Temporal Dynamics of the Goose Habitat in the Middle and Lower Reaches of the Yangtze River
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data and Model
2.2.1. Goose Occurrence Data
2.2.2. Climate Data
2.2.3. Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI)
2.2.4. Land Use
2.2.5. Elevation Data
2.2.6. Model
3. Results
3.1. Model Performance and Variable Contribution
3.2. Suitable Habitat
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Variables | LWFG | GWFG | BG | SG | GG |
---|---|---|---|---|---|
Dis_pf | 0.012 ± 0.009 | 0.020 ± 0.010 | 0.011 ± 0.012 | 0.017 ± 0.007 | 0.008 ± 0.009 |
Dis_uf | 0.015 ± 0.010 | 0.014 ± 0.016 | 0.019 ± 0.008 | 0.026 ± 0.011 | 0.018 ± 0.004 |
Dis_ri | 0.032 ± 0.013 | 0.029 ± 0.006 | 0.020 ± 0.010 | 0.012 ± 0.012 | 0.022 ± 0.013 |
Dis_la | 0.065 ± 0.021 | 0.156 ± 0.051 | 0.158 ± 0.028 | 0.167 ± 0.051 | 0.277 ± 0.097 |
Dis_re | 0.015 ± 0.011 | 0.036 ± 0.016 | 0.014 ± 0.013 | 0.037 ± 0.017 | 0.032 ± 0.031 |
Dis_mf | 0.086 ± 0.026 | 0.109 ± 0.025 | 0.066 ± 0.021 | 0.062 ± 0.023 | 0.046 ± 0.022 |
Dis_fp | 0.125 ± 0.036 | 0.116 ± 0.044 | 0.137 ± 0.031 | 0.144 ± 0.046 | 0.131 ± 0.060 |
Dis_ul | 0.014 ± 0.009 | 0.012 ± 0.012 | 0.025 ± 0.013 | 0.027 ± 0.014 | 0.013 ± 0.011 |
Dis_rl | 0.016 ± 0.007 | 0.026 ± 0.012 | 0.021 ± 0.007 | 0.025 ± 0.013 | 0.032 ± 0.029 |
Dis_ocl | 0.013 ± 0.010 | 0.022 ± 0.013 | 0.016 ± 0.013 | 0.017 ± 0.008 | 0.010 ± 0.011 |
Dis_wl | 0.259 ± 0.045 | 0.188 ± 0.053 | 0.088 ± 0.031 | 0.217 ± 0.079 | 0.175 ± 0.065 |
Dis_bl | 0.069 ± 0.018 | 0.078 ± 0.015 | 0.044 ± 0.015 | 0.044 ± 0.025 | 0.024 ± 0.015 |
DEM | 0.019 ± 0.026 | 0.036 ± 0.047 | 0.041 ± 0.037 | 0.036 ± 0.050 | 0.021 ± 0.026 |
NDVI | 0.022 ± 0.007 | 0.040 ± 0.014 | 0.060 ± 0.010 | 0.059 ± 0.028 | 0.112 ± 0.035 |
NDWI | 0.020 ± 0.008 | 0.021 ± 0.012 | 0.041 ± 0.019 | 0.024 ± 0.017 | 0.027 ± 0.025 |
PRE | 0.014 ± 0.011 | 0.019 ± 0.010 | 0.038 ± 0.015 | 0.010 ± 0.008 | 0.010 ± 0.010 |
TMAX | 0.082 ± 0.032 | 0.042 ± 0.021 | 0.094 ± 0.036 | 0.037 ± 0.021 | 0.023 ± 0.017 |
TMIN | 0.123 ± 0.031 | 0.035 ± 0.028 | 0.108 ± 0.041 | 0.040 ± 0.017 | 0.019 ± 0.011 |
Period | Distance to Wetland | Distance to Lake | Distance to Floodplain |
---|---|---|---|
Period 1 | 128,104.553 ± 125.594 | 88,059.992 ± 101.239 | 18,951.819 ± 20.392 |
Period 2 | 137,343.562 ± 128.758 | 83,960.312 ± 99.655 | 17,731.429 ± 18.043 |
Period 3 | 156,412.35 ± 139.942 | 69,673.015 ± 74.446 | 17,362.222 ± 16.905 |
Period 4 | 156,595.611 ± 140.027 | 61,968.91 ± 63.665 | 17,159.595 ± 16.493 |
References
- Xia, S.; Yu, D.; Cui, P.; Duan, H.; Teng, J.; Yu, X. Suitable-habitat dynamics for wintering geese in China’s largest freshwater lake. Glob. Ecol. Conserv. 2021, 27, e01528. [Google Scholar]
- Wang, C.; Liu, H.; Li, Y.; Dong, B.; Qiu, C.; Yang, J.; Zong, Y.; Chen, H.; Zhao, Y.; Zhang, Y. Study on habitat suitability and environmental variable thresholds of rare waterbirds. Sci. Total Environ. 2021, 785, 147316. [Google Scholar] [CrossRef] [PubMed]
- Swift, T.L.; Hannon, S.J. Critical thresholds associated with habitat loss: A review of the concepts, evidence, and applications. Biol. Rev. Camb. Philos. Soc. 2010, 85, 35–53. [Google Scholar] [CrossRef]
- Hanski, I.; Ovaskainen, O. Extinction Debt at Extinction Threshold. Conserv. Biol. 2002, 16, 666–673. [Google Scholar] [CrossRef]
- Fahrig, L. Relative Effects of Habitat Loss and Fragmentation on Population Extinction. J. Wildl. Manag. 1997, 61, 603–610. [Google Scholar] [CrossRef]
