Global and Regional Variations and Main Drivers of Aerosol Loadings over Land during 1980–2018
Abstract
:1. Introduction
2. Data and Methods
2.1. MERRA-2 Aerosol Reanalysis Products
2.2. The Empirical Orthogonal Function Analysis
2.3. Temporal Trend Analysis
2.4. Spatial Correlation and Aggregation Analysis Method
3. Result and Discussion
3.1. Global Spatial and Temporal Variation of AOD
3.2. The Main Drivers of the Global Distributions of AOD
3.3. The Effect of Aerosol Emissions on Global AOD Variations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hinds, W.C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles; John Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- George, I.J.; Abbatt, J. Heterogeneous oxidation of atmospheric aerosol particles by gas-phase radicals. Nat. Chem. 2010, 2, 713–722. [Google Scholar] [CrossRef]
- Riipinen, I.; Pierce, J.R.; Yli-Juuti, T.; Nieminen, T.; Häkkinen, S.; Ehn, M.; Junninen, H.; Lehtipalo, K.; Petäjä, T.; Slowik, J. Organic condensation: A vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations. Atmos. Chem. Phys. 2011, 11, 3865–3878. [Google Scholar] [CrossRef] [Green Version]
- Ayers, G.P.; Gras, J.L. Seasonal relationship between cloud condensation nuclei and aerosol methanesulphonate in marine air. Nature 1991, 353, 834–835. [Google Scholar] [CrossRef]
- Pöschl, U. Atmospheric aerosols: Composition, transformation, climate and health effects. Angew. Chem. Int. Ed. 2005, 44, 7520–7540. [Google Scholar] [CrossRef]
- Haywood, J.; Boucher, O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys. 2000, 38, 513–543. [Google Scholar] [CrossRef]
- Wei, J.; Huang, W.; Li, Z.; Xue, W.; Peng, Y.; Sun, L.; Cribb, M. Estimating 1-km-resolution PM2. 5 concentrations across China using the space-time random forest approach. Remote Sens. Environ. 2019, 231, 111221. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Cribb, M.; Huang, W.; Xue, W.; Sun, L.; Guo, J.; Peng, Y.; Li, J.; Lyapustin, A. Improved 1 km resolution PM 2.5 estimates across China using enhanced space-time extremely randomized trees. Atmos. Chem. Phys. 2020, 20, 3273–3289. [Google Scholar] [CrossRef] [Green Version]
- Holben, B.N.; Eck, T.F.; Slutsker, I.A.; Tanre, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T. AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Sioris, C.E.; Abboud, I.; Fioletov, V.E.; McLinden, C.A. AEROCAN, the Canadian sub-network of AERONET: Aerosol monitoring and air quality applications. Atmos. Environ. 2017, 167, 444–457. [Google Scholar] [CrossRef]
- Sano, I.; Mukai, S.; Yamano, M.; Takamura, T.; Nakajima, T.; Holben, B. Calibration and validation of retrieved aerosol properties based on AERONET and SKYNET. Adv. Space Res. 2003, 32, 2159–2164. [Google Scholar] [CrossRef]
- Che, H.; Zhang, X.; Xia, X.; Goloub, P.; Holben, B.; Zhao, H.; Wang, Y.; Zhang, X.; Wang, H.; Blarel, L. Ground-based aerosol climatology of China: Aerosol optical depths from the China Aerosol Remote Sensing Network (CARSNET) 2002–2013. Atmos. Chem. Phys. 2015, 15, 7619–7652. [Google Scholar] [CrossRef] [Green Version]
- Subba, T.; Gogoi, M.M.; Pathak, B.; Bhuyan, P.K.; Babu, S.S. Recent trend in the global distribution of aerosol direct radiative forcing from satellite measurements. Atmos. Sci. Lett. 2020, 21, e975. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y.; Laszlo, I.; Kahn, R.; Korkin, S.; Remer, L.; Levy, R.; Reid, J.S. Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm. J. Geophys. Res. 2011, 116, D03211. [Google Scholar]
- Lyapustin, A.I.; Wang, Y.; Laszlo, I.; Hilker, T.; Hall, F.G.; Sellers, P.J.; Tucker, C.J.; Korkin, S.V. Multi-angle implementation of atmospheric correction for MODIS (MAIAC): 3. Atmospheric correction. Remote Sens. Environ. 2012, 127, 385–393. [Google Scholar] [CrossRef]
