Feedback Refined Local-Global Network for Super-Resolution of Hyperspectral Imagery
Abstract
:1. Introduction
- A novel Feedback Refined Local-Global Network is proposed for the single HSI super-resolution task, which can effectively explore spatial-spectral priors between spectral bands.
- We construct a new Feedback Structure to correct the low-level representation using feedback high-level semantic information.
- We design a Local-Global Spectral Block to refine the local spectral low-level representations using the feedback information, and then generate a more powerful global spectral high-level representation.
2. Proposed Method
2.1. Network Architecture
2.1.1. The Embedding Block
2.1.2. The Local-Global Spectral Block
2.1.3. The Reconstruction Block
2.2. Feedback Structure
2.3. Local-Global Spectral Block
2.4. Loss Function
Algorithm 1: Training Process of FRLGN |
3. Experiments and Results
3.1. Datasets
3.1.1. CAVE Dataset
3.1.2. Harvard Dataset
3.1.3. Chikusei Dataset
3.2. Implementation Details
3.3. Evaluation Metrics
3.4. Study of T and G
3.5. Study of Feedback Structure
3.6. Comparisons with the State-of-the-Art Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Q.; Yuan, Z.; Du, Q.; Li, X. GETNET: A General End-to-End 2-D CNN Framework for Hyperspectral Image Change Detection. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Zou, Z.; Shi, Z. Hierarchical Suppression Method for Hyperspectral Target Detection. IEEE Trans. Geosci. Remote Sens. 2016, 54, 330–342. [Google Scholar] [CrossRef]
- Liu, J.; Wu, Z.; Xiao, L.; Sun, J.; Yan, H. A Truncated Matrix Decomposition for Hyperspectral Image Super-Resolution. IEEE Trans. Image Process. 2020, 29, 8028–8042. [Google Scholar] [CrossRef]
- Du, B.; Zhang, M.; Zhang, L.; Hu, R.; Tao, D. PLTD: Patch-Based Low-Rank Tensor Decomposition for Hyperspectral Images. IEEE Trans. Multimed. 2017, 19, 67–79. [Google Scholar] [CrossRef]
- Shi, C.; Pun, C.M. Multiscale Superpixel-Based Hyperspectral Image Classification Using Recurrent Neural Networks With Stacked Autoencoders. IEEE Trans. Multimed. 2020, 22, 487–501. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Q.; Li, X. Exploring the Relationship Between 2D/3D Convolution for Hyperspectral Image Super-Resolution. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8693–8703. [Google Scholar] [CrossRef]
- Pan, B.; Qu, Q.; Xu, X.; Shi, Z. Structure–Color Preserving Network for Hyperspectral Image Super-Resolution. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Q.; Li, X. Hyperspectral Image Superresolution Using Spectrum and Feature Context. IEEE Trans. Ind. Electron. 2021, 68, 11276–11285. [Google Scholar] [CrossRef]
- Xue, J.; Zhao, Y.Q.; Bu, Y.; Liao, W.; Chan, J.C.W.; Philips, W. Spatial-Spectral Structured Sparse Low-Rank Representation for Hyperspectral Image Super-Resolution. IEEE Trans. Image Process. 2021, 30, 3084–3097. [Google Scholar] [CrossRef]
- Fu, Y.; Liang, Z.; You, S. Bidirectional 3D Quasi-Recurrent Neural Network for Hyperspectral Image Super-Resolution. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2674–2688. [Google Scholar] [CrossRef]
- Liu, D.; Li, J.; Yuan, Q. A Spectral Grouping and Attention-Driven Residual Dense Network for Hyperspectral Image Super-Resolution. IEEE Trans. Geosci. Remote Sens. 2021, 59, 7711–7725. [Google Scholar] [CrossRef]