- Bayliss, P.; Ligtermoet, E. Seasonal habitats, decadal trends in abundance and cultural values of magpie geese (Anseranus semipalmata) on coastal floodplains in the Kakadu Region, northern Australia. Mar. Freshw. Res. 2018, 69, 1079–1091. [Google Scholar] [CrossRef]
- Zhang, P.; Zou, Y.; Xie, Y.; Zhang, H.; Liu, X.; Gao, D.; Yi, F. Shifts in distribution of herbivorous geese relative to hydrological variation in East Dongting Lake wetland, China. Sci. Total Environ. 2018, 636, 30–38. [Google Scholar] [CrossRef]
- Zhang, P.; Zou, Y.; Xie, Y.; Zhang, S.; Zhu, F.; Chen, X.; Li, F.; Deng, Z.; Yao, Y.; Song, Y. Phenological mismatch caused by water regime change may explain the population variation of the vulnerable lesser white-fronted goose in east Dongting Lake, China. Ecol. Indic. 2021, 127, 107776. [Google Scholar] [CrossRef]
- Traill, L.W.; Brook, B.W. An aggregative response of the tropical Australian magpie goose (Anseranas semipalmata) to seasonal floodplains. J. Trop. Ecol. 2011, 27, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Jia, Y.; Jing, L.; Zeng, Q.; Lei, J.; Zhang, S.; Lei, G.; Wen, L. Shifts in river-floodplain relationship reveal the impacts of river regulation: A case study of Dongting Lake in China. J. Hydrol. 2018, 559, 932–941. [Google Scholar] [CrossRef]
- Zeng, Q.; Lu, C.; Li, G.; Guo, Z.; Wen, L.; Lei, G. Impact of a dam on wintering waterbirds’ habitat use. Environ. Conserv. 2018, 45, 307–314. [Google Scholar] [CrossRef]
- Guan, L.; Wen, L.; Feng, D.D.; Zhang, H.; Lei, G.C. Delayed Flood Recession in Central Yangtze Floodplains Can Cause Significant Food Shortages for Wintering Geese: Results of Inundation Experiment. Environ. Manag. 2014, 54, 1331–1341. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; Guan, L.; Shi, L.; Zeng, Q.; Liu, X.; Zhang, H.; Lei, G. Impact of autumn hydrologic regime on plants in beach and distribution of populations of wintering lesser white-fronted goose in East Dongting Lake. Wetl. Sci. 2014, 12, 491–498. [Google Scholar]
- Tockner, K.; Stanford, J.A. Riverine flood plains: Present state and future trends. Environ. Conserv. 2002, 29, 308–330. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Liu, X.; Wang, H. The Yangtze River Floodplain: Threats and Rehabilitation. In Fishery Resources, Environment, and Conservation in the Mississippi and Yangtze (Changjiang) River Basins; American Fisheries Society: New York, NY, USA, 2016. [Google Scholar]
- WWF. Living Yangtze Report 2020; World Wide Fund for Nature: Gland, Switzerland, 2020. [Google Scholar]
- Bao, D.; Wang, X.; Lu, X. Wetland protection basing on basin ecological management in the middle—Lower reaches of the Yangtze River. Wetl. Sci. 2006, 4, 96–100. [Google Scholar]
- Cui, L.; Gao, C.; Zhao, X.; Ma, Q.; Zhang, M.; Li, W.; Song, H.; Wang, Y.; Li, S.; Zhang, Y. Dynamics of the lakes in the middle and lower reaches of the Yangtze River basin, China, since late nineteenth century. Environ. Monit. Assess. 2013, 185, 4005–4018. [Google Scholar] [CrossRef]
- Barter, M.; Cao, L.; Chen, L.; Lei, G. Results of a survey for waterbirds in the lower Yangtze floodplain, China, in January–February 2004. Forktail 2005, 21, 1. [Google Scholar]
- Yan, M.; Yi, K.; Zhang, J.; Batbayar, N.; Xu, Z.; Liu, G.; Hu, B.; Zheng, B.; Antonov, A.; Goroshko, O. Flyway connectivity and population status of the Greylag Goose Anser anser in East Asia. Wildfowl 2020, 6, 157–180. [Google Scholar]
