Influence of Residual Amplitude and Phase Error for GF-3 Quad-Polarization SAR on Wind Vector Retrieval
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
- (1)
- Rainforest
- (2)
- Ocean
3. Results
3.1. Assessment of Amplitude and Phase Imbalance
3.2. Influence of Residual Amplitude Error on Wind Speed Retrieval
3.3. Influence of Residual Amplitude and Phase Error on Wind Direction Retrieval
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Hasselmann, K.; Hasselmann, S. On the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum and its inversion. J. Geophys. Res. Earth Surf. 1991, 96, 10713–10729. [Google Scholar] [CrossRef]
- Chapron, B.; Johnsen, H.; Garello, R. Wave and wind retrieval from sar images of the ocean. Ann. Telecommun. 2001, 56, 682–699. [Google Scholar] [CrossRef]
- Li, X.-M.; Lehner, S.; Bruns, T. Ocean Wave Integral Parameter Measurements Using Envisat ASAR Wave Mode Data. IEEE Trans. Geosci. Remote Sens. 2010, 49, 155–174. [Google Scholar] [CrossRef] [Green Version]
- Vachon, P.W.; Dobson, F.W. Validation of wind vector retrieval from ERS-1 SAR images over the ocean. Glob. Atmos. Ocean. Syst. 1996, 5, 177–187. [Google Scholar]
- Shao, W.; Sheng, Y.; Sun, J. Preliminary Assessment of Wind and Wave Retrieval from Chinese Gaofen-3 SAR Imagery. Sensors 2017, 17, 1705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, Y.; Shi, X.; Dai, Y.; Li, L.; Qu, X.; Zhang, X. Research on Wind Speed Inversion Method for X-Band Networked SAR Satellite. J. Mar. Sci. Eng. 2020, 8, 626. [Google Scholar] [CrossRef]
- Shao, W.; Li, X.; Hwang, P.; Zhang, B.; Yang, X. Bridging the gap between cyclone wind and wave by C -band SAR measurements. J. Geophys. Res. Oceans 2017, 122, 6714–6724. [Google Scholar] [CrossRef]
- Zhang, B.; Perrie, W.; Vachon, P.W.; Li, X.; Pichel, W.G.; Guo, J.; He, Y. Ocean Vector Winds Retrieval From C-Band Fully Polarimetric SAR Measurements. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4252–4261. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.W.; Yan, W.; Ai, W.-H.; Shuo, M.A. A Method of Ocean Surface Wind Direction Retrievals for Airborne SAR Images Based on Gabor Wavelet Transform. J. Microw. 2011, 27, 79–83. [Google Scholar]
- Ai, W.-H.; Yi, K.; Xian-Bin, Z. Ocean surface wind direction retrieval from multi-polarization airborne SAR based on wavelet. Acta Phys. Sin. 2012, 61, 148403. [Google Scholar] [CrossRef]
- Fan, K.; Huang, W.; He, M.; Fu, B. Wind direction analysis over the ocean using SAR imagery. J. Inf. Comp. 2008, 5, 223–231. [Google Scholar]
- Wang, L.; Han, B.; Yuan, X.; Lei, B.; Ding, C.; Yao, Y.; Chen, Q. A Preliminary Analysis of Wind Retrieval, Based on GF-3 Wave Mode Data. Sensors 2018, 18, 1604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Li, H.; Lin, M.; Zhu, J.; Wang, J.; Li, W.; Cui, L. Calibration of the Copolarized Backscattering Measurements from Gaofen-3 Synthetic Aperture Radar Wave Mode Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 1748–1762. [Google Scholar] [CrossRef]
- Zhu, S.; Shao, W.; Marino, A.; Sun, J.; Yuan, X. Semi-empirical algorithm for wind speed retrieval from Gaofen-3 quad-polarization strip mode SAR data. J. Ocean. Univ. China 2020, 19, 23–35. [Google Scholar] [CrossRef]
- Jiang, S.; Qiu, X.; Han, B.; Hu, W. A Quality Assessment Method Based on Common Distributed Targets for GF-3 Polarimetric SAR Data. Sensors 2018, 18, 807. [Google Scholar] [CrossRef] [Green Version]
- Shangguan, S.; Qiu, X.; Fu, K.; Lei, B.; Hong, W. GF-3 Polarimetric Data Quality Assessment Based on Automatic Extraction of Distributed Targets. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4282–4294. [Google Scholar] [CrossRef]
- Xu, L.; Li, W.; Cui, L.; Tong, Q.; Chen, J. Study on the impact of Polarimetric calibration errors on terrain classification with PolInSAR. In Proceedings of the Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016; pp. 4722–4725. [Google Scholar]
- Correia, A.H.; da Costa Freitas, C.; Mura, J.C. Evaluation of the influence of the polarimetric calibration process on the H/A/alpha decomposition. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 2039–2042. [Google Scholar]
- Hu, D.; Qiu, X.; Lei, B.; Xu, F. Analysis of crosstalk impact on the Cloude-decomposition-based scattering characteristic. J. Radars 2017, 6, 221–228. [Google Scholar]
- Freeman, A.; Shen, Y.; Werner, C. Polarimetric SAR calibration experiment using active radar calibrators. IEEE Trans. Geosci. Remote Sens. 1990, 28, 224–240. [Google Scholar] [CrossRef]
- Li, H.; Mouche, A.; Stopa, J.E.; Chapron, B. Calibration of the normalized radar cross section for sentinel-1 wave mode. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1514–1522. [Google Scholar] [CrossRef]
- Van Zyl, J. Calibration of polarimetric radar images using only image parameters and trihedral corner reflector responses. IEEE Trans. Geosci. Remote Sens. 1990, 28, 337–348. [Google Scholar] [CrossRef]
- Barnes, R.M. Polarimetric Calibration Using Distributed Clutter. In Proceedings of the SPIE—The International Society for Optical Engineering, Orlando, FL, USA, 14 August 1989; Volume 1101, pp. 53–59. [Google Scholar]
- Freeman, A.; Werner, C.; Shen, Y. Calibration of multipolarisation imaging radar. Remote Sens. 1988, 1, 335–339. [Google Scholar]
- Whitt, M.W.; Ulaby, F.T. A General Polarimetric Calibration Technique; University of Michigan, Radiation Laboratory: Ann Arbor, MI, USA, 1989. [Google Scholar]
- Verspeek, J.; Portabella, M.; Stoffelen, A.; Verhoef, A.; Calibration and Validation of ASCAT Winds. The EUMETSAT Network of Satellite Application Facilities, 11 July 2011. Available online: https://cdn.knmi.nl/system/data_center_publications/files/000/069/426/original/calibration_and_validation_of_ascat_winds_5_1.pdf?1495621762 (accessed on 30 May 2013).
