5. Object Detection Models
2.3.6. Training YOLO and Faster R-CNN Models
2.3.7. Accuracy Assessment
3. Results
3.1. Detection Performance on the Combined Dataset
3.2. Cattle Counts at Image Patch Level
3.3. Impact of Training Data Selection on YOLO Detection Accuracy
3.4. Landcover Characteristics
4. Discussion
4.1. Performance of Computer Vision Models on Cattle Detection in Diverse Environments
4.2. Impact of Training Strategy, Augmentation Methods and Remaining Challenges
4.3. The Way Forward to Automatic Livestock Counting in African Rangelands
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. World Livestock: Transforming the Livestock Sector through the Sustainable Development Goals; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018; ISBN 978-92-5-130883-7. [Google Scholar]
- Pica-Ciamarra, U.; Baker, D.; Morgan, N.; Zezza, A.; Azzarri, C.; Ly, C.; Nsiima, L.; Nouala, S.; Okello, P.; Sserugga, J. Investing in the Livestock Sector: Why Good Numbers Matter. A Sourcebook for Decision Makers on How to Improve Livestock Data; Report Number 85732-GLB; World Bank: Rome, Italy, 2014. [Google Scholar]
- Brown, J.; Qiao, Y.; Clark, C.; Lomax, S.; Rafique, K.; Sukkarieh, S. Automated Aerial Animal Detection When Spatial Resolution Conditions Are Varied. Comput. Electron. Agric. 2022, 193, 106689. [Google Scholar] [CrossRef]
- Mare, F.; Bahta, Y.T.; Van Niekerk, W. The Impact of Drought on Commercial Livestock Farmers in South Africa. Dev. Pract. 2018, 28, 884–898. [Google Scholar] [CrossRef]
- FAO. Disasters on Agriculture and Food Security Through Investment in Resilience; Food and Agriculture Organization of the United Nations: Rome, Italy, 2023; ISBN 9789251381946. [Google Scholar]
- Cheng, M.; McCarl, B.; Fei, C. Climate Change and Livestock Production: A Literature Review. Atmosphere 2022, 13, 140. [Google Scholar] [CrossRef]
- Herrero, M.; Grace, D.; Njuki, J.; Johnson, N.; Enahoro, D.; Silvestri, S.; Rufino, M.C. The Roles of Livestock in Developing Countries. Animal 2013, 7, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Marcon, A.; Battocchio, D.; Apollonio, M.; Grignolio, S. Assessing Precision and Requirements of Three Methods to Estimate Roe Deer Density. PLoS ONE 2019, 14, e0222349. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Tao, P.; Martin, R.R. Livestock Detection in Aerial Images Using a Fully Convolutional Network. Comput. Vis. Media 2019, 5, 221–228. [Google Scholar] [CrossRef]
- Gilbert, M.; Nicolas, G.; Cinardi, G.; Van Boeckel, T.P.; Vanwambeke, S.O.; Wint, G.R.W.; Robinson, T.P. Global Distribution Data for Cattle, Buffaloes, Horses, Sheep, Goats, Pigs, Chickens and Ducks in 2010. Sci. Data 2018, 5, 180227. [Google Scholar] [CrossRef] [PubMed]
- Balehegn, M.; Kebreab, E.; Tolera, A.; Hunt, S.; Erickson, P.; Crane, T.A.; Adesogan, A.T. Livestock Sustainability Research in Africa with a Focus on the Environment. Anim. Front. 2021, 11, 47–56. [Google Scholar] [CrossRef]
- UNDESA. World Population Prospects 2022. Summary of Results; United Nations: New York, NY, USA, 2022; ISBN 978-92-1-148373-4. [Google Scholar]
- Dutilly, C.; Alary, V.; Bonnet, P.; Lesnoff, M.; Fandamu, P.; de Haan, C. Multi-Scale Assessment of the Livestock Sector for Policy Design in Zambia. J. Policy Model. 2020, 42, 401–418. [Google Scholar] [CrossRef]
- Ekwem, D.; Enright, J.; Hopcraft, J.G.C.; Buza, J.; Shirima, G.; Shand, M.; Mwajombe, J.K.; Bett, B.; Reeve, R.; Lembo, T. Local and Wide-Scale Livestock Movement Networks Inform Disease Control Strategies in East Africa. Sci. Rep. 2023, 13, 9666. [Google Scholar] [CrossRef]
- Norton-Griffiths, M. Counting Animals. Available online: https://www.awf.org/sites/default/files/media/Resources/Books%2520and%2520Papers/AWF_1_counting_animals.pdf (accessed on 21 March 2022).