- Tian, H.; Solovyeva, D.; Danilov, G.; Vartanyan, S.; Wen, L.; Lei, J.; Lu, C.; Bridgewater, P.; Lei, G.; Zeng, Q. Combining modern tracking data and historical records improves understanding of the summer habitats of the Eastern Lesser White-fronted Goose Anser erythropus. Ecol. Evol. 2021, 11, 4126–4139. [Google Scholar] [CrossRef]
- Wang, X.; Fox, A.D.; Cong, P.; Barter, M.; Cao, L. Changes in the distribution and abundance of wintering Lesser White-fronted Geese Anser erythropus in eastern China. Bird Conserv. Int. 2012, 22, 128–134. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Cao, L.; Barter, M.; Fox, A.D.; Zhao, M.; Meng, F.; Shi, H.; Jiang, Y.; Zhu, W. Changing distribution and abundance of Swan Goose Anser cygnoides in the Yangtze River floodplain: The likely loss of a very important wintering site. Bird Conserv. Int. 2011, 21, 36–48. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Zhao, Q.; Solovyeva, D.; Lameris, T.; Batbayar, N.; Bysykatova-Harmey, I.; Lee, H.; Emelyanov, V.; Rozenfeld, S.B.; Park, J.; et al. Population trends and migration routes of the East Asian Bean Goose Anser fabalis middendorffii and A. f. serrirostris. Wildfowl 2020, 70, 124–156. [Google Scholar]
- Zhao, M.; Cong, P.; Barter, M.; Fox, A.D.; Cao, L. The changing abundance and distribution of Greater White-fronted Geese Anser albifrons in the Yangtze River floodplain: Impacts of recent hydrological changes. Bird Conserv. Int. 2012, 22, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Fraser, J.D.; Chen, J. Wintering waterbirds in the middle and lower Yangtze River floodplain: Changes in abundance and distribution. Bird Conserv. Int. 2017, 27, 167–186. [Google Scholar] [CrossRef]
- Long, T.; Tang, J.; Pilfold, N.W.; Zhao, X.; Dong, T. Predicting range shifts of Davidia involucrata Ball. under future climate change. Ecol. Evol. 2021, 11, 12779–12789. [Google Scholar] [CrossRef] [PubMed]
- Qing, J.; Yang, Z.; He, K.; Zhang, Z.; Gu, X.; Yang, X.; Zhang, W.; Yang, B.; Qi, D.; Dai, Q. The minimum area requirements (MAR) for giant panda: An empirical study. Sci. Rep. 2016, 6, 37715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Shan, X.; Ovando, D.; Yang, T.; Dai, F.; Jin, X. Predicting current and future global distribution of black rockfish (Sebastes schlegelii) under changing climate. Ecol. Indic. 2021, 128, 107799. [Google Scholar] [CrossRef]
- McCullagh, P.; Nelder, J.A. Generalized Linear Models; Routledge: New York, NY, USA, 2019. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Ilanloo, S.S.; Ashrafi, S.; Shabani, A.A. Modeling Habitat Suitability of the Red-backed Shrike (Lanius collurio) in the Irano-Anatolian Biodiversity Hotspot. J. Zool. Res. 2021, 3, 1–8. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, S.; Capinha, C.; Weterings, R.; Gao, T. Using species distribution model to predict the impact of climate change on the potential distribution of Japanese whiting Sillago japonica. Ecol. Indic. 2019, 104, 333–340. [Google Scholar] [CrossRef]
- Chen, J.; Wang, F.; Xia, X.; Zhang, L. Major element chemistry of the Changjiang (Yangtze River). Chem. Geol. 2002, 187, 231–255. [Google Scholar] [CrossRef]
- Gao, B.; Yang, D.; Yang, H. Impact of the Three Gorges Dam on flow regime in the middle and lower Yangtze River. Quat. Int. 2013, 304, 43–50. [Google Scholar] [CrossRef]