- Yan, Q.; Zhang, J.; Fan, C.; Wang, J.; Meng, J. Study of sea-surface slope distribution and its effect on radar backscatter based on Global Precipitation Measurement Ku-band precipitation radar measurements. J. Appl. Remote Sens. 2018, 12, 016006. [Google Scholar] [CrossRef] [Green Version]
- Romeiser, R.; Alpers, W.; Wismann, V. An improved composite surface model for the radar backscattering cross section of the ocean surface: 1. Theory of the model and optimization/validation by scatterometer data. J. Geophys. Res. Earth Surf. 1997, 102, 25237–25250. [Google Scholar] [CrossRef]
- Romeiser, R.; Alpers, W. An improved composite surface model for the radar backscattering cross section of the ocean surface: 2. Model response to surface roughness variations and the radar imaging of underwater bottom topography. J. Geophys. Res. Earth Surf. 1997, 102, 25251–25267. [Google Scholar] [CrossRef]
- Shang, M.; Qiu, X.; Han, B.; Yang, J.; Zhong, L.; Ding, C.; Hu, Y. The space-time variation of phase imbalance for GF-3 azimuth multichannel mode. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4774–4788. [Google Scholar] [CrossRef]
- Elfouhaily, T. Physical modeling of electromagnetic backscatter from the ocean surface. In Application to Retrieval of Wind Fields and Wind Stress by Remote Sensing of the Marine Atmospheric Boundary Layer; Dépt. d’Océanogr. Spatiale, l’Inst. Français Rec. l’Exploitation Mer (IFREMER): Plouzane, France, 1997. [Google Scholar]
- Zhang, B.; Perrie, W.; He, Y. Wind speed retrieval from RADARSAT-2 quad-polarization images using a new polarization ratio model. J. Geophys. Res. Ocean. 2011, 116, C8. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Frequency | 5.4 Ghz |
Incidence angle | 36.1°/22.1°/39.6° |
Polarization | HH/HV/VH/VV |
Resolution | 10 m |
Swath | 5 km |
Number of data | 2300 |
Acquision time | 2018,9–2019,9 |
0–20 m/s, provided by ECMWF |
Sensor | Wave Code | Incident Angle | Latitude | Longitude | Acquisition Time |
---|---|---|---|---|---|
GF-3 SAR | 191 | 23.81–26.48° | –2.86° | –66.75° | 7 December 2019, 10:17:18 |
GF-3 SAR | 189 | 19.95–22.75° | 0.71° | –67.56° | 21 October 2021, 22:43:35 |
GF-3 SAR | 203 | 39.51–40.76° | 0.77° | –68.22° | 2 November 2021, 10:17:41 |
Cor | RMSE | Bias | SI | |
---|---|---|---|---|
No correction | 0.82 | 1.86 | −0.21 | 0.18 |
Correction | 0.86 | 1.64 | −0.28 | 0.14 |
Relative Wind Direction | ||
---|---|---|
<0 | >0 | −180° < Φ < −90° |
>0 | >0 | −90° < Φ < 0° |
<0 | <0 | 0° < Φ < 90° |
>0 | <0 | 90° < Φ < 180° |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Hu, Y.; Han, B.; Yuan, X.; Yang, J.; Duan, J. Influence of Residual Amplitude and Phase Error for GF-3 Quad-Polarization SAR on Wind Vector Retrieval. Remote Sens. 2022, 14, 1433. https://doi.org/10.3390/rs14061433
Wang X, Hu Y, Han B, Yuan X, Yang J, Duan J. Influence of Residual Amplitude and Phase Error for GF-3 Quad-Polarization SAR on Wind Vector Retrieval. Remote Sensing. 2022; 14(6):1433. https://doi.org/10.3390/rs14061433
Chicago/Turabian StyleWang, Xiaochen, Yuxin Hu, Bing Han, Xinzhe Yuan, Junxin Yang, and Jitong Duan. 2022. "Influence of Residual Amplitude and Phase Error for GF-3 Quad-Polarization SAR on Wind Vector Retrieval" Remote Sensing 14, no. 6: 1433. https://doi.org/10.3390/rs14061433
APA StyleWang, X., Hu, Y., Han, B., Yuan, X., Yang, J., & Duan, J. (2022). Influence of Residual Amplitude and Phase Error for GF-3 Quad-Polarization SAR on Wind Vector Retrieval. Remote Sensing, 14(6), 1433. https://doi.org/10.3390/rs14061433