- Jachmann, H. Comparison of Aerial Counts with Ground Counts for Large African Herbivores. J. Appl. Ecol. 2002, 39, 841–852. [Google Scholar] [CrossRef]
- Schlossberg, S.; Chase, M.J.; Griffin, C.R. Testing the Accuracy of Aerial Surveys for Large Mammals: An Experiment with African Savanna Elephants (Loxodonta africana). PLoS ONE 2016, 11, e0164904. [Google Scholar] [CrossRef] [PubMed]
- Corcoran, E.; Denman, S.; Hanger, J.; Wilson, B.; Hamilton, G. Automated Detection of Koalas Using Low-Level Aerial Surveillance and Machine Learning. Sci. Rep. 2019, 9, 3208. [Google Scholar] [CrossRef] [PubMed]
- Moreni, M.; Theau, J.; Foucher, S. Do You Get What You See? Insights of Using MAP to Select Architectures of Pretrained Neural Networks for Automated Aerial Animal Detection. PLoS ONE 2023, 18, e0284449. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Yuan, X.; Yao, X.; Yan, K.; Zeng, Q.; Xie, X.; Han, J. Towards Large-Scale Small Object Detection: Survey and Benchmarks. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 13467–13488. [Google Scholar] [CrossRef] [PubMed]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Xu, B.; Wang, W.; Falzon, G.; Kwan, P.; Guo, L.; Chen, G.; Tait, A.; Schneider, D. Automated Cattle Counting Using Mask R-CNN in Quadcopter Vision System. Comput. Electron. Agric. 2020, 171, 105300. [Google Scholar] [CrossRef]
- Barbedo, J.G.A.; Koenigkan, L.V.; Santos, T.T.; Santos, P.M. A Study on the Detection of Cattle in UAV Images Using Deep Learning. Sensors 2019, 19, 5436. [Google Scholar] [CrossRef]
- Xu, B.; Wang, W.; Falzon, G.; Kwan, P.; Guo, L.; Sun, Z.; Li, C. Livestock Classification and Counting in Quadcopter Aerial Images Using Mask R-CNN. Int. J. Remote Sens. 2020, 41, 8121–8142. [Google Scholar] [CrossRef]
- Delplanque, A.; Foucher, S.; Théau, J.; Bussière, E.; Vermeulen, C.; Lejeune, P. From Crowd to Herd Counting: How to Precisely Detect and Count African Mammals Using Aerial Imagery and Deep Learning? ISPRS J. Photogramm. Remote Sens. 2023, 197, 167–180. [Google Scholar] [CrossRef]
- Torney, C.J.; Lloyd-Jones, D.J.; Chevallier, M.; Moyer, D.C.; Maliti, H.T.; Mwita, M.; Kohi, E.M.; Hopcraft, G.C. A Comparison of Deep Learning and Citizen Science Techniques for Counting Wildlife in Aerial Survey Images. Methods Ecol. Evol. 2019, 10, 779–787. [Google Scholar] [CrossRef]
- Chamoso, P.; Raveane, W.; Parra, V.; González, A. UAVs Applied to the Counting and Monitoring of Animals. In Advances in Intelligent Systems and Computing; Ramos, C., Novais, P., Nihan, C.E., Rodriquez, J.M.C., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; Volume 291, pp. 71–80. ISBN 9783319075952. [Google Scholar]
- Rivas, A.; Chamoso, P.; González-Briones, A.; Corchado, J. Detection of Cattle Using Drones and Convolutional Neural Networks. Sensors 2018, 18, 2048. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Song, Y.; Kil, S.H. Feasibility Analyses of Real-Time Detection of Wildlife Using UAV-Derived Thermal and RGB Images. Remote Sens. 2021, 13, 2169. [Google Scholar] [CrossRef]
- Soares, V.H.A.; Ponti, M.A.; Gonçalves, R.A.; Campello, R.J.G.B. Cattle Counting in the Wild with Geolocated Aerial Images in Large Pasture Areas. Comput. Electron. Agric. 2021, 189, 106354. [Google Scholar] [CrossRef]