- Lee, H.J.; Liu, Y.; Coull, B.A.; Schwartz, J.; Koutrakis, P. A novel calibration approach of MODIS AOD data to predict PM 2.5 concentrations. Atmos. Chem. Phys. 2011, 11, 7991–8002. [Google Scholar] [CrossRef] [Green Version]
- Lyapustin, A.; Wang, Y.; Korkin, S.; Huang, D. MODIS Collection 6 MAIAC algorithm. Atmos. Meas. Tech. 2018, 11, 5741–5765. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Zhang, X.; Wu, Y.; Zhaxi, Y.; Che, H.; La, B.; Wang, W.; Li, X. Spatio-temporal variation trends of satellite-based aerosol optical depth in China during 1980–2008. Atmos. Environ. 2011, 45, 6802–6811. [Google Scholar] [CrossRef]
- Bibi, H.; Alam, K.; Chishtie, F.; Bibi, S.; Shahid, I.; Blaschke, T. Intercomparison of MODIS, MISR, OMI, and CALIPSO aerosol optical depth retrievals for four locations on the Indo-Gangetic plains and validation against AERONET data. Atmos. Environ. 2015, 111, 113–126. [Google Scholar] [CrossRef]
- Hsu, N.C.; Gautam, R.; Sayer, A.M.; Bettenhausen, C.; Li, C.; Jeong, M.J.; Tsay, S.C.; Holben, B.N. Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010. Atmos. Chem. Phys. 2012, 12, 8037–8053. [Google Scholar] [CrossRef] [Green Version]
- Qin, W.; Liu, Y.; Wang, L.; Lin, A.; Xia, X.; Che, H.; Bilal, M.; Zhang, M. Characteristic and Driving Factors of Aerosol Optical Depth over Mainland China during 1980–2017. Remote Sens. 2018, 10, 1064. [Google Scholar] [CrossRef] [Green Version]
- Lambert, A.; Grainger, R.G.; Remedios, J.J.; Rodgers, C.D.; Corney, M.; Taylor, F.W. Measurements of the evolution of the Mt. Pinatubo aerosol cloud by ISAMS. Geophys. Res. Lett. 1993, 20, 1287–1290. [Google Scholar] [CrossRef]
- Minnis, P.; Harrison, E.F.; Stowe, L.L.; Gibson, G.G.; Denn, F.M.; Doelling, D.R.; Smith, W.L. Radiative climate forcing by the Mount Pinatubo eruption. Science 1993, 259, 1411–1415. [Google Scholar] [CrossRef]
- Sanap, S.D. Global and regional variations in aerosol loading during COVID-19 imposed lockdown. Atmos. Environ. 2021, 246, 118132. [Google Scholar] [CrossRef]
- Ranjan, A.K.; Patra, A.K.; Gorai, A.K. Effect of lockdown due to SARS COVID-19 on aerosol optical depth (AOD) over urban and mining regions in India. Sci. Total Environ. 2020, 745, 141024. [Google Scholar] [CrossRef]
- Filonchyk, M.; Hurynovich, V.; Yan, H.; Gusev, A.; Shpilevskaya, N. Impact assessment of COVID-19 on variations of SO2, NO2, CO and AOD over East China. Aerosol Air Qual. Res. 2020, 20, 1530–1540. [Google Scholar] [CrossRef]
- Filonchyk, M.; Hurynovich, V.; Yan, H. Impact of Covid-19 lockdown on air quality in the Poland, Eastern Europe. Environ. Res. 2021, 198, 110454. [Google Scholar] [CrossRef]
- Qin, W.; Fang, H.; Wang, L.; Wei, J.; Zhang, M.; Su, X.; Bilal, M.; Liang, X. MODIS high-resolution MAIAC aerosol product: Global validation and analysis. Atmos. Environ. 2021, 264, 118684. [Google Scholar] [CrossRef]
- Mehta, M.; Singh, R.; Singh, A.; Singh, N.; Anshumali. Recent global aerosol optical depth variations and trends—A comparative study using MODIS and MISR level 3 datasets. Remote Sens. Environ. 2016, 181, 137–150. [Google Scholar] [CrossRef]
- Jaeglé, L.; Quinn, P.K.; Bates, T.S.; Alexander, B.; Lin, J.T. Global distribution of sea salt aerosols: New constraints from in situ and remote sensing observations. Atmos. Chem. Phys. 2011, 11, 3137–3157. [Google Scholar] [CrossRef] [Green Version]
- Vignati, E.; Facchini, M.C.; Rinaldi, M.; Scannell, C.; Ceburnis, D.; Sciare, J.; Kanakidou, M.; Myriokefalitakis, S.; Dentener, F.; O’Dowd, C.D. Global scale emission and distribution of sea-spray aerosol: Sea-salt and organic enrichment. Atmos. Environ. 2010, 44, 670–677. [Google Scholar] [CrossRef]