- Hampe, A.; Petit, R.J. Conserving biodiversity under climate change: The rear edge matters. Ecol. Lett. 2005, 8, 461–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, S.T.; Sax, D.F. Balancing biodiversity in a changing environment: Extinction debt, immigration credit and species turnover. Trends Ecol. Evol. 2010, 25, 153–160. [Google Scholar] [CrossRef]
- Booth, T.H.; Nix, H.A.; Busby, J.R.; Hutchinson, M.F.; Franklin, J. BIOCLIM: The first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Divers. Distrib. 2013, 20, 1–9. [Google Scholar] [CrossRef]
- Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M. Climatologies at high resolution for the earth’s land surface areas. Sci Data. 2017, 4, 170122. [Google Scholar] [CrossRef] [Green Version]
- Doiron, M.; Legagneux, P.; Gauthier, G.; Lévesque, E. Broad-scale satellite Normalized Difference Vegetation Index data predict plant biomass and peak date of nitrogen concentration in Arctic tundra vegetation. Appl. Veg. Sci. 2013, 16, 343–351. [Google Scholar] [CrossRef]
- Luoto, M.; Virkkala, R.; Heikkinen, R.K. The role of land cover in bioclimatic models depends on spatial resolution. Glob. Ecol. Biogeogr. 2007, 16, 34–42. [Google Scholar] [CrossRef]
- Thuiller, W.; Araujo, M.B.; Lavorel, S. Do we need land-cover data to model species distributions in Europe? J. Biogeogr. 2004, 31, 353–361. [Google Scholar] [CrossRef]
- Wilson, J.W.; Sexton, J.O.; Jobe, R.T.; Haddad, N.M. The relative contribution of terrain, land cover, and vegetation structure indices to species distribution models. Biol. Conserv. 2013, 164, 170–176. [Google Scholar] [CrossRef]
- He, K.; Dai, Q.; Gu, X.; Zhang, Z.; Zhou, J.; Qi, D.; Gu, X.; Yang, X.; Zhang, W.; Yang, B.; et al. Effects of roads on giant panda distribution: A mountain range scale evaluation. Sci. Rep. 2019, 9, 1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitt, S.; Pouteau, R.; Justeau, D.; De Boissieu, F.; Birnbaum, P. ssdm: An r package to predict distribution of species richness and composition based on stacked species distribution models. Methods Ecol. Evol. 2017, 8, 1795–1803. [Google Scholar] [CrossRef] [Green Version]
- Struebig, M.J.; Linkie, M.; Deere, N.J.; Martyr, D.J.; Millyanawati, B.; Faulkner, S.C.; Le Comber, S.C.; Mangunjaya, F.M.; Leader-Williams, N.; McKay, J.E. Addressing human-tiger conflict using socio-ecological information on tolerance and risk. Nat. Commun. 2018, 9, 3455. [Google Scholar] [CrossRef]
- Steinwart, I.; Christmann, A. Support Vector Machines; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Ripley, B.D. Pattern Recognition and Neural Networks; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Hastie, T.; Tibshirani, R. Generalized additive models: Some applications. J. Am. Stat. Assoc. 1987, 82, 371–386. [Google Scholar] [CrossRef]
- Gray, J.B.; Fan, G. Classification tree analysis using TARGET. Comput. Stat. Data Anal. 2008, 52, 1362–1372. [Google Scholar] [CrossRef]
- Suggala, A.; Liu, B.; Ravikumar, P. Generalized boosting. Adv. Neural Inf. Process. Syst. 2020, 33, 8787–8797. [Google Scholar]
- Eberhard, F.E.; Cunze, S.; Kochmann, J.; Klimpel, S. Modelling the climatic suitability of Chagas disease vectors on a global scale. eLife 2020, 9, e52072. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Erauskin-Extramiana, M.; Arrizabalaga, H.; Hobday, A.J.; Cabre, A.; Ibaibarriaga, L.; Arregui, I.; Murua, H.; Chust, G. Large-scale distribution of tuna species in a warming ocean. Glob. Chang. Biol. 2019, 25, 2043–2060. [Google Scholar] [CrossRef] [Green Version]