- Wang, X.; Ma, J.; Jiang, J.; Zhang, X.P. Dilated projection correction network based on autoencoder for hyperspectral image super-resolution. Neural Netw. 2022, 146, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Bioucas-Dias, J.; Dobigeon, N.; Tourneret, J.Y. Hyperspectral and Multispectral Image Fusion Based on a Sparse Representation. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3658–3668. [Google Scholar] [CrossRef] [Green Version]
- Wan, W.; Guo, W.; Huang, H.; Liu, J. Nonnegative and Nonlocal Sparse Tensor Factorization-Based Hyperspectral Image Super-Resolution. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8384–8394. [Google Scholar] [CrossRef]
- Wei, W.; Nie, J.; Zhang, L.; Zhang, Y. Unsupervised Recurrent Hyperspectral Imagery Super-Resolution Using Pixel-Aware Refinement. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Wei, W.; Nie, J.; Li, Y.; Zhang, L.; Zhang, Y. Deep Recursive Network for Hyperspectral Image Super-Resolution. IEEE Trans. Comput. Imaging 2020, 6, 1233–1244. [Google Scholar] [CrossRef]
- Huang, H.; Yu, J.; Sun, W. Super-resolution mapping via multi-dictionary based sparse representation. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 3523–3527. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Han, Z.; He, S. Hyperspectral image super-resolution via nonlocal low-rank tensor approximation and total variation regularization. Remote Sens. 2017, 9, 1286. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Zhang, X.; Tian, Y.; Wang, W.; Xue, J.H.; Liao, Q. Deep Learning for Single Image Super-Resolution: A Brief Review. IEEE Trans. Multimed. 2019, 21, 3106–3121. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Zuluaga, M.A.; Li, W.; Pratt, R.; Patel, P.A.; Aertsen, M.; Doel, T.; David, A.L.; Deprest, J.; Ourselin, S.; et al. DeepIGeoS: A Deep Interactive Geodesic Framework for Medical Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 1559–1572. [Google Scholar] [CrossRef]
- Pei, Y.; Huang, Y.; Zou, Q.; Zhang, X.; Wang, S. Effects of Image Degradation and Degradation Removal to CNN-Based Image Classification. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 1239–1253. [Google Scholar] [CrossRef]
- Hu, J.; Li, Y.; Xie, W. Hyperspectral Image Super-Resolution by Spectral Difference Learning and Spatial Error Correction. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1825–1829. [Google Scholar] [CrossRef]
- Mei, S.; Yuan, X.; Ji, J.; Zhang, Y.; Wan, S.; Du, Q. Hyperspectral image spatial super-resolution via 3D full convolutional neural network. Remote Sens. 2017, 9, 1139. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Sun, H.; Liu, X.; Ma, J. Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral Imagery. IEEE Trans. Comput. Imaging 2020, 6, 1082–1096. [Google Scholar] [CrossRef]
- Wang, X.; Ma, J.; Jiang, J. Hyperspectral Image Super-Resolution via Recurrent Feedback Embedding and Spatial–Spectral Consistency Regularization. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Hupé, J.; James, A.; Payne, B.; Lomber, S.; Girard, P.; Bullier, J. Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature 1998, 394, 784–787. [Google Scholar] [CrossRef]