- Shao, W.; Kawakami, R.; Yoshihashi, R.; You, S.; Kawase, H.; Naemura, T. Cattle Detection and Counting in UAV Images Based on Convolutional Neural Networks. Int. J. Remote Sens. 2020, 41, 31–52. [Google Scholar] [CrossRef]
- Barbedo, J.G.A.; Koenigkan, L.V.; Santos, P.M. Cattle Detection Using Oblique UAV Images. Drones 2020, 4, 75. [Google Scholar] [CrossRef]
- Barbedo, J.G.A.; Koenigkan, L.V.; Santos, P.M.; Ribeiro, A.R.B. Counting Cattle in UAV Images—Dealing with Clustered Animals and Animal/Background Contrast Changes. Sensors 2020, 20, 2126. [Google Scholar] [CrossRef] [PubMed]
- Eikelboom, J.A.J.; Wind, J.; van de Ven, E.; Kenana, L.M.; Schroder, B.; de Knegt, H.J.; van Langevelde, F.; Prins, H.H.T. Improving the Precision and Accuracy of Animal Population Estimates with Aerial Image Object Detection. Methods Ecol. Evol. 2019, 10, 1875–1887. [Google Scholar] [CrossRef]
- Sarwar, F.; Griffin, A.; Rehman, S.U.; Pasang, T. Detecting Sheep in UAV Images. Comput. Electron. Agric. 2021, 187, 106219. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, Y.; Liu, P.; Wu, H.; Dong, Y. Optimal Strategies for Wide-Area Small Object Detection Using Deep Learning: Practices from a Global Flying Aircraft Dataset. Int. J. Appl. Earth Obs. Geoinf. 2024, 127, 103648. [Google Scholar] [CrossRef]
- Taita Taveta County Integrated Development Plan III (2023–2027). Available online: https://taitatavetaassembly.go.ke/documents/cidp-iii-2023-27/ (accessed on 19 October 2023).
- Amara, E.; Adhikari, H.; Heiskanen, J.; Siljander, M.; Munyao, M.; Omondi, P.; Pellikka, P. Aboveground Biomass Distribution in a Multi-Use Savannah Landscape in Southeastern Kenya: Impact of Land Use and Fences. Land 2020, 9, 381. [Google Scholar] [CrossRef]
- Abera, T.A.; Vuorinne, I.; Munyao, M.; Pellikka, P.K.E.; Heiskanen, J. Land Cover Map for Multifunctional Landscapes of Taita Taveta County, Kenya, Based on Sentinel-1 Radar, Sentinel-2 Optical, and Topoclimatic Data. Data 2022, 7, 36. [Google Scholar] [CrossRef]
- Maharana, K.; Mondal, S.; Nemade, B. A Review: Data Pre-Processing and Data Augmentation Techniques. Glob. Transit. Proc. 2022, 3, 91–99. [Google Scholar] [CrossRef]
- Safonova, A.; Ghazaryan, G.; Stiller, S.; Main-Knorn, M.; Nendel, C.; Ryo, M. Ten Deep Learning Techniques to Address Small Data Problems with Remote Sensing. Int. J. Appl. Earth Obs. Geoinf. 2023, 125, 103569. [Google Scholar] [CrossRef]
- Hao, X.; Liu, L.; Yang, R.; Yin, L.; Zhang, L.; Li, X. A Review of Data Augmentation Methods of Remote Sensing Image Target Recognition. Remote Sens. 2023, 15, 827. [Google Scholar] [CrossRef]
- Wan, D.; Lu, R.; Wang, S.; Shen, S.; Xu, T.; Lang, X. YOLO-HR: Improved YOLOv5 for Object Detection in High-Resolution Optical Remote Sensing Images. Remote Sens. 2023, 15, 614. [Google Scholar] [CrossRef]
- Mumuni, A.; Mumuni, F. Data Augmentation: A Comprehensive Survey of Modern Approaches. Array 2022, 16, 100258. [Google Scholar] [CrossRef]
- Skalski, P. Make Sense. Available online: https://github.com/SkalskiP/make-sense/ (accessed on 3 August 2023).
