Tropical Cyclone Impact and Forest Resilience in the Southwestern Pacific
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Forest Vegetation
2.3. Tropical Cyclones
2.4. Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ESA | European Space Agency |
IBTrACS | International Best Track Archive for Climate Stewardship |
NASA | National Aeronautics and Space Administration |
NDVI | Normalized Difference Vegetation Index |
NIR | Near Infrared Region |
MOD13Q1 | MODIS vegetation index product (NDVI and EVI) |
RMW | Radius of Maximum Wind |
SSHWS | Saffir–Simpson Hurricane Wind Scale |
TC | Tropical Cyclone |
References
- Lugo, A.E.; Applefield, M.; Douglas, J.P.; Macdonald, R.B. The impact of Hurricane David on the forests of Dominica. Can. J. For. Res. Can. Rech. For. 1983, 13, 201–211. [Google Scholar] [CrossRef]
- Basnet, K.; Likens, G.E.; Scatena, F.N.; Lugo, A.E. Hurricane Hugo: Damage to a Tropical Rain Forest in Puerto Rico. J. Trop. Ecol. 1992, 8, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Boose, E.R.; Foster, D.R.; Fluet, M. Hurricane Impacts to Tropical and Temperate Forest Landscapes. Ecol. Monogr. 1994, 64, 369–400. [Google Scholar] [CrossRef]
- Metcalfe, D.J.; Bradford, M.G.; Ford, A.J. Cyclone damage to tropical rain forests: Species- and community-level impacts. Austral Ecol. 2008, 33, 432–441. [Google Scholar] [CrossRef]
- Webb, E.L.; van de Bult, M.; Fa’aumu, S.; Webb, R.C.; Tualaulelei, A.; Carrasco, L.R. Factors Affecting Tropical Tree Damage and Survival after Catastrophic Wind Disturbance. Biotropica 2014, 46, 32–41. [Google Scholar] [CrossRef]
- Ni, Y.; Wang, T.; Cao, H.; Li, Y.; Bin, Y.; Zhang, R.; Wang, Y.; Lian, J.; Ye, W. An old-growth subtropical evergreen broadleaved forest suffered more damage from Typhoon Mangkhut than an adjacent secondary forest. For. Ecol. Manag. 2021, 496, 119433. [Google Scholar] [CrossRef]
- Peereman, J.; Hogan, J.A.; Lin, T.-C. Assessing typhoon-induced canopy damage using vegetation indices in the Fushan Experimental Forest, Taiwan. Remote Sens. 2020, 12, 1654. [Google Scholar] [CrossRef]
- Turton, S.M. Landscape-scale impacts of Cyclone Larry on the forests of northeast Australia, including comparisons with previous cyclones impacting the region between 1858 and 2006. Austral Ecol. 2008, 33, 409–416. [Google Scholar] [CrossRef]
- Rutledge, B.T.; Cannon, J.B.; McIntyre, R.K.; Holl, A.M.; Jack, S.B. Tree, stand, and landscape factors contributing to hurricane damage in a coastal plain forest: Post-hurricane assessment in a longleaf pine landscape. For. Ecol. Manag. 2021, 481, 118724. [Google Scholar] [CrossRef]
- Kossin, J.P.; Knapp, K.R.; Olander, T.L.; Velden, C.S. Global increase in major tropical cyclone exceedance probability over the past four decades. Proc. Natl. Acad. Sci. USA 2020, 117, 11975–11980. [Google Scholar] [CrossRef]