- Tian, C.; Xu, Y.; Zuo, W.; Zhang, B.; Fei, L.; Lin, C.W. Coarse-to-Fine CNN for Image Super-Resolution. IEEE Trans. Multimed. 2021, 23, 1489–1502. [Google Scholar] [CrossRef]
- Carreira, J.; Agrawal, P.; Fragkiadaki, K.; Malik, J. Human Pose Estimation with Iterative Error Feedback. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 4733–4742. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Yang, J.; Liu, Z.; Yang, X.; Jeon, G.; Wu, W. Feedback Network for Image Super-Resolution. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 3862–3871. [Google Scholar] [CrossRef] [Green Version]
- Han, W.; Chang, S.; Liu, D.; Yu, M.; Witbrock, M.; Huang, T.S. Image Super-Resolution via Dual-State Recurrent Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 1654–1663. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 1874–1883. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, L.; Dingl, C.; Wei, W.; Zhang, Y. Single Hyperspectral Image Super-Resolution with Grouped Deep Recursive Residual Network. In Proceedings of the 2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM), Xi’an, China, 13–16 September 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Zhang, M.; Ling, Q. Supervised Pixel-Wise GAN for Face Super-Resolution. IEEE Trans. Multimed. 2021, 23, 1938–1950. [Google Scholar] [CrossRef]
- Irmak, H.; Akar, G.B.; Yuksel, S.E. A MAP-Based Approach for Hyperspectral Imagery Super-Resolution. IEEE Trans. Image Process. 2018, 27, 2942–2951. [Google Scholar] [CrossRef]
- Veganzones, M.A.; Simões, M.; Licciardi, G.; Yokoya, N.; Bioucas-Dias, J.M.; Chanussot, J. Hyperspectral Super-Resolution of Locally Low Rank Images From Complementary Multisource Data. IEEE Trans. Image Process. 2016, 25, 274–288. [Google Scholar] [CrossRef] [Green Version]
- Dian, R.; Li, S. Hyperspectral Image Super-Resolution via Subspace-Based Low Tensor Multi-Rank Regularization. IEEE Trans. Image Process. 2019, 28, 5135–5146. [Google Scholar] [CrossRef]
- Jiang, J.; Ma, X.; Chen, C.; Lu, T.; Wang, Z.; Ma, J. Single Image Super-Resolution via Locally Regularized Anchored Neighborhood Regression and Nonlocal Means. IEEE Trans. Multimed. 2017, 19, 15–26. [Google Scholar] [CrossRef]
- Han, X.H.; Shi, B.; Zheng, Y. Self-Similarity Constrained Sparse Representation for Hyperspectral Image Super-Resolution. IEEE Trans. Image Process. 2018, 27, 5625–5637. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Li, W.; Luo, X.; Du, J. Hyperspectral Image Superresolution Using Global Gradient Sparse and Nonlocal Low-Rank Tensor Decomposition With Hyper-Laplacian Prior. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 5453–5469. [Google Scholar] [CrossRef]
- Zhu, Z.; Guo, F.; Yu, H.; Chen, C. Fast Single Image Super-Resolution via Self-Example Learning and Sparse Representation. IEEE Trans. Multimed. 2014, 16, 2178–2190. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, T.; Lu, Y.; Di, H. Contextual Transformation Network for Lightweight Remote-Sensing Image Super-Resolution. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Yasuma, F.; Mitsunaga, T.; Iso, D.; Nayar, S.K. Generalized Assorted Pixel Camera: Postcapture Control of Resolution, Dynamic Range, and Spectrum. IEEE Trans. Image Process. 2010, 19, 2241–2253. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarti, A.; Zickler, T. Statistics of Real-World Hyperspectral Images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, CO, USA, 20–25 June 2011; pp. 193–200. [Google Scholar] [CrossRef] [Green Version]