- Osco, L.P.; Marcato Junior, J.; Marques Ramos, A.P.; de Castro Jorge, L.A.; Fatholahi, S.N.; de Andrade Silva, J.; Matsubara, E.T.; Pistori, H.; Gonçalves, W.N.; Li, J. A Review on Deep Learning in UAV Remote Sensing. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102456. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, T.; Skidmore, A.K.; Lamprey, R. A Review of Deep Learning Techniques for Detecting Animals in Aerial and Satellite Images. Int. J. Appl. Earth Obs. Geoinf. 2024, 128, 103732. [Google Scholar] [CrossRef]
- Wang, N.; Gao, Y.; Chen, H.; Wang, P.; Tian, Z.; Shen, C.; Zhang, Y. NAS-FCOS: Fast Neural Architecture Search for Object Detection. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 11940–11948. [Google Scholar]
- Carranza-García, M.; Torres-Mateo, J.; Lara-Benítez, P.; García-Gutiérrez, J. On the Performance of One-Stage and Two-Stage Object Detectors in Autonomous Vehicles Using Camera Data. Remote Sens. 2021, 13, 89. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 779–788. [Google Scholar]
- Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [Google Scholar] [CrossRef]
- Wang, Y.; Bashir, S.M.A.; Khan, M.; Ullah, Q.; Wang, R.; Song, Y.; Guo, Z.; Niu, Y. Remote Sensing Image Super-Resolution and Object Detection: Benchmark and State of the Art. Expert Syst. Appl. 2022, 197, 116793. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Jocher, G. YOLOv5 by Ultralytics. Available online: https://github.com/ultralytics/yolov5 (accessed on 19 February 2024).
- Huang, Y.; Qian, Y.; Wei, H.; Lu, Y.; Ling, B.; Qin, Y. A Survey of Deep Learning-Based Object Detection Methods in Crop Counting. Comput. Electron. Agric. 2023, 215, 108425. [Google Scholar] [CrossRef]
- Jocher, G.; Chaurasia, A.; Qiu, J. YOLO by Ultralytics. Available online: https://github.com/ultralytics/ultralytics (accessed on 21 June 2023).
- Terven, J.; Cordova-Esparza, D. A Comprehensive Review of YOLO: From YOLOv1 and Beyond. arXiv 2023, arXiv:2304.00501. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in Context. In European Conference on Computer Vision—ECCV 2014 Part of the Lecture Notes in Computer Science; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer International Publishing: Cham, Switzerland, 2014; Volume 8693, pp. 740–755. ISBN 978-3-319-10602-1. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2016, arXiv:1512.03385. [Google Scholar]
- Wu, Y.; Kirillov, A.; Massa, F.; Lo, W.-Y.; Girshick, R. Detectron2. Available online: https://github.com/facebookresearch/detectron2 (accessed on 21 February 2023).
- de Lima Weber, F.; de Moraes Weber, V.A.; de Moraes, P.H.; Matsubara, E.T.; Paiva, D.M.B.; de Nadai Bonin Gomes, M.; de Oliveira, L.O.F.; de Medeiros, S.R.; Cagnin, M.I. Counting Cattle in UAV Images Using Convolutional Neural Network. Remote Sens. Appl. 2023, 29, 100900. [Google Scholar] [CrossRef]
- Peng, J.; Wang, D.; Liao, X.; Shao, Q.; Sun, Z.; Yue, H.; Ye, H. Wild Animal Survey Using UAS Imagery and Deep Learning: Modified Faster R-CNN for Kiang Detection in Tibetan Plateau. ISPRS J. Photogramm. Remote Sens. 2020, 169, 364–376. [Google Scholar] [CrossRef]
- LaRue, M.A.; Stapleton, S.; Anderson, M. Feasibility of Using High-resolution Satellite Imagery to Assess Vertebrate Wildlife Populations. Conserv. Biol. 2017, 31, 213–220. [Google Scholar] [CrossRef]