- Gang, C.; Pan, S.; Tian, H.; Wang, Z.; Xu, R.; Bian, Z.; Pan, N.; Yao, Y.; Shi, H. Satellite observations of forest resilience to hurricanes along the northern Gulf of Mexico. For. Ecol. Manag. 2020, 472, 118243. [Google Scholar] [CrossRef]
- De Beurs, K.M.; McThompson, N.S.; Owsley, B.C.; Henebrrefy, G.M. Hurricane damage detection on four major Caribbean islands. Remote Sens. Environ. 2019, 229, 1–13. [Google Scholar] [CrossRef]
- Peereman, J.; Hogan, J.A.; Lin, T.-C. Disturbance frequency, intensity and forest structure modulate cyclone-induced changes in mangrove forest canopy cover. Glob. Ecol. Biogeogr. 2021, 31, 37–50. [Google Scholar] [CrossRef]
- Boose, E.R.; Serrano, M.I.; Foster, D.R. Landscape and regional impacts of hurricanes in Puerto Rico. Ecol. Monogr. 2004, 74, 335–352. [Google Scholar] [CrossRef]
- Simpson, R.H. The hurricane disaster potential scale. Weatherwise 1974, 27, 169–186. [Google Scholar]
- Knapp, K.R.; Kruk, M.C.; Levinson, D.H.; Diamond, H.J.; Neumann, C.J. The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Am. Meteorol. Soc. 2010, 91, 363–376. [Google Scholar] [CrossRef]
- Willoughby, H.E.; Darling, R.W.R.; Rahn, M.E. Parametricrepresentation of the primary hurricane vortex. Part II: A new family of sectionally continuous profiles. Mon. Weather Rev. 2006, 134, 1102–1120. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.-C.; Hogan, J.A.; Chang, C.-T. Tropical Cyclone Ecology: A Scale-Link Perspective. Trends Ecol. Evol. 2020, 35, P594–P604. [Google Scholar] [CrossRef] [Green Version]
- Menkes, C.E.; Lengaigne, M.; Marchesiello, P.; Jourdain, N.C.; Vincent, E.M.; Lefèvre, J.; Chauvin, F.; Royer, J.-F. Comparison of tropical cyclogenesis indices on seasonal to interannual timescales. Clim. Dyn. 2012, 38, 301–321. [Google Scholar] [CrossRef]
- Jourdain, N.C.; Marchesiello, P.; Menkes, C.E.; Lefevre, J.; Vincent, E.M.; Lengaigne, M.; Chauvin, F. Mesoscale Simulation of Tropical Cyclones in the South Pacific: Climatology and Interannual Variability. J. Clim. 2011, 24, 3–25. [Google Scholar] [CrossRef] [Green Version]
- Payri, C.E.; Allain, V.; Aucan, J.; David, C.; David, V.; Dutheil, C.; Loubersac, L.; Menkes, C.; Pelletier, B.; Pestana, G. Chapter 27—New Caledonia. In World Seas: An Environmental Evaluation, 2nd ed.; Sheppard, C., Ed.; Academic Press: New Caledonia, France, 2019; pp. 593–618. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Vincent, E.M.; Lengaigne, M.; Menkes, C.E.; Jourdain, N.C.; Marchesiello, P.; Madec, G. Interannual variability of the South Pacific Convergence Zone and implications for tropical cyclone genesis. Clim. Dyn. 2012, 36, 1881–1896. [Google Scholar] [CrossRef] [Green Version]
- Muggeo, V.M.R. Segmented: An R Package to Fit Regression Models with Broken-Line Relationships. R News 2008, 8, 20–25. Available online: https://cran.r-project.org/doc/Rnews/ (accessed on 22 February 2022).