- Mahowald, N.; Albani, S.; Kok, J.F.; Engelstaeder, S.; Scanza, R.; Ward, D.S.; Flanner, M.G. The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Res. 2014, 15, 53–71. [Google Scholar] [CrossRef] [Green Version]
- Goudie, A.S.; Middleton, N.J. Saharan dust storms: Nature and consequences. Earth-Sci. Rev. 2001, 56, 179–204. [Google Scholar] [CrossRef]
- Ganor, E.; Mamane, Y. Transport of Saharan dust across the eastern Mediterranean. Atmos. Environ. (1967) 1982, 16, 581–587. [Google Scholar] [CrossRef]
- McKendry, I.G.; Strawbridge, K.B.; O’Neill, N.T.; Macdonald, A.M.; Liu, P.S.; Leaitch, W.R.; Anlauf, K.G.; Jaegle, L.; Fairlie, T.D.; Westphal, D.L. Trans-Pacific transport of Saharan dust to western North America: A case study. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Swap, R.; Garstang, M.; Greco, S.; Talbot, R.; Kallberg, P. Saharan dust in the Amazon Basin. Tellus B. 1992, 44, 133–149. [Google Scholar] [CrossRef] [Green Version]
- Cooke, W.F.; Wilson, J.J. A global black carbon aerosol model. J. Geophys. Res. Atmos. 1996, 101, 19395–19409. [Google Scholar] [CrossRef]
- Reddington, C.L.; McMeeking, G.; Mann, G.W.; Coe, H.; Frontoso, M.G.; Liu, D.; Flynn, M.; Spracklen, D.V.; Carslaw, K.S. The mass and number size distributions of black carbon aerosol over Europe. Atmos. Chem. Phys. 2013, 13, 4917–4939. [Google Scholar] [CrossRef] [Green Version]
- Koch, D.; Schulz, M.; Kinne, S.; McNaughton, C.; Spackman, J.R.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Bond, T.C.; Boucher, O. Evaluation of black carbon estimations in global aerosol models. Atmos. Chem. Phys. 2009, 9, 9001–9026. [Google Scholar] [CrossRef] [Green Version]
- Eliseev, A.V. Impact of tropospheric sulphate aerosols on the terrestrial carbon cycle. Global Planet. Change 2015, 124, 30–40. [Google Scholar] [CrossRef]
- Smith, S.J.; van Aardenne, J.; Klimont, Z.; Andres, R.J.; Volke, A.; Delgado Arias, S. Anthropogenic sulfur dioxide emissions: 1850–2005. Atmos. Chem. Phys. 2011, 11, 1101–1116. [Google Scholar] [CrossRef] [Green Version]
- Penner, J.E. Carbonaceous Aerosols Influencing Atmospheric Radiation: Black and Organic Carbon; Lawrence Livermore National Lab.: Livermore, CA, USA, 1994. [Google Scholar]
- Kirchstetter, T.W.; Novakov, T.; Hobbs, P.V. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J. Geophys. Res. Atmos. 2004, 109, D20208. [Google Scholar] [CrossRef] [Green Version]
- Lack, D.A.; Tie, X.X.; Bofinger, N.D.; Wiegand, A.N.; Madronich, S. Seasonal variability of secondary organic aerosol: A global modeling study. J. Geophys. Res. Atmos. 2004, 109, D03203. [Google Scholar] [CrossRef] [Green Version]
- Fujii, Y.; Iriana, W.; Oda, M.; Puriwigati, A.; Tohno, S.; Lestari, P.; Mizohata, A.; Huboyo, H.S. Characteristics of carbonaceous aerosols emitted from peatland fire in Riau, Sumatra, Indonesia. Atmos. Environ. 2014, 87, 164–169. [Google Scholar] [CrossRef] [Green Version]
- Randles, C.A.; Da Silva, A.M.; Buchard, V.; Colarco, P.R.; Darmenov, A.; Govindaraju, R.; Smirnov, A.; Holben, B.; Ferrare, R.; Hair, J.; et al. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I: System Description and Data Assimilation Evaluation. J. Climate. 2017, 30, 6823–6850. [Google Scholar] [CrossRef] [PubMed]
- Naik, P.; D’Sa, E.J. Empirical Orthogonal Function (EOF) Analysis of Sea-Surface Temperature and Chlorophyll in the Eastern Bering Sea. SPIE: Bellingham, DC, USA, 2010; Volume 7825, p. 782503-8. [Google Scholar]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Global Planet. Change 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Anselin, L. A local indicator of multivariate spatial association: Extending Geary’s C. Geogr. Anal. 2019, 51, 133–150. [Google Scholar] [CrossRef]