- Kanagaraj, R.; Araujo, M.B.; Barman, R.; Davidar, P.; De, R.; Digal, D.K.; Gopi, G.; Johnsingh, A.; Kakati, K.; Kramer-Schadt, S. Predicting range shifts of Asian elephants under global change. Divers. Distrib. 2019, 25, 822–838. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Dong, X.; Grenouillet, G.; Lek, S.; Zheng, Y.; Chang, J. Species range shifts in response to climate change and human pressure for the world’s largest amphibian. Sci. Total Environ. 2020, 735, 139543. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Mammola, S.; Liang, Z.; Capinha, C.; Wei, Q.; Wu, Y.; Zhou, J.; Wang, C. Future climate change will severely reduce habitat suitability of the Critically Endangered Chinese giant salamander. Freshw. Biol. 2020, 65, 971–980. [Google Scholar] [CrossRef]
- Ao, P.R.; Wang, X.; Solovyeva, D.; Meng, F.J.; Ikeuchi, T.; Shimada, T.; Park, J.; Gao, D.; Liu, G.; Hu, B.; et al. Rapid decline of the geographically restricted and globally threatened Eastern Palearctic Lesser White-fronted Goose Anser erythropus. Wildfowl 2020, 9, 206–243. [Google Scholar]
- Yu, H.; Wang, X.; Cao, L.; Zhang, L.; Jia, Q.; Lee, H.; Xu, Z.; Liu, G.; Xu, W.; Hu, B. Are declining populations of wild geese in China ‘prisoners’ of their natural habitats? Curr. Biol. 2017, 27, R376–R377. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Wang, X.; Cao, L.; Fox, A.D. Why Chinese wintering geese hesitate to exploit farmland. IBIS 2018, 160, 703–705. [Google Scholar] [CrossRef] [Green Version]
- Xie, C.; Huang, X.; Mu, H.; Yin, W. Impacts of land-use changes on the lakes across the Yangtze floodplain in China. Environ. Sci. Technol. 2017, 51, 3669–3677. [Google Scholar] [CrossRef]
- Penghao, C.; Pingkuo, L.; Hua, P. Prospects of hydropower industry in the Yangtze River Basin: China’s green energy choice. Renew. Energy 2019, 131, 1168–1185. [Google Scholar] [CrossRef]
- Cyranoski, D. Putting China’s wetlands on the map. Nature 2009, 458, 134. [Google Scholar] [CrossRef]
- Gong, P.; Niu, Z.; Cheng, X.; Zhao, K.; Zhou, D.; Guo, J.; Liang, L.; Wang, X.; Li, D.; Huang, H. China’s wetland change (1990–2000) determined by remote sensing. Sci. China Earth Sci. 2010, 53, 1036–1042. [Google Scholar] [CrossRef]
- Teng, J.; Xia, S.; Liu, Y.; Yu, X.; Zhao, C. Assessing habitat suitability for wintering geese by using Normalized Difference Water Index (NDWI) in a large floodplain wetland, China. Ecol. Indic. 2021, 122, 107260. [Google Scholar] [CrossRef]
- Lei, J.; Jia, Y.; Wang, Y.; Lei, G.; Lu, C.; Saintilan, N.; Wen, L. Behavioural plasticity and trophic niche shift: How wintering geese respond to habitat alteration. Freshw. Biol. 2019, 64, 1183–1195. [Google Scholar] [CrossRef]
- Zou, Y.; Tang, Y.; Xie, Y.; Zhao, Q.; Zhang, H. Response of herbivorous geese to wintering habitat changes: Conservation insights from long-term population monitoring in the East Dongting Lake, China. Reg. Environ. Change 2017, 17, 879–888. [Google Scholar] [CrossRef]
Species | Number of Occurrence Data Points |
---|---|
LWFG | 419 |
GWFG | 752 |
BG | 852 |
SG | 487 |
GG | 154 |
Total | 2692 |
Level 1 | Level 2 | Meaning |
---|---|---|
Cropland | Paddy Field (dis_pf) | Cropland with a guaranteed water source and irrigation facilities that can be irrigated normally in normal years and used to grow rice, lotus root, and other aquatic crops. |