- Kisantal, M.; Wojna, Z.; Murawski, J.; Naruniec, J.; Cho, K. Augmentation for Small Object Detection. In Proceedings of the 9th International Conference on Advances in Computing and Information Technology (ACITY 2019), Sydney, Australia, 21–22 December 2019; pp. 119–133. [Google Scholar]
- de Andrade Porto, J.V.; Rezende FP, C.; Astolfi, G.; de Moraes Weber, V.A.; Pache MC, B.; Pistori, H. Automatic Counting of Cattle with Faster R-CNN on UAV Images. In Proceedings of the Anais do XVII Workshop de Visão Computacional (WVC 2021), Online, 22–23 November 2021; Sociedade Brasileira de Computação—SBC: Brasília, Brazil, 2021; pp. 1–6. [Google Scholar]
- Butt, M.; Glas, N.; Monsuur, J.; Stoop, R.; de Keijzer, A. Application of YOLOv8 and Detectron2 for Bullet Hole Detection and Score Calculation from Shooting Cards. Ai 2023, 5, 72–90. [Google Scholar] [CrossRef]
- Fang, C.; Li, C.; Yang, P.; Kong, S.; Han, Y.; Huang, X.; Niu, J. Enhancing Livestock Detection: An Efficient Model Based on YOLOv8. Appl. Sci. 2024, 14, 4809. [Google Scholar] [CrossRef]
- Ocholla, I.A.; Pellikka, P.; Karanja, F.N.; Vuorinne, I.; Odipo, V.; Heiskanen, J. Livestock Detection in African Rangelands: Potential of High-Resolution Remote Sensing Data. Remote Sens. Appl. 2024, 33, 101139. [Google Scholar] [CrossRef]
- Chen, F.; Zhou, R.; Van de Voorde, T.; Chen, X.; Bourgeois, J.; Gheyle, W.; Goossens, R.; Yang, J.; Xu, W. Automatic Detection of Burial Mounds (Kurgans) in the Altai Mountains. ISPRS J. Photogramm. Remote Sens. 2021, 177, 217–237. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Yeh, I.-H.; Liao, H.-Y.M. YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information. arXiv 2024, arXiv:2402.13616. [Google Scholar]
- Xiuling, Z.; Huijuan, W.; Yu, S.; Gang, C.; Suhua, Z.; Quanbo, Y. Starting from the Structure: A Review of Small Object Detection Based on Deep Learning. Image Vis. Comput. 2024, 146, 105054. [Google Scholar] [CrossRef]
- Xia, G.S.; Bai, X.; Ding, J.; Zhu, Z.; Belongie, S.; Luo, J.; Datcu, M.; Pelillo, M.; Zhang, L. DOTA: A Large-Scale Dataset for Object Detection in Aerial Images. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 3974–3983. [Google Scholar]
Original Data | Augmented Data | |||
---|---|---|---|---|
Images | Annotations | Images | Annotations | |
Scenario 1 | ||||
All sites | 1316 | 12,283 | 8021 | 75,053 |
Scenario 2 | ||||
Lumo | 537 | 6211 | 4268 | 47,210 |
THWS | 356 | 3106 | 2878 | 25,879 |
Choke | 423 | 2966 | 3030 | 23,705 |
Scenario 3 | ||||
Lumo + Choke | 960 | 9177 | 7300 | 70,927 |
Lumo + THWS | 893 | 9317 | 7146 | 73,089 |
Choke + THWS | 779 | 6072 | 5908 | 49,584 |
Training without Pre-Trained Weights | Transfer Learning | Transfer Learning + Augmentation Strategies | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Yolov5 | P | R | AP0.5 | AP0.5–0.95 | P | R | AP0.5 | AP0.5–0.95 | P | R | AP0.5 | AP0.5–0.95 | |
v5s | 86.9 | 80.8 | 86.7 | 33.5 | 87.2 | 84.5 | 88.1 | 34.5 | 91.7 | 88.7 | 93.4 | 45.7 | |
v5m | 87.5 | 80.1 | 86.0 | 33.6 | 87.2 | 82.8 | 87.0 | 35.2 | 91.5 | 88.1 | 93.0 | 45.6 | |
v5l | 85.8 | 81.8 | 85.3 | 33.3 | 88.5 | 82.2 | 87.7 | 35.1 | 91.6 | 88.0 | 93.1 | 45.0 | |