- Gu, L.; Baldocchi, D.D.; Wofsy, S.C.; Munger, J.W.; Michalsky, J.J.; Urbanski, S.P.; Boden, T.A. Response of a deciduous forest to the Mount Pinatubo eruption: Enhanced photosynthesis. Science 2003, 299, 2035–2038. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, J.P.; Spackman, J.R.; Gao, R.S.; Watts, L.A.; Stier, P.; Schulz, M.; Davis, S.M.; Wofsy, S.C.; Fahey, D.W. Global-scale black carbon profiles observed in the remote atmosphere and compared to models. Geophys. Res. Lett. 2010, 37, L11812. [Google Scholar] [CrossRef] [Green Version]
- Myhre, G.; Myhre, C.; Samset, B.H.; Storelvmo, T. Aerosols and their relation to global climate and climate sensitivity. Nat. Educ. Knowl. 2013, 4, 7. [Google Scholar]
Short Name | Full Name |
---|---|
AODANA | aerosol optical depth analysis |
SO4SO4AOD | so4 aerosol optical depth [550 nm] |
SSAOD | sea aerosol optical depth [550 nm] |
OCAOD | organic carbon aerosol optical depth [550 nm] |
DUAOD | dust aerosol optical depth [550 nm] |
BCAOD | black carbon aerosol optical depth [550 nm] |
Aerosol Types | Short Name | Long Name |
---|---|---|
Black Carbon | BCEM001 | black carbon emission bin001 |
BCEM002 | black carbon emission bin002 | |
BCEMAN | black carbon anthropogenic missions | |
BCEMBB | black carbon biomass burning emissions | |
Dust Aerosols | DUEM001 | dust emission bin001 |
DUEM002 | dust emission bin002 | |
DUEM003 | dust emission bin003 | |
DUEM004 | dust emission bin004 | |
DUEM005 | dust emission bin005 | |
Sulfur Aerosols | SO2EMAN | so2 anthropogenic emissions |
SO2EMBB | so2 biomass burning emissions | |
SO2EMVE | so2 volcanic (explosive) emissions | |
SO2EMVN | so2 volcanic (non-explosive) emissions | |
SO4EMAN | so4 anthropogenic emissions | |
SUEM003 | sulfate emission bin003 | |
Sea Salt Aerosols | SSEM001 | sea salt emission bin001 |
SSEM002 | sea salt emission bin002 | |
SSEM003 | sea salt emission bin003 | |
SSEM004 | sea salt emission bin004 | |
SSEM005 | sea salt emission bin005 | |
Organic Carbon Aerosols | OCEM001 | organic carbon emission bin001 |
OCEM002 | organic carbon emission bin002 | |
OCEMAN | organic carbon anthropogenic emissions | |
OCEMBB | organic carbon biomass burning emissions | |
OCEMBG | organic carbon biogenic emissions |
Aerosol Types | Bin | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
Dust aerosols | radius | 0.73 | 1.4 | 2.4 | 4.5 | 8 |
radius lower | 0.1 | 1 | 1.8 | 3 | 6 | |
radius upper | 1 | 1.8 | 3 | 6 | 10 | |
density | 2500 | 2650 | 2650 | 2650 | 2650 | |
Sea salt aerosols | radius | 0.079 | 0.316 | 1.119 | 2.818 | 7.772 |
radius lower | 0.03 | 0.1 | 0.5 | 1.5 | 5 | |
radius upper | 0.1 | 0.5 | 1.5 | 5 | 10 | |
density | 2200 | 2200 | 2200 | 2200 | 2200 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Ding, K.; Lai, Z.; Huang, H. Global and Regional Variations and Main Drivers of Aerosol Loadings over Land during 1980–2018. Remote Sens. 2022, 14, 859. https://doi.org/10.3390/rs14040859
Sun J, Ding K, Lai Z, Huang H. Global and Regional Variations and Main Drivers of Aerosol Loadings over Land during 1980–2018. Remote Sensing. 2022; 14(4):859. https://doi.org/10.3390/rs14040859
Chicago/Turabian StyleSun, Jie, Kaihua Ding, Zulong Lai, and Haijun Huang. 2022. "Global and Regional Variations and Main Drivers of Aerosol Loadings over Land during 1980–2018" Remote Sensing 14, no. 4: 859. https://doi.org/10.3390/rs14040859
APA StyleSun, J., Ding, K., Lai, Z., & Huang, H. (2022). Global and Regional Variations and Main Drivers of Aerosol Loadings over Land during 1980–2018. Remote Sensing, 14(4), 859. https://doi.org/10.3390/rs14040859