- Yokoya, N.; Iwasaki, A. Airborne Hyperspectral Data over Chikusei; Technical Report SAL-2016-05-27; Space Application Laboratory, University of Tokyo: Tokyo, Japan, 2016. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Loncan, L.; de Almeida, L.B.; Bioucas-Dias, J.M.; Briottet, X.; Chanussot, J.; Dobigeon, N.; Fabre, S.; Liao, W.; Licciardi, G.A.; Simões, M.; et al. Hyperspectral Pansharpening: A Review. IEEE Geosci. Remote Sens. Mag. 2015, 3, 27–46. [Google Scholar] [CrossRef] [Green Version]
- Yuhas, R.H.; Goetz, A.F.; Boardman, J.W. Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm. In Proceedings of the Summaries 3rd Annual JPL Airborne Geoscience Workshop, Pasadena, CA, USA, 1–5 June 1992; Volume 1, pp. 147–149. [Google Scholar]
- Wald, L. Data Fusion: Definitions and Architectures: Fusion of Images of Different Spatial Resolutions; Presses des MINES: Pairs, France, 2002. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Lee, J.K.; Lee, K.M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 1646–1654. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image super-resolution using very deep residual channel attention networks. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 286–301. [Google Scholar]
T | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
PSNR | 37.0815 | 37.5073 | 37.7574 | 37.8131 | 37.8639 | 37.8905 |
SAM | 3.7272 | 3.5754 | 3.5256 | 3.4789 | 3.4585 | 3.4332 |
G | 1 | 2 | 4 | 8 |
---|---|---|---|---|
PSNR | 37.7251 | 37.7329 | 37.8201 | 37.8905 |
SAM | 3.5977 | 3.5276 | 3.4792 | 3.4332 |
CC↑ | SAM↓ | RMSE↓ | ERGAS↓ | PSNR↑ | SSIM↑ | |
---|---|---|---|---|---|---|
LGSB + TRS | 0.9930 | 3.5393 | 0.0151 | 5.1665 | 37.9050 | 0.9734 |
LGSB + FS | 0.9930 | 3.4332 | 0.0152 | 5.1599 | 37.8905 | 0.9737 |
Strategies | s | CC↑ | SAM↓ | RMSE↓ | ERGAS↓ | PSNR↑ | SSIM↑ |
---|---|---|---|---|---|---|---|
LR to LR | 4 | 0.9930 | 3.4430 | 0.0153 | 5.1929 | 37.9194 | 0.9728 |
LR, HR to LR | 4 | 0.9929 | 3.4416 | 0.0154 | 5.2385 | 37.8239 | 0.9731 |
HR to LR | 4 | 0.9930 | 3.4332 | 0.0152 | 5.1599 | 37.8905 | 0.9737 |
LR to LR | 8 | 0.9713 | 5.2059 | 0.0325 | 10.3697 | 31.3910 | 0.9139 |
LR, HR to LR | 8 | 0.9706 | 5.1854 | 0.0329 | 10.4487 | 31.3267 | 0.9146 |
HR to LR | 8 | 0.9712 | 5.0550 | 0.0323 | 10.3982 | 31.4007 | 0.9159 |
s | CC↑ | SAM↓ | RMSE↓ | ERGAS↓ | PSNR↑ | SSIM↑ | |
---|---|---|---|---|---|---|---|
Bicubic | 4 | 0.9846 | 5.1832 | 0.0224 | 7.7384 | 34.5069 | 0.9472 |
VDSR [50] | 4 | 0.9896 | 4.3622 | 0.0188 | 6.3067 | 36.1348 | 0.9612 |
RCAN [51] | 4 | 0.9913 | 4.3058 | 0.0172 | 5.7796 | 36.7979 | 0.9657 |
3DCNN [23] | 4 | 0.9862 | 4.2297 | 0.0212 | 7.3182 | 34.9853 | 0.9549 |
GDRRN [32] | 4 | 0.9891 | 4.2970 | 0.0192 | 6.5087 | 35.8465 | 0.9594 |
SSPSR [24] | 4 | 0.9915 | 3.7384 | 0.0168 | 5.7527 | 37.0479 | 0.9682 |
FRLGN | 4 | 0.9930 | 3.4332 | 0.0152 | 5.1599 | 37.8905 | 0.9737 |
Bicubic | 8 | 0.9564 | 7.3210 | 0.0385 | 12.8323 | 29.5763 | 0.8741 |
VDSR [50] | 8 | 0.9615 | 5.8692 | 0.0369 | 12.0527 | 30.0080 | 0.8999 |
RCAN [51] | 8 | 0.9671 | 5.9008 | 0.0340 | 11.1373 | 30.7372 | 0.9061 |