Upland Field (dis_uf) | Cropland without an irrigation water source or facilities that depends on natural water to grow crops; dry-crop-cultivated land with a water source and irrigation facilities that can be irrigated normally in normal years; cultivated land mainly used for vegetable cultivation. | |
Water | River (dis_ri) | Land below the perennial water level of rivers and main rivers formed by natural or artificial excavation. Artificial channels include an embankment. |
Lake (dis_la) | Land below the perennial water level in a natural water accumulation area. | |
Reservoir (dis_re) | Land below the perennial water level in an artificial water storage area. | |
Mudflat (dis_mf) | The tidal zone between the high tide level and the low tide level of the coastal spring tide. | |
Floodplain (dis_fp) | Land between the water levels of rivers and lakes in normal seasons and those in flood seasons. | |
Construction land | Urban Land (dis_ul) | Land used in large, medium, and small cities and built-up areas above the county level. |
Rural Land (dis_rl) | Rural settlements that are independent of cities and towns. | |
Other Construction Land (dis_ocl) | Land used for factories and mines, large industrial areas, oil fields, salt fields, quarries, traffic roads, airports, and other construction land uses. | |
Unused Land | Wetland (dis_wl) | Land with flat and low-lying terrain, poor drainage, long-term moisture, seasonal water accumulation or perennial water accumulation, and surface growth of hygrophytes. |
Bare Land (dis_bl) | Land covered by surface soil where the vegetation coverage is less than 5%. |
Species | Suitable Habitat Area/Change | Period 1 | Period 1 vs. Period 2 | Period 2 vs. Period 3 | Period 3 vs. Period 4 |
---|---|---|---|---|---|
LFWG | Suitable habitat | 37,872 | |||
Lost suitable habitat | −2922 | −260 | −15905 | ||
Relative change ratio | −7.72% | −0.74% | −45.85% | ||
GFWG | Suitable habitat | 46,067 | |||
Lost suitable habitat | −2747 | −3699 | −9217 | ||
Relative change ratio | −5.96% | −8.54% | −23.26% | ||
BG | Suitable habitat | 52,613 | |||
Lost suitable habitat | −4576 | −7191 | −4441 | ||
Relative change ratio | −8.70% | −14.97% | −10.87% | ||
SG | Suitable habitat | 40,253 | |||
Lost suitable habitat | −3926 | −1591 | −2757 | ||
Relative change ratio | −9.75% | −4.38% | −7.94% | ||
GG | Suitable habitat | 67,697 | |||
Lost suitable habitat | −1972 | −2550 | −1554 | ||
Relative change ratio | −2.91% | −3.88% | −2.46% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, K.; Lei, J.; Jia, Y.; Wu, E.; Sun, G.; Lu, C.; Zeng, Q.; Lei, G. Temporal Dynamics of the Goose Habitat in the Middle and Lower Reaches of the Yangtze River. Remote Sens. 2022, 14, 1883. https://doi.org/10.3390/rs14081883
He K, Lei J, Jia Y, Wu E, Sun G, Lu C, Zeng Q, Lei G. Temporal Dynamics of the Goose Habitat in the Middle and Lower Reaches of the Yangtze River. Remote Sensing. 2022; 14(8):1883. https://doi.org/10.3390/rs14081883
Chicago/Turabian StyleHe, Ke, Jialin Lei, Yifei Jia, Entao Wu, Gongqi Sun, Cai Lu, Qing Zeng, and Guangchun Lei. 2022. "Temporal Dynamics of the Goose Habitat in the Middle and Lower Reaches of the Yangtze River" Remote Sensing 14, no. 8: 1883. https://doi.org/10.3390/rs14081883
APA StyleHe, K., Lei, J., Jia, Y., Wu, E., Sun, G., Lu, C., Zeng, Q., & Lei, G. (2022). Temporal Dynamics of the Goose Habitat in the Middle and Lower Reaches of the Yangtze River. Remote Sensing, 14(8), 1883. https://doi.org/10.3390/rs14081883