v5x | 87.2 | 81.2 | 85.7 | 33.0 | 88.2 | 83.0 | 87.4 | 35.2 | 91.3 | 88.3 | 93.1 | 45.4 | |
Yolov8 | |||||||||||||
v8s | 86.8 | 78.9 | 85.5 | 33.9 | 85.8 | 80.5 | 86.3 | 34.3 | 90.8 | 88.5 | 93.5 | 46.1 | |
v8m | 85.1 | 78.6 | 85.5 | 33.8 | 85.2 | 78.3 | 84.6 | 34.3 | 91.2 | 88.3 | 93.6 | 46.4 | |
v8l | 86.0 | 78.4 | 85.0 | 33.7 | 88.1 | 77.7 | 86.1 | 34.7 | 91.2 | 87.7 | 93.3 | 46.2 | |
v8x | 85.0 | 77.6 | 84.1 | 33.6 | 87.0 | 79.7 | 86.2 | 34.6 | 91.1 | 88.5 | 93.3 | 46.1 | |
Faster R-CNN | - | - | 49.7 | 14.6 | - | - | 66.1 | 23.8 | - | - | 68.0 | 25.6 |
Model | P | R | F1-Score | AP0.5 | AP0.5–0.95 | CE |
---|---|---|---|---|---|---|
YOLOv5s | 90.0 | 81.9 | 86.0 | 88.6 | 39.0 | −4.0 |
YOLOv8s | 90.3 | 83.1 | 87.0 | 88.5 | 39.3 | −6.7 |
YOLOv5m | 90.4 | 83.2 | 87.0 | 88.8 | 39.3 | −2.5 |
YOLOv8m | 91.0 | 83.4 | 87.0 | 88.8 | 39.6 | −8.0 |
YOLOv5l | 89.5 | 86.2 | 86.0 | 88.1 | 38.1 | −6.1 |
YOLOv8l | 91.4 | 83.6 | 87.0 | 89.1 | 39.3 | −7.9 |
YOLOv5x | 89.5 | 83.4 | 86.0 | 88.7 | 38.7 | −2.7 |
YOLOv8x | 90.4 | 82.3 | 86.0 | 88.2 | 38.8 | −7.7 |
Faster R-CNN | - | - | - | 58.8 | 18.7 | 5.5 |
Training Site | Test Site | Model | Precision | Recall | AP0.5 | AP0.5–0.95 |
---|---|---|---|---|---|---|
Lumo | THWS | YOLOv5x | 90.6 | 82.6 | 89.1 | 36.4 |
YOLOv8l | 90.4 | 82.6 | 87.9 | 39.6 | ||
Choke | YOLOv5l | 88.4 | 73.2 | 83.1 | 33.0 | |
YOLOv8x | 90.6 | 71.2 | 81.6 | 36.0 | ||
THWS | Choke | YOLOv5x | 85.5 | 75.1 | 81.8 | 32.1 |
YOLOv8l | 87.9 | 73.4 | 82.2 | 36.6 | ||
Lumo | YOLOv5x | 86.0 | 77.0 | 85.0 | 33.8 | |
YOLOv8m | 86.5 | 74.4 | 82.8 | 37.1 | ||
Choke | Lumo | YOLOv5x | 79.5 | 63.9 | 71.8 | 25.8 |
YOLOv8l | 75.0 | 65.7 | 73.9 | 29.6 | ||
THWS | YOLOv5x | 85.6 | 75.6 | 81.9 | 30.7 | |
YOLOv8l | 85.1 | 75.1 | 82.4 | 34.3 |
Test Site | Model | Precision | Recall | F1-Score | AP0.5 | AP0.5–0.95 |
---|---|---|---|---|---|---|
THWS | YOLOv5x | 91.0 | 83.6 | 88.0 | 89.1 | 40.4 |
YOLOv8l | 90.3 | 84.1 | 88.0 | 88.7 | 40.3 | |
Choke | YOLOv5m | 90.1 | 76.5 | 82.0 | 84.7 | 37.3 |
YOLOv8x | 90.5 | 76.9 | 82.0 | 84.8 | 37.7 | |
Lumo | YOLOv5l | 86.4 | 77.2 | 83.0 | 84.9 | 36.7 |
YOLOv8m | 86.3 | 79.6 | 85.3 | 84.4 | 37.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ocholla, I.A.; Pellikka, P.; Karanja, F.; Vuorinne, I.; Väisänen, T.; Boitt, M.; Heiskanen, J. Livestock Detection and Counting in Kenyan Rangelands Using Aerial Imagery and Deep Learning Techniques. Remote Sens. 2024, 16, 2929. https://doi.org/10.3390/rs16162929
Ocholla IA, Pellikka P, Karanja F, Vuorinne I, Väisänen T, Boitt M, Heiskanen J. Livestock Detection and Counting in Kenyan Rangelands Using Aerial Imagery and Deep Learning Techniques. Remote Sensing. 2024; 16(16):2929. https://doi.org/10.3390/rs16162929
Chicago/Turabian StyleOcholla, Ian A., Petri Pellikka, Faith Karanja, Ilja Vuorinne, Tuomas Väisänen, Mark Boitt, and Janne Heiskanen. 2024. "Livestock Detection and Counting in Kenyan Rangelands Using Aerial Imagery and Deep Learning Techniques" Remote Sensing 16, no. 16: 2929. https://doi.org/10.3390/rs16162929
APA StyleOcholla, I. A., Pellikka, P., Karanja, F., Vuorinne, I., Väisänen, T., Boitt, M., & Heiskanen, J. (2024). Livestock Detection and Counting in Kenyan Rangelands Using Aerial Imagery and Deep Learning Techniques. Remote Sensing, 16(16), 2929. https://doi.org/10.3390/rs16162929