3DCNN [23] | 8 | 0.9594 | 5.6079 | 0.0370 | 12.3341 | 29.8880 | 0.8961 |
GDRRN [32] | 8 | 0.9611 | 5.8864 | 0.0368 | 12.0684 | 30.0042 | 0.8966 |
SSPSR [24] | 8 | 0.9675 | 5.6617 | 0.0341 | 11.0506 | 30.7976 | 0.9098 |
FRLGN | 8 | 0.9712 | 5.0550 | 0.0323 | 10.3982 | 31.4007 | 0.9159 |
s | CC↑ | SAM↓ | RMSE↓ | ERGAS↓ | PSNR↑ | SSIM↑ | |
---|---|---|---|---|---|---|---|
Bicubic | 4 | 0.9606 | 2.5671 | 0.0101 | 3.0957 | 43.9037 | 0.9582 |
VDSR [50] | 4 | 0.9640 | 2.5709 | 0.0090 | 2.8602 | 44.6486 | 0.9634 |
RCAN [51] | 4 | 0.9671 | 2.4097 | 0.0086 | 2.7537 | 45.1204 | 0.9663 |
3DCNN [23] | 4 | 0.9614 | 2.3917 | 0.0098 | 3.0324 | 44.1815 | 0.9600 |
GDRRN [32] | 4 | 0.9630 | 2.4924 | 0.0093 | 2.9276 | 44.4577 | 0.9620 |
SSPSR [24] | 4 | 0.9704 | 2.2766 | 0.0082 | 2.5893 | 45.5460 | 0.9684 |
FRLGN | 4 | 0.9722 | 2.2496 | 0.0074 | 2.4463 | 46.1866 | 0.9730 |
Bicubic | 8 | 0.9098 | 3.0165 | 0.0179 | 5.0694 | 39.6681 | 0.9131 |
VDSR [50] | 8 | 0.9185 | 3.0093 | 0.0165 | 4.7369 | 40.2490 | 0.9223 |
RCAN [51] | 8 | 0.9312 | 2.7808 | 0.0150 | 4.3438 | 40.9853 | 0.9313 |
3DCNN [23] | 8 | 0.9128 | 2.7853 | 0.0172 | 4.9422 | 39.9615 | 0.9175 |
GDRRN [32] | 8 | 0.9175 | 2.8669 | 0.0166 | 4.7946 | 40.1831 | 0.9214 |
SSPSR [24] | 8 | 0.9338 | 2.6202 | 0.0149 | 4.2458 | 41.1869 | 0.9313 |
FRLGN | 8 | 0.9373 | 2.7665 | 0.0139 | 4.0316 | 41.6320 | 0.9374 |
s | CC↑ | SAM↓ | RMSE↓ | ERGAS↓ | PSNR↑ | SSIM↑ | |
---|---|---|---|---|---|---|---|
Bicubic | 4 | 0.8987 | 3.7666 | 0.0176 | 7.6532 | 36.5603 | 0.8882 |
VDSR [50] | 4 | 0.9176 | 3.1003 | 0.0155 | 6.9534 | 37.5648 | 0.9113 |
RCAN [51] | 4 | 0.9142 | 3.0936 | 0.0156 | 7.1099 | 37.4313 | 0.9104 |
3DCNN [23] | 4 | 0.9047 | 3.4808 | 0.0169 | 7.3419 | 36.9090 | 0.8931 |
GDRRN [32] | 4 | 0.9144 | 3.2178 | 0.0159 | 7.0426 | 37.3754 | 0.9060 |
SSPSR [24] | 4 | 0.9250 | 2.8281 | 0.0148 | 6.6082 | 37.9698 | 0.9193 |
FRLGN | 4 | 0.9283 | 2.7580 | 0.0143 | 6.4953 | 38.2085 | 0.9240 |
Bicubic | 8 | 0.7546 | 5.9617 | 0.0274 | 11.9665 | 32.7047 | 0.7829 |
VDSR [50] | 8 | 0.7840 | 5.3103 | 0.0250 | 10.9097 | 33.4964 | 0.8069 |
RCAN [51] | 8 | 0.7630 | 6.5447 | 0.0258 | 11.9078 | 33.0475 | 0.7946 |
3DCNN [23] | 8 | 0.7723 | 5.5506 | 0.0257 | 11.0971 | 33.3107 | 0.7955 |
GDRRN [32] | 8 | 0.7842 | 5.3033 | 0.0249 | 10.9107 | 33.5236 | 0.8062 |
SSPSR [24] | 8 | 0.7880 | 5.2415 | 0.0247 | 10.7863 | 33.6194 | 0.8106 |
FRLGN | 8 | 0.7887 | 5.2122 | 0.0246 | 10.8033 | 33.6332 | 0.8145 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Z.; Xu, Q.; Wu, P.; Shi, Z.; Pan, B. Feedback Refined Local-Global Network for Super-Resolution of Hyperspectral Imagery. Remote Sens. 2022, 14, 1944. https://doi.org/10.3390/rs14081944
Tang Z, Xu Q, Wu P, Shi Z, Pan B. Feedback Refined Local-Global Network for Super-Resolution of Hyperspectral Imagery. Remote Sensing. 2022; 14(8):1944. https://doi.org/10.3390/rs14081944
Chicago/Turabian StyleTang, Zhenjie, Qing Xu, Pengfei Wu, Zhenwei Shi, and Bin Pan. 2022. "Feedback Refined Local-Global Network for Super-Resolution of Hyperspectral Imagery" Remote Sensing 14, no. 8: 1944. https://doi.org/10.3390/rs14081944
APA StyleTang, Z., Xu, Q., Wu, P., Shi, Z., & Pan, B. (2022). Feedback Refined Local-Global Network for Super-Resolution of Hyperspectral Imagery. Remote Sensing, 14(8), 1944. https://doi.org/10.3390/rs14081944