- Webb, E.L.; Seamon, J.O.; Fa’aumu, S. Frequent, low-amplitude disturbances drive high tree turnover rates on a remote, cyclone-prone Polynesian island. J. Biogeogr. 2011, 38, 1240–1252. [Google Scholar] [CrossRef]
- Franklin, J.; Drake, D.R.; McConkey, K.R.; Tonga, F.; Smith, L.B. The effects of Cyclone Waka on the structure of lowland tropical rain forest in Vava’u, Tonga. J. Trop. Ecol. 2004, 20, 409–420. [Google Scholar] [CrossRef]
- Kantha, L. Classification of hurricanes: Lessons from Katrina, Ike, Irene, Isaac and Sandy. Ocean Eng. 2013, 70, 124–128. [Google Scholar] [CrossRef]
- Bloemendaal, N.; de Moel, H.; Mol, J.M.; Bosma, P.R.M.; Polen, A.N.; Collins, J.M. Adequately reflecting the severity of tropical cyclones using the new Tropical Cyclone Severity Scale. Environ. Res. Lett. 2021, 16, 014048. [Google Scholar] [CrossRef]
- Walsh, K.J.E.; McBride, J.L.; Klotzbach, P.J.; Balachandran, S.; Camargo, S.J.; Holl, G.; Knutson, T.R.; Kossin, J.P.; Lee, T.; Sobel, A. Tropical cyclones and climate change. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 65–89. [Google Scholar] [CrossRef]
- Lin, I.-I.; Pun, I.-F.; Lien, C.-C. “Category-6” supertyphoon Haiyan in global warming hiatus: Contribution from subsurface ocean warming. Geophys. Res. Lett. 2014, 41, 8547–8553. [Google Scholar] [CrossRef]
- Bellingham, P.J.; Kapos, V.; Varty, N.; Healey, J.R.; Tanner, E.V.J.; Kelly, D.L.; Dalling, J.W.; Burns, L.S.; Lee, D.; Sidrak, G. Hurricanes need not cause high mortality: The effects of Hurricane Gilbert on forests in Jamaica. J. Trop. Ecol. 1992, 8, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Ibanez, T.; Keppel, G.; Menkes, C.; Gillespie, T.W.; Lengaigne, M.; Mangeas, M.; Rivas-Torres, G.; Birnbaum, P. Globally consistent impact of tropical cyclones on the structure of tropical and subtropical forests. J. Ecol. 2019, 107, 279–292. [Google Scholar] [CrossRef]
- Ibanez, T.; Chave, J.; Barrabé, L.; Elodie, B.; Boutreux, T.; Trueba, S.; Vandrot, H.; Birnbaum, P. Community variation in wood density along a bioclimatic gradient on a hyper-diverse tropical island. J. Veg. Sci. 2017, 28, 19–33. [Google Scholar] [CrossRef]
- Curran, T.J.; Gersbach, L.N.; Edwards, W.; Krockenberger, A.K. Wood density predicts plant damage and vegetative recovery rates caused by cyclone disturbance in tropical rainforest tree species of North Queensland, Australia. Austral Ecol. 2008, 33, 442–450. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Zhan, R.; Xu, J.; Duan, Y. Increasing Destructive Potential of Landfalling Tropical Cyclones over China. J. Clim. 2020, 33, 3731–3743. [Google Scholar] [CrossRef]
- Walker, L. Tree Damage and Recovery from Hurricane Hugo in Luquillo Experimental Forest, Puerto-Rico. Biotropica 1991, 23, 379–385. [Google Scholar] [CrossRef]
- Bellingham, P.J.; Tanner, E.V.J.; Healey, J.R. Sprouting of Trees in Jamaican Montane Forests, after a Hurricane. J. Ecol. 1994, 8, 747–758. [Google Scholar] [CrossRef]
- Van Bloem, S.J.; Murphy, P.G.; Lugo, A.E. A link between hurricane-induced tree sprouting, high stem density and short canopy in tropical dry forest. Tree Physiol. 2007, 27, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Poorter, L.; Kitajima, K.; Mercado, P.; Chubiña, J.; Melgar, I.; Prins, H.H.T. Resprouting as a persistence strategy of tropical forest trees: Relations with carbohydrate storage and shade tolerance. Ecology 2010, 91, 2613–2627. [Google Scholar] [CrossRef]
- Murphy, H.T.; Metcalfe, D.J. The perfect storm: Weed invasion and intense storms in tropical forests. Austral Ecol. 2016, 41, 864–874. [Google Scholar] [CrossRef]
- Catterall, C.P.; McKenna, S.; Kanowski, J.; Piper, S.D. Do cyclones and forest fragmentation have synergistic effects? A before-after study of rainforest vegetation structure at multiple sites. Austral Ecol. 2008, 33, 471–484. [Google Scholar] [CrossRef] [Green Version]
- Al-Khaldi, M.M.; Johnson, J.T.; Kang, Y.; Katzberg, S.J.; Bringer, A.; Kubatko, E.; Wood, D. Track-Based Cyclone Maximum Wind Retrievals Using the Cyclone Global Navigation Satellite System (CYGNSS) Mission Full DDMs. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 21–29. [Google Scholar] [CrossRef]
- Dutheil, C.; Lengaigne, M.; Bador, M.; Vialard, J.; Lefèvre, J.; Jourdain, N.C.; Jullien, S.; Peltier, A.; Sultan, B.; Menkes, C. Impact of projected sea surface temperature biases on tropical cyclones projections in the South Pacific. Sci. Rep. 2020, 10, 12. [Google Scholar] [CrossRef] [Green Version]
Category | Sustained Wind Speed (m/s) |
---|---|
ine 5 (major) | ≥70 |
4 (major) | 58–70 |
3 (major) | 50–58 |
2 | 43–49 |
1 | 33–42 |
Tropical Storm (TS) | 18–32 |
Tropical Depression (TD) | <17 |
Maximum Sustained Wind Speed | Frequency | Coverage (%) |
---|---|---|
≥33 m/s (Cat. 1 or higher) | At least once | 95.6 |
At least twice | 71.0 | |
At least 3 times | 33.1 | |
At least 4 times | 9.9 | |
At least 5 times | 1.0 | |
At least 6 times | 0.0 | |
≥43 m/s (Cat. 2 or higher) | At least once | 73.4 |
At least twice | 22.3 | |
At least 3 times | 2.0 | |
At least 4 times | 0.0 | |
≥50 m/s (Cat. 3 or higher) | At least once | 43.1 |
At least twice | 3.9 | |
At least 3 times | 0.0 | |
≥58 m/s (Cat. 4 or higher) | At least once | 21.3 |
At least twice | 0.3 | |
At least 3 times | 0.0 | |
≥70 m/s (Cat. 5) | At least once | 5.4 |
At least twice | 0.0 |
Model | BIC | Beakpoints | Davies Tests | Slope | |
---|---|---|---|---|---|
Best at | p-Value | ||||
SSHWS | 252.07 | 43.00 | 34.00 | <0.001 | 0.02 |
50.00 | 49.78 | <0.001 | −0.24 | ||
58.00 | 69.00 | 0.08 | −0.90 | ||
70.00 | 75.00 | <0.001 | −1.13 | ||
−1.78 | |||||
Optimized | 223.72 | 50.00 | 51.78 | <0.001 | −0.08 |
75.70 | 74.22 | <0.001 | −1.05 | ||
−7.45 |
Model | BIC | Beakpoints | Davies Tests | Slope | |
---|---|---|---|---|---|
Best at | p-Value | ||||
SSHWS | 376.03 | 43.00 | 34.00 | 0.008 | 0.49 |
50.00 | 51.22 | <0.001 | −0.10 | ||
58.00 | 69.00 | <0.001 | 4.14 | ||
70.00 | 77.00 | <0.001 | 3.64 | ||
6.35 | |||||
Optimized | 331.73 | 50.48 | 52.22 | <0.001 | 0.42 |
76.64 | 77.00 | <0.001 | 3.80 | ||
51.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delaporte, B.; Ibanez, T.; Despinoy, M.; Mangeas, M.; Menkes, C. Tropical Cyclone Impact and Forest Resilience in the Southwestern Pacific. Remote Sens. 2022, 14, 1245. https://doi.org/10.3390/rs14051245
Delaporte B, Ibanez T, Despinoy M, Mangeas M, Menkes C. Tropical Cyclone Impact and Forest Resilience in the Southwestern Pacific. Remote Sensing. 2022; 14(5):1245. https://doi.org/10.3390/rs14051245
Chicago/Turabian StyleDelaporte, Baptiste, Thomas Ibanez, Marc Despinoy, Morgan Mangeas, and Christophe Menkes. 2022. "Tropical Cyclone Impact and Forest Resilience in the Southwestern Pacific" Remote Sensing 14, no. 5: 1245. https://doi.org/10.3390/rs14051245
APA StyleDelaporte, B., Ibanez, T., Despinoy, M., Mangeas, M., & Menkes, C. (2022). Tropical Cyclone Impact and Forest Resilience in the Southwestern Pacific. Remote Sensing, 14(5), 1245. https://doi.org/10.3390/rs14051245